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Development of artificial 
intelligence for automated 
measurement of cervical lordosis 
on lateral radiographs
Takahito Fujimori1*, Yuki Suzuki2, Shota Takenaka1, Kosuke Kita2, Yuya Kanie1, 
Takashi Kaito1, Yuichiro Ukon1, Tadashi Watabe3, Nozomu Nakajima4, Shoji Kido2 & 
Seiji Okada1

Cervical sagittal alignment is an essential parameter for the evaluation of spine disorders. Manual 
measurement is time-consuming and burdensome to measurers. Artificial intelligence (AI) in the form 
of convolutional neural networks has begun to be used to measure x-rays. This study aimed to develop 
AI for automated measurement of lordosis on lateral cervical x-rays. We included 4546 cervical x-rays 
from 1674 patients. For all x-rays, the caudal endplates of C2 and C7 were labeled based on consensus 
among well-experienced spine surgeons, the data for which were used as ground truth. This ground 
truth was split into training data and test data, and the AI model learned the training data. The 
absolute error of the AI measurements relative to the ground truth for 4546 x-rays was determined 
by fivefold cross-validation. Additionally, the absolute error of AI measurements was compared with 
the error of other 2 surgeons’ measurements on 415 radiographs of 168 randomly selected patients. 
In fivefold cross-validation, the absolute error of the AI model was 3.3° in the average and 2.2° in the 
median. For comparison of other surgeons, the mean absolute error for measurement of 168 patients 
was 3.1° ± 3.4° for the AI model, 3.9° ± 3.4° for Surgeon 1, and 3.8° ± 4.7° for Surgeon 2. The AI model 
had a significantly smaller error than Surgeon 1 and Surgeon 2 (P = 0.002 and 0.036). This algorithm is 
available at (https:// ykszk. github. io/ c2c7d emo/). The AI model measured cervical spine alignment with 
better accuracy than surgeons. AI can assist in routine medical care and can be helpful in research that 
measures large numbers of images. However, because of the large errors in rare cases such as highly 
deformed ones, AI may, in principle, be limited to assisting humans.

Cervical alignment, an important clinical parameter in spine disorders, is associated with deformity, myelopathy, 
adjacent-segment disease, horizontal gaze, and health-related quality of  life1–3. Measuring cervical alignment in 
multiple positions is important in evaluating pathology and planning  surgery4.

Historically, such measurements have been obtained by using a protractor on radiographs. In recent years, 
digital viewer measurements became more  common5, but surgeons generally still had to obtain measurements 
manually. Obtaining the necessary measurements for many parameters before and after surgery for a large num-
ber of patients requires a great deal of  labor6. In scoliosis, the accuracy of measurement has been verified so far. 
Human measurement error has been generally reported to be approximately 3° to 7°, and this value is believed 
to be similar for the cervical  spine7–9. Artificial intelligence (AI) models using convolutional neural networks 
(CNNs) have excellent capabilities for image  recognition10–12. Because they require relatively less preprocessing 
than other algorithms, and because they automatically learn to optimize filters, whereas traditional algorithms 
do so  manually13,14, they may reduce the labor involved in measurement.

A recent  study15 of CNNs showed that the standard errors for determining lumbar lordosis in scoliosis ranged 
from 2.7° to 11.5°. Other studies have reported a mean absolute error (MAE) ranging from 4.3° to 8.1° when AI 
is used to assess lumbar  lordosis16,17. There is room for improvement in the accuracy of AI models that measure 
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x-rays. As for literature about plain radiographs of the cervical spine, some researchers detect ossification of the 
posterior longitudinal ligament using  CNNs12,18,19. However, there are no studies that automatically measure 
cervical spine alignment. Additionally, previous programs were not surgeon-friendly because they must be oper-
ated through a character user interface. We thus conducted a study with the aim of developing AI in automated 
measurement of the C2–C7 angle on cervical x-rays through a graphical user interface.

Methods
This study was approved by our institution’s review board (Osaka University Hospital Ethics Review Commit-
tee. No.20304) and written informed consent was waived because of the retrospective design. The study was 
performed in accordance with approved guidelines and in compliance with the principles of the Declaration of 
Helsinki.

