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Solid state thin electrolyte 
to overcome transparency‑capacity 
dilemma of transparent 
supercapacitor
Jongseon Seo, Geonhui Han, Hyejin Kim & Daeseok Lee*

For portable and transparent electronic applications, transparent supercapacitor (T-SC) is developed 
to act as an energy storing device. Because electric and optical characteristics of the supercapacitor 
are strongly dependent on its thickness, all solid state T-SC was developed based on sensitively 
controllable fabrication process. We were able to attain an optimum thickness for the T-SC such that 
it exhibited an excellent transparency as well as capacity. Thus, the transparency-capacity dilemma, 
that is, the thickness of a T-SC increases with respect to its capacity while it is inversely proportional 
to its transparency, was solved through our proposed T-SC structure. Consequently, more than 60% 
transparency and 80% capacitance retention of 1500 charge/discharge cycles were achieved. The 
overcoming of transparency-capacity dilemma can enhance the T-SC applicability as a core energy 
storage device.

Since the industrial revolution, many studies have been conducted on eco-friendly energy such as reusable wind, 
solar power, tidal power, and geothermal power1–4. For effectively utilize the energy produced in various meth-
ods, studies on energy storage device have been actively conducted5–7. These energy storage devices are operated 
electro-chemical reaction by various ion movement, such as Li-ion, Na-ion, K-ion, and etc.8–16. Especially, the Li-
ion based energy storage device has been studied the most, and commercialization has also been conducted a lot.

In addition, development of portable and transparent electronic gadgets is being extensively researched 
worldwide, for industrial applications. In this regard, various transparent electronic devices such as a transparent 
memory, transparent transistors, and transparent displays have been proposed17–19. However, for energy storage, 
transparent energy storing devices need to be further investigated. They need high optical transmittance, high 
energy/power density, rapid charge/discharge time, and long-term lifetime; transparent supercapacitors have 
been proposed as one of the energy storing devices20–23.

The thickness of a T-SC increases with respect to its capacity while it is inversely proportional to the transpar-
ency. In other words, a thin T-SC is required for attaining an optimum transparency, but a high capacity can be 
achieved using a thick T-SC (transparency-capacity dilemma). In more detail, the self-discharge phenomenon 
in a thin electrolyte is responsible for the loss of capacity24. Thus, it is important to optimize the thickness of the 
T-SC to overcome the transparency-capacity dilemma.

To overcome these limitations, we developed an all-solid-state T-SC, which can easily manipulate the thick-
ness based on the deposition time. The all solid-state T-SC can also increase the mechanical reliability, reduce 
the total weight of the device, and exhibit an excellent stability on integration25. Consequently, we achieved 
the T-SC having a transmittance of 60% for visible light and excellent capacitance retention after 1300 charge/
discharge cycles.

Results and discussion
Figure 1a illustrates the structure of the developed T-SC. Indium tin oxide (ITO) was used as the material for all 
electrodes to attain transparency. Furthermore, LiCoO2 was used as a cathode layer to provide Li ions during 
the charging process, and WO3 was applied as an anode layer to store the Li ions; LiPON was used as a stable 
solid-electrolyte materials26,27. Figure 1b shows the images of the T-SC obtained through energy dispersive spec-
troscopy (EDS) elemental mapping and transmission electron microscopy (TEM). The thickness of LiPON was 
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modulated by varying the deposition time. The detailed fabrication process conditions of the optimized device 
are summarized in “Methods” section and Table 1.

Figure 2a–c show the cyclic voltammetry characteristics for various LiPON thicknesses. These results dem-
onstrate the electrochemical redox reactions between LiCoO2 and WO3 . These redox reactions are expressed 
as follows28.

Based on this cyclic voltammetry curve, we calculated the specific capacitance according to the following 
equation.

(1)LiCoO2 → Li1−xCoO2 + xLi+ + xe−

WO3 + xLi+ + xe− → LixWO3

(2)Cp =

∫

IdV

mv�V

Figure 1.   (a) Schematics of the developed Glass/ITO/LiCoO2/WO3/ITO T-SC device. (b) Cross-sectional 
transmission electron microscopy image of the fabricated T-SC device.

