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A high‑resolution flux‑matrix 
model describes the spread 
of diseases in a spatial network 
and the effect of mitigation 
strategies
Guillaume Le Treut1*, Greg Huber1*, Mason Kamb1, Kyle Kawagoe2, Aaron McGeever1, 
Jonathan Miller3, Reuven Pnini3, Boris Veytsman4,5 & David Yllanes1,6

Propagation of an epidemic across a spatial network of communities is described by a variant of the 
SIR model accompanied by an intercommunity infectivity matrix. This matrix is estimated from fluxes 
between communities, obtained from cell-phone tracking data recorded in the USA between March 
2020 and February 2021. We apply this model to the SARS-CoV-2 pandemic by fitting just one global 
parameter representing the frequency of interaction between individuals. We find that the predicted 
infections agree reasonably well with the reported cases. We clearly see the effect of “shelter-in-place” 
policies introduced at the onset of the pandemic. Interestingly, a model with uniform transmission 
rates produces similar results, suggesting that the epidemic transmission was deeply influenced by 
air travel. We then study the effect of alternative mitigation policies, in particular restricting long-
range travel. We find that this policy is successful in decreasing the epidemic size and slowing down 
the spread, but less effective than the shelter-in-place policy. This policy can result in a pulled wave of 
infections. We express its velocity and characterize the shape of the traveling front as a function of the 
epidemiological parameters. Finally, we discuss a policy of selectively constraining travel based on an 
edge-betweenness criterion.

When plague hit Florence in August 1630, the Florentine authorities made a number of high-stakes decisions 
which proved highly effective1. One of the reasons the Florence Sanitá could organize this response was the 
ample time they had, forewarned as they were by the Milanese authorities in November 1629. Today’s public-
health authorities work under much more compressed timescales, as evidenced by the SARS-CoV-2 pandemic. 
Long-distance travel radically changes the dynamics of spreading, which raises a number of questions about the 
spatial dynamics of transmission in modern times. Epidemic outbreaks in the last two decades have provided the 
scientific community with a wealth of material to study these questions, going beyond the classic Susceptible-
Infected-Recovered (SIR) theory with perfect mixing2–6. Several studies have shown how the total epidemic size 
can be affected by factors such as inhomogeneity in transmission rates7–14 or in the mode of transmission15,16. 
Classically, motion of individuals was taken into account by introducing diffusion terms in the standard SIR 
equations, allowing the emergence of spatio-temporal patterns17–20. Recently, in the context of the SARS-CoV-2 
pandemic, such approaches have been especially valuable in order to study the effect of containment policies 
such as lockdown and quarantine21,22. These models are, however, limited in that they do not, in principle, take 
long-distance air travel into account. Several works have, therefore, considered disease spread in a network, 
typically constructed from air-traffic data19,23,24, where edges can connect locations separated by large geographi-
cal distances. This approach can lead to very accurate predictions at the country scale25 but predictions at finer 
scales remain challenging. Another study considering human mobility emphasized how spatial variation in 
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public-health infrastructure reflected on epidemiological parameters can affect the dynamics of spread to differ-
ent countries26. Data-based studies of epidemic spread and the impact of social distancing through the analysis 
of social-network structure have also been very informative16,27–29.

A recent paper by Chang et al.30 obtained a model for the spatio-temporal spread of a disease at a high spatial 
resolution by using extensive mobile tracking information to identify physical interactions between individuals. 
Chang et al. showed that the actual spread of the SARS-CoV-2 epidemic can be well explained from the mobility 
data of individuals. The model relied on the simulation of interactions among individuals on a bipartite graph 
where nodes, representing locations at a very fine spatial resolution, are divided in two sets: Census Block Groups 
(residential areas) and Points Of Interest (non-residential), each of them having its own transmission rate. The 
model was fitted to reproduce known reported cases of COVID-19 in 10 metropolitan areas, and could then be 
used to make short-term predictions about the spreading or study the effect of different mitigation strategies.