Study participants. Study participants were surgical patients who underwent cervical spine surgery in 
our spine clinic between May 2012 and December 2020, and non-surgical patients who visited outpatient clinic 
between April 2019 and April 2021. Finally, 1674 patients with a total of 4546 x-rays were included in the study. 
To validate the capability of AI in real-world clinical practice, we did not exclude any patients who had deformi-
ties or who underwent spinal instrumentation, and all patients from the two lists were included in our study. 
All x-rays were measured on the lateral view and included flexion, extension, and the neutral position. Most 
of the x-rays had a description of the posture in the corner of them (Fig. 1). For x-rays that did not have a 
description, we could identify the position by comparing the x-rays with each other. X-rays were downloaded 
in DICOM (Digital Imaging and Communications in Medicine) file format and converted to PNG (Portable 
Network Graphic) file format.

Method of radiographic measurement. We used the Cobb method to measure the C2–C7 angle 
because it is simple and most commonly  used1,20. We labeled the anterior and posterior endpoints of the C2 
inferior endplate as anatomic landmarks in a digital viewer to draw a straight line along the C2 inferior endplate, 
and we used the same method for the C7 vertebra (Fig. 2A). Because the endplate has a curve shape, the lowest 
point of the curve was marked as a rule. The exception was when an osteophyte was present. If an osteophyte 
was present at the corner of the vertebral body, we marked the original vertebral body corner, not the tip of the 
osteophyte (Fig. 2B). If the C7 vertebral body was obscured by the shoulder girdle and difficult to see, we used 
the C6 vertebral endplate as a reference for the C7 vertebral endplate. We used a publicly available image annota-
tion software labelme (https:// github. com/ wkent aro/ label me) for this manual measurement process.

We labeled the C2 slope and the C7 slope, which are the angles that the C2 lower endplate and the C7 lower 
endplates make with the horizontal line, with clockwise being positive in both cases. The angle obtained by sub-
tracting the C2 slope angle from the C7 slope angle is the C2–C7 angle, with a negative angle indicating lordosis 
and a positive angle indicating kyphosis.

(a) Heatmaps (b) Landmark point

Figure 1.  Most x-ray had a description of the posture in the corner of the x-ray. Anatomic landmark 
localization is done by extracting the coordinates with the maximum value from the heat map (a) of each 
landmark (b) output by the convolutional neural networks.

https://github.com/wkentaro/labelme
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Artificial intelligence model. The AI model detected four anatomic landmarks: the anterior and posterior 
endpoints of the C2 and C7 inferior endplates. This anatomic landmark localization was performed by using 
CNNs to produce a heat map and then extracting the coordinates with the maximum value from the heat map 
of each  landmark21 (Fig. 1).

For the CNNs to output heat maps, we used the DeepLabV3 segmentation  architecture22, with the Efficient-
Net-B423 as a backbone. DeepLabV3 is a segmentation architecture that uses atrous convolution to enlarge the 
field of view of the network and Efficient Net is a classification model that has eight variations with varying 
model sizes and accuracies. We chose EfficientNet-B4 for its good balance between the computational cost 
and accuracy. CNNs and angle measurements were implemented using Python version 3.9.5 (programming 
language) and PyTorch version 1.8.1 (an open-source machine learning framework). Our model was built using 
Segmentation Models Pytorch (https:// github. com/ qubvel/ segme ntati on_ models. pytor ch), which is a publicly 
available package of Python and the backbone (EfficientNet-B4) was pretrained with ImageNet. The training of 
CNN was performed using Adam optimizer with initial learning rate of 0.001 using the root mean square as the 
loss function until the loss of the validation data extracted from the training data started to drop (i.e., just before 
overfitting). Initial learning rate was determined using a small subset (one tenth) of the entire dataset prior to 
the validation study. We used the largest possible batch size (, which was eight) that could fit in our workstation 
with 48 GB of total GPU memory.

The value on the heat map for each landmark was used as the confidence score, and the smallest of the four 
values was used as the confidence score for that x-ray. We used confidence scores for later analysis.

Creation of ground truth data. In machine learning, ground truth is labeled data that are considered to 
be the correct values. A well-experienced spine surgeon with 18 years’ experience labeled the C2 and C7 end-
plates on all 4546 x-rays. Another spine surgeon with 20 years’ experience checked all these labeled points and 
proposed for correction for 123 x-rays. Agreement was reached between the two surgeons on 118 x-rays. For 
the remaining 5 x-rays that were not agreed on, we discussed with a surgeon with 23 years of experience and a 
surgeon with 37 years of experience, and a final agreement was reached. All these five X-rays were of cases with 
congenitally fused vertebrae at C2 (Fig. 3). Through these processes, we regarded these labeled 4546 x-rays as 
the ground truth.