Table 1.   Optimized T-SC device sputtering process conditions.

Layer

Sputter process

Target Gas (sccm) Power (W) Working pressure (mTorr)

LiCoO2 (Cathode) LiCoO2 Ar 10 100 8

LiPON (Electrolyte) Li3Po4 Ar/N2 10/20.5 150 20

WO3 (Anode) WO3 Ar/O212/8 150 28.5

ITO (Top electorde) ITO Ar 20 100 40

Figure 2.   Cyclic voltammetry of three devices with LiPON electrolyte thickness of (a) 48 nm, (b) 95 nm, and 
(c) 190 nm.
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where 
∫

IdV is the area under the cyclic voltammetry curve, � V is the potential window, v is the scan rate, and m 
is the mass of active materials29. From the result, we can know that the specific capacitance is inversely propor-
tional to the thickness of LiPON electrolyte layer, as shown in Fig. 3a. Furthermore, we confirmed the movement 
of Li ions using the Randles-Sevcik equation fitting, as shown in Fig. 3b. The slope of this graph is proportional 
to G, which is the product of the concentration (C) and the root of diffusivity (D1/2 ). The slope decreases as the 
thickness of LiPON increases, implying a decrease in diffusivity as well30. However, a high diffusivity causes a 
large amount of desorption of Li ions. As a result, as the LiPON layer became thicker (low diffusivity), the change 
in peak current (Ipeak ) was more stable with the increase in scan rate ( 

√
ν ). The results of the cyclic voltammetry 

curve and the galvanostatic charge-discharge curve depict the stability of the developed T-SC.
Figure 3c presents the galvanostatic charge-discharge characteristics of the LiPON 190 nm T-SC device. We 

also observed the voltage drop characteristic which are responsible for the reduction in power efficiency and 
capacity. We defined the voltage drop ratio (Rv ), to confirm the drop rate at the maximum voltage as follows:

where V C and V D are the maximum voltages during charging and discharging, respectively (red marked in 
Fig. 3c). The increase in the desorption of Li ions, owing to a high diffusivity, also increases R v  . Thus, R v  is 
inversely proportional to the thickness of LiPON. Consequently, it can be observed that G (red bar) and R v 
(black bar) are inversely proportional to the LiPON thickness, as shown in Fig. 3d.

Thus, we optimized the T-SC device with a 190 nm thick LiPON layer that operates most reliably and exhibits 
the lowest voltage drop ratio. Figure 4a shows the transmittance (60% or more) characteristics of the T-SC device 
in the visible light band of 400–750 nm. Additionally, the inset photo also depicts its transparent characteristics. 
According to the power-law relationship, the ratio of the capacitive current (k1ν ) to the diffusion current (k2ν1/2 ) 
in the total current can be expressed as follows :

where i(V) is the current response and k 1 and k 2 are constants at different scan rates31.
Figure 4b shows that the capacitive current ratio of the T-SC device at a scan rate of 0.083 V/s is 19.7%. 

The diffusion-controlled and capacitive-controlled contribution percentages for different scan rates are shown 
in Fig. 4c. The capacitive contribution gradually increases with an increase in the scan rate. Subsequently, it 
exhibited the highest capacitive current ratio at 0.25 V/s. This indicates the limit of the diffusion process at high 
scan rates32.

(3)Voltage drop ratio(Rv) =
[

VC − VD

VC

]

(4)i(V) = k1ν + k2ν
1/2

Figure 3.   (a) Specific capacitance depending on the LiPON thickness. (b) Peak current (Ipeak)—scan rate ( 
√
ν ) 

curve for various ν , and (c) galvanostatic charge discharge curve of LiPON 190 nm T-SC device. (d) G (CD2 ) 
and voltage drop ratio (Rv ) for different LiPON thicknesses.
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The galvanostatic charge/discharge curve (17.68 mA/cm2 and 7.072 mA/cm2 of constant charge/discharge 
current density for 9 and 16 s, respectively.) was approximately triangular with a low voltage drop, as shown 
in Fig. 5. Moreover, we calculated the coulombic efficiency of the T-SC device based on following equation33.