Here we take an approach similar to that of Chang et al., using mobility data to calibrate a model for disease 
spread. However, we investigate this propagation at the scale of a large country, the USA, rather than metropolitan 
areas. Specifically, we introduce a spatial SIR epidemiological model in which effective transmission rates between 
N = 210 communities are computed from mobility data of individuals belonging to these communities. We show 
that this model captures well the spread of the SARS-CoV-2 epidemic. Remarkably, we find that a simple model 
consisting of an interaction frequency dropping under the effect of lockdown, and of a single flux matrix encoding 
the travel of individuals, faithfully reproduces the reported cases of COVID-19 both globally and locally in each 
community. Strikingly, the SARS-CoV-2 epidemic spreads in a delocalized fashion, infecting distant communi-
ties very quickly. Moreover, an even simpler model with uniform transmission rates between the communities 
gives results very close to the model based on mobility data, emphasizing the prevalent role air travel played in 
the spread of the SARS-CoV-2 epidemic. We then study how interventions that change travel patterns can local-
ize epidemics. In particular, we investigate the hypothetical effect of a policy preventing long-distance travel. 
In addition to “flattening” the curve, spreading through nearest-neighbor interactions creates traveling waves, 
which we characterize both analytically and numerically. These results allow us to discuss which interventions 
are more effective, limiting short-range contacts (a lockdown), or limiting long-range trips (a quarantine). We 
also propose an alternative mitigation strategy based on an edge-betweenness criterion.

Model
We consider a metapopulation model of N communities numbered 1, 2,..., N. Denoting by Sa , Ia and Ra the 
numbers of susceptible, infected and recovered individuals in community a, the standard SIR equations read:

where βab is the transmission rate from infected individuals in community b to susceptible individuals in com-
munity a and γ is the recovery rate, assumed to be the same for all communities. Diagonal elements of the infec-
tivity matrix [βab] describe intracommunity infections, while off-diagonal elements describe inter-community 
infections (Fig. 1a,b). We also introduce the local epidemic sizes Ta = Ia + Ra . The total population in each 
community Ma is constant through time,
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Figure 1.   Model for the spreading of SARS-CoV-2 in a network of communities in the USA. (a) One 
community i interacting with three other communities j, k and l, with the transmission rates βij , βik and βil 
respectively. (b) Infectivity matrix. (c) N = 210 communities in the USA. Each community aggregates a number 
of Census Block Groups (CBGs).
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The model in Eq. (1) has been extensively studied31–35. We show in the Supplementary Information (SI) that the 
dynamics can be reduced to an ODE of just one N-vector variable, and the endemic equilibrium can be obtained 
by solving a transcendental equation involving the infectivity matrix [βab].

In order to estimate the infectivity matrix, we used mobility data compiled by SafeGraph36, tracking the loca-
tion of about 20 million USA cell phones between March 2020 and February 2021. The locations consist of more 
than 200,000 Census Block Groups (CBGs). Each cell phone is assigned for physical residence the location where 
it spent the most time, and daily visits to other locations are recorded. For computational purposes, we coarse-
grained the physical locations into N = 210 communities, which are shown in Fig. 1c. Let fab be the number of 
individuals from community a visiting community b per unit of time. We will assume that

The variation in susceptible individuals in community a due to new infections during the time interval �t has 
the form:

where β is the disease-specific transmission rate when a susceptible individual has contact with an infected indi-
vidual. There are three kinds of infection to consider: (i) the infected person and the infector belong to the same 
community, (ii) an infected person visits a neighboring community and infects a resident of this community, 
and (iii) a susceptible person visits a neighboring community and gets infected by one of its residents. We will 
neglect the rarer “tourist to tourist” infections, when an infected person visits a neighboring community and 
infects there a visitor from yet another community. The term Pr

(

meeting an infected individual
)

 can therefore 
be evaluated as a function of the pseudo-flux matrix [fab] for each of the three aforementioned cases (SI). After 
summation of the three contributions, we obtain:

where p is the frequency with which an individual is having contact with an other individual of its community, 
and is assumed to be the same for all communities. Equation (5) determines the infectivity matrix [βab] from 
Eq. (1) up to a proportionality constant, namely βp.