Validation of accuracy. We examined measurement accuracy using two techniques. The first technique 
involved the absolute error of the AI algorithm’s measurements relative to the ground truth, calculated by five-
fold cross-validation. We randomly divided all ground truth data into five groups: four groups were training 
data, and one group was test data. The algorithm learned the training data of the four groups and measured the 
test data of the remaining one group. We then calculated the absolute error of the algorithm’s measurements 
and the ground truth measurements on the test data (Fig. 4). This process was repeated five times, changing the 
training and test data groups so that all data were tested. Finally, the average of these absolute errors obtained 
from five processes represents the accuracy of the algorithm’s measurements. We did this five-grouping based on 
each patient, not based on each x-ray; it did not happen that the training data contained x-rays from one posi-
tion, and the test data included x-rays from another position for the same patient. We performed validation on a 
workstation with two NVIDIA computers with GeForce RTX 3090 graphics-processing units, and the CNNs and 
angle measurements were implemented using Python (a programming language) and PyTorch (an open-source 
machine learning framework). The training of each CNN was performed until the accuracy of the validation 
data extracted from the training data dropped (i.e., just before overfitting).

The second technique involved comparing the accuracy of the AI algorithm’s measurements with that of other 
surgeons. Surgeon 1, with 12 years’ experience, and Surgeon 2, with 8 years’ experience, were both spine surgeons. 
From 1674 patients, we randomly selected 168 patients (57 men and 111 women) with a total of 416 x-rays, and 
each surgeon measured these according to the Cobb method described in the section “Method of Radiographic 
Measurement.” The surgeons were familiar with Cobb angle measurement method because the technique is 

C2 slope

C7 slope

A

C2-C7 angle

B

Figure 2.  (A) The C2 slope is the angle between the C2 lower endplate and the horizontal line, and the C7 
slope is the angle between the C7 lower endplate and the horizontal line. The C2-C7 angle is the angle between 
C2slope and C7slope. (B) The red arrow indicates the original vertebral corner. The blue arrow indicates the tip 
of the osteophyte. The point is marked at the red arrow.

https://github.com/qubvel/segmentation_models.pytorch
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Error 79
Confidence 
score 0.23

Error 55.1
Confidence 
score 0.54

Error 24.2
Confidence 
score 0.52

Figure 3.  Three examples with measurement difficulties. In cases of fused vertebrae with a malformation, it 
is difficult for even surgeons to recognize the vertebrae correctly. The x-ray on the right is one of five cases in 
which two surgeons could not agree. The seemingly C2 vertebra was a malformed vertebra with multiple fused 
vertebrae. It is difficult even for surgeons to determine which part of this deformed vertebra is the original C2. 
Depending on which of the fused vertebrae is determined to be C2, the position of C7 will also change, which 
can easily lead to a large error. The solid lines represent the ground truth, and the dashed lines represent the 
measurement obtained by artificial intelligence.

Figure 4.  Preoperative (upper) and postoperative (lower) x-rays of a 54-year-old man. The solid lines represent 
the ground truth, and the dashed lines represent the measurement obtained by artificial intelligence. CS, 
confidence score; Er, error.
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standard. In addition, they were pre-trained on how to measure using labelme. The CNNs were trained on 1506 
patients (4130 x-rays), excluding the 168 test patients, and measured on 168 patients (416 x-rays). We compared 
the error for the AI algorithm with the error for Surgeon 1 and for Surgeon 2.

Setting the confidence score. We set the confidence score to measure the level of confidence in the meas-
urements of the AI algorithm. The confidence score is expressed as a value between 0 and 1, where 0 indicates no 
confidence and 1 indicates confidence. By varying the confidence score as a threshold, we examined the relation-
ship between the number of excluded x-rays and the absolute error.

Relationship between the absolute error of artificial intelligence and background data on par-
ticipants. We performed a multiple regression analysis with absolute error as the response variable and with 
age, sex, whether the patient had undergone surgery, and cervical spine position (flexion, neutral, and extension) 
as explanatory variables. The absolute errors were compared between the group of patients who had undergone 
surgery and the group of those who had not.