where, Q charge and Q discharge are the amount of charge at charging and discharging, I charge and I discharge are the 
charge, discharge constant current, and t charge , t discharge are the charge and discharge time, respectively. As a 
result, , the T-SC device has a 71.1% coulombic efficiency. In addition, after 1500 charge/discharge cycles, the 
T-SC exhibited a very stable capacitance (more than 80% of the original capacitance), indicating a long-term 
electrochemical stability. This is further confirmed by the inconspicuous change between the charging and 
discharging curves of the 15th–18th and 1355th–1358th cycles, as shown in Fig. 5b. Furthermore, we calculated 
specific energy density and power density based on below equations:29,34–36

where E is energy density, P is power density, C p is specific capacitance, � v is the voltage scan range, and � t is the 
discharge time. It also exhibited excellent specific energy density of 10.947 Wh/kg and specific power density of 
2463.156 W/kg, respectively. From the replotted Ragone plot (fig. 5(c)), the developed device can be considered 
as the supercapacitor which is located at the intermediate between 2nd cells and capacitor of the Ragone plot.

Conclusion
We fabricated an all-solid-state T-SC that can be easily optimized and is physically stable. Furthermore, the 
transparency-capacity dilemma was overcome by controlling the deposition time to regulate the thickness of 
the electrolyte. Consequently, we fabricated a device with a transmittance of more than 60% transparency in 
the visible light band. In addition, this device exhibits charge discharge characteristics of up to 1500 cycles and 
more. It exhibits a high stability during operation with a capacitance retention of at least 80%. Owing to its 
excellent capacity and transparency characteristics, it is expected to have various applications as a transparent 
energy storing device.

Methods
A transparent supercapacitor (ITO/LiCoO2/LiPON/WO3/ITO) was fabricated on an ITO- coated glass substrate 
(AMG, Korea). Subsequently, a 100 nm thick layer of LiCoO2 was deposited to act as the cathode, on the 150 nm 
thick ITO deposited bottom electrode. We deposited LiCoO2 layer by using LiCoO2 target in Ar ambient gas. 
Sputtering power was 100 W and working pressure was 8 mTorr. Thereafter, a 190 nm thick electrolyte (LiPON) 
layer was formed by reactive sputtering of a Li3PO4 target in Ar and N 2 mixed ambient gas with sputtering power 

(5)Coulombic efficiency =
Qdischarge

Qcharge
× 100(%) =

Idischarge × tdischarge

Icharge × tcharge
× 100(%)

(6)E =
1

2
Cp(�v)2 P =

E

�t

Figure 4.   (a) Optical transmittance of T-SC device and the corresponding image (inset). (b) Capacitive and 
diffusion-controlled charge storage process at a scan rate of 0.083 V/s. (c) Contribution ratio of capacitive and 
diffusion-controlled currents at various scan rates of the T-SC device.
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of 150 W at 20 mTorr working pressure. Furthermore, a 100 nm thick (WO3 ) layer was deposited to act as the 
anode. The WO3 layer was deposited by utilizing WO3 target in Ar and O 2 mixed ambient gas with sputtering 
power of 150 W and 28.5 mTorr working pressure. Finally, a 150 nm ITO top electrode was deposited using 
circular shadow mask with a 60 um diameter (in Ar ambient gas with 100 W sputtering power and 40 mTorr 
working pressure).

Unlike previously reported liquid based fabrication processes37–41, to sensitively control the thickness of thin 
film layer, all layers were fabricated by solid state fabrication processes such as a radio frequency sputtering, 
reactive sputtering, and photo lithography. In addition, to achieve stable fabrication conditions, commercial 
sputtering targets purchased from the TAEWON SCIENTIFIC CO. LTD. (with 99.9% purity) were utilized. The 
detailed fabrication process is summarized as shown in Table 1. The electrical analyses were performed using a 
Keithley 2450 source-meter.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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