Results
The model reproduces the spatial dynamics.  In order to assess the validity of the infectivity matrix 
based on mobility data, Eq. (5), we confronted the model’s predictions against COVID-19 case numbers reported 
in the USA by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University37. Specifi-
cally, we fitted the daily βp(t) values so as to minimize the sum of squared errors between values predicted by 
the model and values reported by the CSSE (Material and methods). The fitted βp(t) values show a steep decay 
during the month of March 2020, followed by a plateau lasting until February 2021 (Fig. 2b).

(3)fab ≪ Ma, fab ≪ Mb, for all a and b.
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Figure 2.   Model based on SafeGraph mobility data or a uniform infectivity matrix. (a) The model is fitted to 
COVID-19 confirmed cases in the USA. There is one fitting parameter per day. (b) Fitting parameters obtained. 
The shape suggests a simplified model with two limiting values before and after lockdown. (c) The simplified 
models obtained reproduce the spread of the SARS-CoV-2 epidemic in the community network. A direct 
comparison between the local epidemic sizes predicted by the models and the reported values can be found 
in Fig. 5. See also Movies S1 and S2.
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A two‑phase simplified model.  The time variations of βp(t) shown in Fig. 2b imply a drastic decrease in 
the interaction frequency among individuals across all communities. This result reflects the effect of the shelter-
in-place policies that were implemented at the beginning of the SARS-CoV-2 pandemic in many USA states. We 
can use this observation to estimate the effect of these policies quantitatively: the interaction frequency among 
individuals, namely p, is about 5 times smaller in the plateau following shelter-in-place policies than it was at the 
onset of the SARS-CoV-2 pandemic. Following this observation, we defined a simplified model, in which the fit 
with reported cases was carried out while enforcing a softplus shape for βp(t) (Fig. 2b and Material and meth-
ods). This simplified model reproduced the average progression of the epidemic (Fig. 2a), but it didn’t capture 
the three oscillations visible in the number of new cases. We conclude that these oscillations in the number of 
new cases were mostly driven by a similar oscillatory pattern in the interaction frequency as seen in Fig. 2b. In 
Fig. 2c, we show for a few dates an overlay of the number of new COVID-19 cases in each community according 
to the official reports and as predicted by our simplified model. Despite non-negligeable variance, we find that 
the model reproduces to a satisfying degree the real dynamics. This can also be seen through a direct comparison 
of the model predictions with the real reports of new cases, for all dates combined, as shown in Fig. 5a. This result 
suggests that the infectivity matrix constructed from mobility data (Eq. 5) is a reasonable approximation of the 
“true” infectivity matrix.

Turning down long‑range interactions.  The previous results suggest that the decrease in new COVID-
19 cases was mostly driven by a country-wide reduction in the interaction frequency among individuals. Here we 
investigate the hypothetical effect of an alternative policy, namely a travel restriction while keeping unchanged 
the interaction frequency among individuals. Specifically, we modified the infectivity matrix so that communi-
ties separated by a physical distance larger than a prescribed cutoff do not interact: βij = 0 if dij > dc (Fig. 3a). 
We seeded the infection in a community belonging to the state of Washington and simulated the spread of the 
epidemics using a fixed interaction frequency ( βp(0) from the simplified model). As expected, we observed a 
reduction in the number of daily new cases dT (we define the local variables dTa(t) = Ta(t)− Ta(t − 1) ) when 
the cutoff distance dc decreased, illustrating the “curve-flattening” effect that was targeted by travel restriction 
policies (Fig. 3b). In this idealized scenario with a single seed for the infection, the epidemic propagates as a 
traveling wave from the west coast to the east coast (Fig. 3c). However, as can be seen by comparing Fig. 2a to 
Fig. 3b, travel restriction policies are not as efficient as lockdown policies to decrease the spread of an epidemic.