Relationship between the absolute error and the number of training images. We tested how 
much the absolute error changes by increasing or decreasing the number of training images. We used 415 images 
(168 cases) that were used for comparison with other surgeons as test images. We randomly selected training 
images from the remaining 4131 images. We varied the training images to 200, 400, 800, 1600, and 3200 images 
to study the relationship with absolute error.

Statistical analysis. We used the t test to compare absolute errors of the surgeons and those of the AI sys-
tem. Among the AI measurements, absolute errors in surgical patients were compared to errors in non-surgical 
patients. Stepwise multiple regression analysis was performed with the absolute error at the C2–C7 angle as the 
response variable and the patients’ demographic data as the explanatory variable. P values < 0.05 (two-sided) 
were considered statistically significant. The error for the AI algorithm was compared with that for Surgeon 1 
and that for Surgeon 2. For multiple comparisons, p-values were adjusted using the Bonferroni method. Statisti-
cal analysis was performed using the SPSS Statistics software (version 20; IBM, Armonk, NY, USA).

Results
Demographic data. A total of 1674 patients with 4546 x-rays were included in our study: 707 males and 
967 females (Table 1). The mean age ± standard deviation (SD) was 61 ± 19 years (range, 2–96 years).

Using the ground truth as a basis, we found the measurements to be –9.4° ± 15.8° (mean ± SD) in the neutral 
position, 14.3° ± 15.6° in flexion, and –25.1° ± 18.6° in extension (Table 2).

Surgical cases involved 280 participants (17%) with a total of 877 x-rays. In the non-surgical patient, the 
flexional range of motion (ROM) was 24.4° ± 12.4° (mean ± SD), and the extensional ROM was 14.9° ± 11.5°.

Absolute error of artificial intelligence relative to ground truth. The MAE of the AI algorithm in 
all 1674 patients (with a total of 4546 x-rays) was 3.3° ± 4.7° for the C2–C7 angle, 1.7° ± 2.7° for the C2 slope, and 
2.7° ± 3.8° for the C7 slope. The median absolute error was 2.2° for the C2–C7 angle, 1.2° for the C2 slope, and 
1.7° for the C7 slope. The maximum absolute error was 104.9° for the C2–C7 angle, 63.1° for the C2 slope, and 
58.0° for the C7 slope. The AI algorithm took 206 s to measure 4546 x-rays, at an average speed of 0.045 s per 
x-ray. This algorithm is available at (https:// ykszk. github. io/ c2c7d emo/).

Relationship between confidence score and absolute error. The mean confidence score was 
0.94 ± 0.07 for the C2 slope and 0.88 ± 0.15 for the C7 slope (Fig. 5A). Excluding x-rays with a low confidence 
score reduced the absolute error. When the threshold was set to 0.6, 309 x-rays (6.8%) were excluded, and the 
MAE in the C2–C7 angle dropped to 2.7°, the median to 2.1°, and the maximum error to 20.5°. Similarly, when 
the threshold was set at 0.9, 1909 x-rays (42%) were excluded, and the MAE in the C2–C7 angle dropped to 2.3°, 
the median to 1.9°, and the maximum error to 14.8° (Figs. 5B,C).

Table 1.  Demographic data of study participants. N/A, not applicable.

Variable Patients Cervical X-rays

Number 1674 4546

Men 707 2060

Women 967 2486

Mean age (years) 61 ± 18 N/A

Minimum age (years) 2 N/A

Maximum age (years) 96 N/A

Patients underwent surgery 280 877

Patients did not undergo surgery 1394 3669

https://ykszk.github.io/c2c7demo/
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Table 2.  X-ray Measurements at Each Position Based on the Ground Truth. SD, standard deviation.

Position Number of x-rays

C2–C7 angle C2 slope C7 slope

(degrees)