Properties of infectivity matrices.  The daily infectivity matrices constructed from the SafeGraph mobil-
ity data can be viewed as elements of a random-matrix ensemble. Remarkably, matrix elements seem to be 
distributed according to the law βij = �βij�eξ , where 〈βij〉 is the mean infectivity matrix and ξ ≡ N(0, 1) is a 
centered reduced Gaussian variable (Fig. S1). The probability density of the eigenvalues is also shown in Fig. S1. 
A connection can be made with random matrix theory (RMT)38–40, initially introduced by E. Wigner to model 
the spectra of the nuclei of heavy atoms, where the interactions between many nucleons are assumed to be drawn 
from a random ensemble. In RMT, random matrices are classified according to their symmetry, or according to 
their corresponding level statistics (namely, the probability density of the spacing between consecutive eigenval-
ues) that exhibit different degrees of level repulsion38. In particular, the Wigner-Dyson (WD) statistics is typical 
of the Gaussian Orthogonal Ensemble (in which eigenvalues “interact”), while the Poisson statistics is typical of 
a matrix with independent eigenvalues. The level-spacing statistics of the infectivity matrices is shown in Fig. 4a. 
We found that they were time-independent. Yet interestingly, the level statistics interpolates between the WD 
statistics and the Poisson statistics41. As shown earlier, removing links between communities according to their 
geographical distance results in a slower spread and a smaller epidemic size. Concomitantly, the level spacing 
distribution converges toward a Poisson statistics (Fig. 4c). The crossover from WD (entropy S = 0.7169 ) to 
Poisson ( S = 1 ) distribution as links between communities are successively removed suggests an isolation policy 
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Figure 3.   Limiting long-distance travels without local lockdown. (a) Only transmission rates for communities 
separated by a distance dij < dc are retained. (b) Daily new infections for increasing values of the cutoff distance. 
(c) Spatial visualization of the daily new infections using a cutoff dc = 200 km . See also Movie S3.
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that can lead to an effective reduction of the epidemic size (SI). As alternative mitigation strategies, we choose 
to induce the transition toward a Poisson distribution by decimating links between communities according to 
their “nominal” distance or the “edge-betweenness” centrality42–44 (Fig. 4b). Figure 4d shows how the level spac-
ing distribution converges toward a Poisson statistics when the nominal distance threshold is lowered. We find 
the edge-betweenness centrality to be more efficient in decreasing the epidemic size. This is because decimation 
according to edge-betweenness first targets links with the largest transmission rates. One could also consider a 
moderate policy: instead of eliminating links completely, one could impose constraints on the flux of individuals 
that are allowed to commute via central pre-determined links.

Classes of infectivity matrices.  Although SafeGraph mobility data36 provide a realistic picture of people 
movement between communities, one might ask what is the sensitivity of the results to the infectivity matrix 
derived from the mobility fluxes. We thus considered a model with uniform transmission rates among commu-
nities, namely βab = β , which suppresses spatial effects. In particular, this model leads to the natural variables 
νa (see SI) to be uniform: νa(t) = νUN(t) . Surprisingly, carrying out the same fit to the reported cases (Fig. 1a,b) 
was only marginally inferior to the fit carried out with the SafeGraph mobility data (see Fig. 5b). By contrast, 
carrying out the same fit with the infectivity matrix derived from SafeGraph mobility data but with long-range 
interactions turned down resulted in a significantly different dynamics (see Fig. 5c). There are several implica-
tions of this result. (1) Although changes in the structure of the infectivity matrix can lead to drastically differ-
ent dynamics (Figs. 3, 4 and 5c), it appears that the infectivity matrix derived from SafeGraph fluxes falls in the 
same “universality class” as the uniform model. This suggests that long-range movements (e.g. air traffic) played 
a prevalent role in the spread of SARS-CoV-2. (2) Our choice to reduce the complexity of the model to only 
one fitting parameter might not be adequate to discriminate between models falling into the same universality 
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class. Instead of fitting only one scalar p(t) at each time point, we also investigated the possibility of fitting the 
N2 transmission rates βab(t) minimizing the errors with reported cases (see Material and methods and Fig. S2). 
Although this latter approach is clearly prone to overfitting, it shows that there exists a parametrization of the 
model which reproduces very closely reported cases. We anticipate that the proper number of fitting parameters 
lies in between those two extreme scenarios.