Flexion 1458

Mean ± SD 14.3 ± 15.6 –44.2 ± 14.8 –29.9 ± 11.5

Max 110.0 11.0 32.7

97.5th percentile 45.5 −16.0 −8.0

2.5th percentile −15.0 −75.0 −52.0

Min −36.0 −96.0 −74.7

Neutral 1645

Mean ± SD –9.4 ± 15.8 –17.2 ± 12.8 –26.6 ± 10.6

Max 110 34.0 37.0

97.5th percentile 22.0 4.0 −7.2

2.5th percentile −37.0 −47.9 −48.0

Min −61.0 −90.0 −67.0

Extension 1443

Mean ± SD –25.1 ± 18.6 0.33 ± 16.3 –24.8 ± 10.7

Max 99.6 53.0 35.0

97.5th percentile 11.0 30.9 −3.1

2.5th percentile −58.9 −32.9 −46.0

Min −73.0 −92.0 −61.9
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Figure 5.  (A) Scatter plot showing the relationship between the confidence score and the error at the C2–
C7 angle. The smaller the confidence score, the larger the error. (B) Relationship between the percentage of 
excluded x-rays and mean absolute error at the C2–C7 angle when the cutoff value of the confidence score is 
changed. Increasing the threshold reduces the error but increases the number of x-rays to be excluded. (C) 
Relationship between the percentage of excluded x-rays and maximum absolute error at the C2–C7 angle when 
the cutoff value of the confidence score is changed.
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Artificial intelligence’s ability to distinguish between positions taken x-rays. The accuracy of AI 
to distinguish the positions when x-rays were taken was 98% (Table 3). The mean recall, precision, F-Measure 
were all 0.983.

Comparison of absolute error at the C2–C7 angle for randomly selected participants relative 
to ground truth between artificial intelligence and surgeons. Artificial intelligence. In the group 
of randomly selected patients (comprising 168 cases with 415 total x-rays), the MAE of the AI algorithm was 
3.1° ± 3.4°, the median absolute error was 2.4°, and the maximum absolute error was 34.3° (Fig. 6 and Table 4).

Surgeon 1. For Surgeon 1, the MAE was 3.9° ± 3.4°, the median absolute error was 3.0°, and the maximum 
absolute error was 22.1°.

Surgeon 2. For surgeon 2, the MAE was 3.8° ± 4.7°, the median absolute error was 2.9°, and the maximum 
absolute error was 74.1°.

Statistical results. The AI algorithm had a significantly smaller absolute error than Surgeon 1 did 
(P = 0.002) and Surgeon 2 did (P = 0.036).

Relationship between absolute error at the C2–C7 angle for artificial intelligence and back-
ground data on participants. A stepwise multiple regression analysis was performed regarding age, sex, 

Table 3.  Confusion matrix showing AI’s ability to determine the positions when x-rays were taken. AI, 
artificial intelligence.

Prediction of AI Prediction indicators

Flexion Neutral Extension Total Recall Precision F-Measure Accuracy

Real positions

Flexion 1437 5 16 1458 0.986 0.980 0.988

0.984
Neutral 15 1620 10 1645 0.985 0.988 0.987

Extension 15 14 1414 1443 0.980 0.982 0.981

Total 1467 1639 1440 4546 Mean 0.983 0.983 0.983

C2/7 angle error degree

AI

Surgeon1

Surgeon2

-20 0 20 40 60

Figure 6.  Box plot of the errors at the C2–C7 angle for 168 randomly selected participants with a total of 415 
x-rays. The top of the box represents the 75th percentile, the bottom of the box represents the 25th percentile, 
and the line in the middle represents the 50th percentile. The whiskers represent the highest and lowest values 
that are not outliers or extreme values. Dots beyond the whiskers represent outliers and extreme values. AI, 
artificial intelligence.

Table 4.  Comparison of C2–C7 Angle Errors Between AI and Surgeons for Randomly Selected Cases* 
*168 cases with a total of 415 x-rays. † The p-values were adjusted by the Bonferroni method. AI, artificial 
intelligence; SD, standard deviation.

Absolute Error (degree) AI Surgeon 1 Surgeon 2

P-value† (AI vs. Surgeons)

vs. Surgeon 1 vs. Surgeon 2

Mean 3.1 3.9 3.8

0.002 0.036
Median 2.4 3.0 2.9

Maximum 34.3 22.1 74.0

SD 3.4 3.4 4.7
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whether the patient had undergone surgery, and radiographic posture (flexion, neutral position, extension) as 
explanatory variables. Being of younger age, being male, and having undergone surgery were related to a larger 
error rate (Table 5). The MAE for participants who underwent surgery (4.0° ± 6.6°) was significantly larger than 
for those who did not undergo surgery (3.1° ± 4.1°; P < 0.001; Table 6).