Analysis of traveling waves.  The results from the previous sections suggest the apparition of a wave-
front when transmissions are short range. To investigate this phenomenon, we consider a simplified model 
of communities lying on a two-dimensional square lattice. Each community index is replaced by coordinates 
(i, j) ∈ �1, 2n�× �1, 2m� . In particular, we consider that only individuals from neighboring communities interact 
together. We rewrite Eq. (1):

where α (respectively β ) is the intra-community (resp. inter-community) transmission rate. After rescaling 
the time and space variables, and defining the rescaled recovery rate γ̃ = γ /(aβ) where a = 4+ α/β , we 
look for wave solutions in the continuum limit by introducing the shape functions S(x, y, t) = g(x − ṽt) and 
I(x, y, t) = h(x − ṽt) , where ṽ = v/

√
aβ represents the velocity of the wave in rescaled time and space (see SI). 

The shape functions satisfy the ODE:

We find that the velocity of the traveling wave is bounded from below (SI):

which is in agreement with previous reports18,48 and with results from marginal-stability analysis21,49,50. Interest-
ingly, by an independant argument, we also established (see SI) that ṽ ≤ ṽc . Therefore the traveling wave must 
move at velocity ṽ = ṽc . This indicates that the SIR dynamics in Eq. (6) falls into the Fisher-Kolmogorov-Petro-
vsky-Piscunov universality class, resulting in pulled waves51–54. Although we have taken the continuum limit of 
a nearest-neighbor model, this analysis is also valid for any finite-range infection matrix with the appropriate 
rescaling of variables.
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Figure 6.   Existence of a wave with nearest-neighbors-only interactions. (a) Equation (6) is solved on a square 
lattice of 2n × 2m sites. (b) Traveling front of infected individuals moving along the x direction (left to right). We 
took α = β = γ = 0.1 , so that the rescaled recovery rate is γ̃ = γ /(aβ) = 0.2 . (c) The dynamics simulated for 
different values of β . The position m(t) ( S(t,m(t)) = (1+ S∞)/2 ) of the wave is asymptotically linear in time, 
hence a constant velocity ṽ =

√

1− γ̃  . (d) The simulated wave profiles (symbols) are in agreement with the 
profiles predicted by Eq. (7) (solid lines). The corresponding S,I,R profiles are shown in Fig. S3. A simulation 
with γ̃ = 0.2 is shown in Movie S4.
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We performed simulations of the dynamics given by Eq. (6) on a square lattice with a varying aspect ratio 
(Fig. 6a) and seeding the infection at one site on the west boundary. As expected, there is a front of new infec-
tions, moving from west to east as time progresses. A timelapse of a traveling front of infected individuals with 
α = β = γ = 0.1 is shown in Fig. 6b. The wave position increases asymptotically linearly with time, but the 
velocity ṽ of the wave varies with γ̃ (Fig. 6c). The profiles obtained are in agreement with the shape functions 
obtained by solving Eq. (7), as shown in Fig. 6d.

Discussion
Biological systems are inherently complex and it can be a challenge to characterize them by a small number 
of parameters. In the case of epidemics, the huge number of parameters (for example, intercommunity spread 
involves N2 transmission rates for N communities) can obscure the salient mechanisms and make it difficult for 
policy makers to find efficient interventions. Reducing the dimension of a model, when possible, is therefore of 
great value. In this article, we have proposed a spatial SIR model with an infectivity matrix based on the local 
travel patterns.

Despite its simplicity (there is only one global parameter to be adjusted), we find that our model is able to 
capture the spatial spread of the SARS-CoV-2 epidemic, with a delocalized multicenter spreading caused by 
long-distance travelers bringing infection into far regions, then becoming secondary centers of infection. The 
time evolution of the interaction frequency reflects the shelter-in-place policies that were implemented by vari-
ous USA states in the early stages of the SARS-CoV-2 pandemic. In fact, the rich diversity of human responses 
could be summarized by a simplified model for the interaction frequency, whose asymptotes represent the values 
“before lockdown” and “after lockdown”, with few assumptions about the infection process.

If a model with relatively few parameters describes the observations, one can assume that it also describes 
the situation when these parameters are changed by an intervention. Therefore, we suggest such a model could 
be used as the basis for efficient policies—or at least reliably to estimate the consequences of adopting policies. 
As an example, we have shown the hypothetical effect of an alternative to the shelter-in-place policy in the case 
of the SARS-CoV-2 pandemic. Specifically, we have investigated a travel restriction policy in which individuals 
can only move within an area of fixed radius centered around their residence. By contrast to the lockdown policy, 
we find that infections spread through a well-defined wave front, traveling with a certain velocity. This scenario 
might be preferable since it gives time to communities and public health infrastructures to prepare for the onset 
of the epidemics, while still “flattening the curve” of new infections (Fig. 3b). We have also provided both an 
analytical and numerical analysis elucidating the mechanism of formation of a wavefront. In particular, we give 
the velocity and the shape of the wavefront for an epidemic spreading through nearest neighbors interactions.

During the course of our research, an epidemiological study bearing similarities with our approach was 
published55. In that study, the authors developed a county-resolved metapopulation model describing the spread 
of SARS-CoV-2 in the USA, informed with mobility data from SafeGraph. Instead of calibrating the model 
by fitting the country-wide number of reported cases as in the present study, the authors fitted their model to 
reproduce reported cases of COVID-19 on a per-county basis. Furthermore, the model required fitting many 
time-dependent parameters on a per-county basis, including per-county transmission rates, making the fitting 
procedure very high dimensional. Finally, the dynamics of the disease spread introduced differs from Eq. (1) 
since S, I and R compartments were introduced for each commute channel i → j rather than for each community. 
Altogether, the complexity of that model makes it less amenable to analytical study.

In conclusion, we used a simple model of intercommunity spread of an infectious disease to show the tran-
sition between different regimes of epidemic progression. Because of the complexity of the infection process 
(e.g., variations in individuals’ responses, mutations, etc.) and of human behavior, we are still far from a global 
forecasting system able to predict the spread of different infectious agents throughout the world. As with weather 
forecasting, observables must be measured in real time in order to inform complex models to yield short-term 
forecasts. One salient feature in our approach is showing how such widespread measurements (namely, the 
mobility data) can be integrated in a model describing the spread of an infectious agent, and showing what 
types of predictions can be obtained. It is a step toward more predictive epidemiology models, grounded in 
measurable quantities.

Material and methods
Mobility data.  The mobility data was obtained from SafeGraph, a company that aggregates anonymized 
location data from numerous applications in order to provide insights about physical places, via the SafeGraph 
Community. To enhance privacy, SafeGraph excludes census block group (CBG) information if fewer than two 
devices visited an establishment in a month from a given census block group. In this manuscript, we use data 
extracted from the “Social Distancing Metrics” dataset36, with dates between February 2020 and February 2021. 
SafeGraph has stopped sharing mobility data under this format, however the same data can be acessed under 
a different format through the Neighborhood Patterns dataset56. However the matrices of fluxes between our 
coarse-grained communities can be found in the ‘data’ folder in our github repository. We obtained the coarse-
grained communities by running a K-means clustering algorithm to group the 220,333 CBGs into 210 communi-
ties. We used the implementation from Scikit Learn. We then ran a hierarchical clustering algorithm to re-index 
communities so that communities close in space had close indices, as shown in Fig. 1. We used the linkage func-
tion from SciPy. We then computed for every day the “flux matrix” where each entry fab represents the number 
of cell phone whose residence CBG belongs to community a which visited a CBG belonging to community b. 
The average flux matrix was constructed by averaging all the daily flux matrices. We used population counts for 
CBGs in agreement with the United States Census Bureau’s and available in the SafeGraph Open Census Data57 
(file “cbg_b01.csv”, column “B01001e1”). We checked that the population counts from the United States Census 
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Bureau were approximately proportional to the residential mobile-phone counts, therefore validating mobile 
tracking as a proxy for actual population.

Reports on SARS‑CoV‑2 infections.  In order to fit our model, we used USA cases of COVID-19 reported 
by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University37 which can be accessed 
at the GitHub repository github.com/CSSEGISandData/COVID-19. New cases of COVID-19 reported by the 
CSSE were mapped to the closest mobility-data-derived community based on their latitude and longitude. We 
therefore obtained the time evolution of SARS-CoV-2 infections through the mobility-data derived communi-
ties. Integer absolute new cases were converted into relative population fractions using the community popula-
tion counts obtained from the United States Census Bureau.

Model fit.  Daily scales.  Here we consider the SIR dynamics (see Supplementary Information):

We also define the chi-square at each time t:

where Ma is the population at location a and (1− ŝa)Ma is the number of reported cases at location a. Assuming 
that p(t − 1), p(t − 2), . . . , p(0) have been previously evaluated, the dynamics (sa, ja) is determined up to time 
t, and we have:

To obtain the scale p(t), we solve for:

Simplified model.  We look for a simplified model in which the scales have a functional form close to a ramp 
function:

We first set θ by fitting this function to the daily scales:

Then we adjust the slope of the ramp in order to minimize the error with reported cases. In particular, we 
set θ = (θ∗1 , θ

∗
2 ,ψ , θ∗4 ) , and we solve:

We thus define θ simplified = (θ∗1 , θ
∗
2 ,ψ

∗, θ∗4 ) , and the model for simplified scales is:

Daily infectivity matrices.  We also considered another approach, consisting of fitting the N2 transmission rates 
βab(t) at every time t. In particular, we solve:

(9)

dsa

dt
(t) = −p(t)sa(t)

∑

b

βabjb(t),

dja

dt
(t) = p(t)sa(t)

∑

b

βabjb(t)− γ ja(t).

(10)χ2(t) =
N
∑

a=1

M2
a

(

sa(t + 1)− ŝa(t + 1)
)2
,

(11)

sa(t + 1) = sa(t)− p(t)

t+1
∫

t

du sa(u)
∑

b

βabjb(u),

ja(t + 1) = ja(t)+ p(t)

t+1
∫

t

du

(

sa(u)
∑

b

βabjb(u)− γ ja(u)

)

.

(12)pfit(t) = argmin(χ(t)2).

(13)pθ (t) = θ3 ln
(

1+ e−θ1(t−θ2)
)

+ θ4.

(14)θ∗ = argmin

(

∑

t

(pθ (t)− pfit(t))2

)

(15)ψ∗ = argmin

(

∑

t

χ(t)2

)

.

(16)psimplified(t) = pθ simplified(t).

(17)
{

β
opt
ab (t)

}

= argmin(χ(t)2),
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subject to the constraints βab ≥ 0 . We show the results of this fit in Fig. S2, however this approach is prone to 
overfitting since there are N2 fitting parameters and only N data point at each time t.

Simulations with nearest‑neighbors‑only interactions.  The curves shown in Fig. 6b,c and the sym-
bols shown in Fig. 6d were obtained by integrating Eq. (6).We used the function solve_ivp from SciPy with the 
“DOP853” integration method. At t = 0 , we considered S = 1 everywhere except at the sites of coordinates 
(0, 2m−1 − 1) and (0, 2m−1) (see Fig. 6a), where we set S = 0 and I = 1 . The Laplacian was computed using the 

9-point stencil �discrete =
(

1 2 1
2 − 12 2
1 2 1

)

/4 . We considered periodic boundary conditions along the y direction 

and Dirichlet boundary conditions along the x direction.

Data availability
Data and scripts used in this study are available at the GitHub repository github.com/czbiohub/epidemiol-
ogy_flux_model. Except the raw mobility data, which belongs to SafeGraph.
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