Relationship between the absolute error and the number of training images. The MAE ± SD 
of the C2-C7 angle was 6.1° ± 11.1° for 200 training images. Similarly, the MAE was 4.7° ± 10.1° for 400 training 
images, 4.1° ± 10.1° for 800 images, 3.5° ± 4.8° for 1600 images, and 3.3° ± 6.4° for 3200 images (Fig. 7).

Participants with absolute error of 20° or more at the C2–C7 angle. There were 35 participants 
with an absolute error of ≥ 20° at the C2–C7 angle. The MAEs for these participants were 35.0° for the C2–C7 
angle, 14.2° for the C2 slope, and 23.1° for the C7 slope. The mean confidence score was 0.34. The common 
reasons for vertebral body misidentification were hardly visible C7 (n = 12; 34%), the presence of severe spine 
deformity (n = 8; 23%) (Fig. 6), the use of posterior instrumented fusion (n = 7; 20%), the presence of fused ver-
tebrae (n = 6; 17%), and patients being in their infancy (n = 2; 6%).

Table 5.  Stepwise multiple regression analysis of absolute error of the AI at the C2–C7 angle as the 
dependent variable. The square of the coefficient of multiple correlation  (R2) in this model = 0.018. AI, 
artificial intelligence; B, partial regression coefficient; SE, standard error; beta, standardized partial regression 
coefficient.

Independent Variables

Covariates

B SE Beta t Test P Value

Age –0.032 0.004 –0.109 –7.191  < 0.0001

Undergoing surgery 0.935 0.184 0.078 5.089  < 0.0001

Sex (male) 0.321 0.146 0.033 2.196 0.028

Table 6.  Comparison of the errors between surgical and nonsurgical cases when measured by artificial 
intelligence. N/A, not applicable; SD, standard deviation.

Variable Surgery involved No Surgery involved p-value

Number of patients 280 1394 N/A

Number of x-rays 877 3669 N/A

Mean absolute error of C2–C7 angle ± SD (degrees) 4.0 ± 6.6 3.1 ± 4.1  < 0.001

Figure 7.  Box plot of the errors at the C2–C7 angle for 168 randomly selected participants with a total of 415 
x-rays. The top of the box represents the 75th percentile, the bottom of the box represents the 25th percentile, 
and the line in the middle represents the 50th percentile. The whiskers represent the highest and lowest values 
that are not outliers or extreme values. Dots beyond the whiskers represent outliers and extreme values.
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Discussion
We created an AI model for 1674 participants with 4546 cervical x-rays. The AI model measured the C2–C7 
angle with a MAE of 3.3° and a median absolute error of 2.2°. The AI model can measure the angle quickly with 
equivalent accuracy to surgeons. Accuracy can be improved by adjusting the confidence score.

To the best of our knowledge, our study is novel in the following respects. First, this is the first study to use 
AI for automated measurement of cervical lordosis; second, the accuracy is better than in previous studies 
regarding lumbar spine measurements; third, we introduced a confidence score to measure the AI’s confidence. 
Finally, the AI model has been released as a Graphical User Interface program that anyone can use (https:// ykszk. 
github. io/ c2c7d emo/). If readers use the graphical user interface program we developed, we believe they will 
realize its usefulness. This program is Central Processing Unit-driven to make it usable on ordinary computers. 
Therefore, the measurement takes several seconds, but on a Graphics Processing unit-equipped computer, the 
measurement is instantaneous.

There have been some earlier reports on automated measurement of the lumbar spine. Cho et al.17 used AI to 
measure L1–S1 lumbar lordosis in 780 lumbar spine x-rays from 780 people, excluding those who had undergone 
surgery, successfully measuring lordosis in 84% of their study participants, with an MAE of 8.055° and a median 
absolute error of 6.965°. Schwartz et al.16 used AI to measure L1–S1 lumbar lordosis in 816 lumbar spine x-rays 
of 816 patients older than age 18 years, including 6.1% who underwent spinal instrumentation. The MAE was 
4.3°, and the median absolute error was 2.2°. Korez et al.24 measured spinopelvic parameters in 55 patients using 
AI and reported that the MAE ranged from 1.2° to 5.5°.

In general, the cervical spine may be more challenging to measure than the lumbar spine because the shoul-
der girdle may hide C7. However, our results were better than for previous measurements of the lumbar spine. 
Several factors may have contributed to the decrease in error, and it isn’t easy to pinpoint which one played a 
major role. An increase in training data and a reduction in processing steps might be possible contributing factors 
(Fig. 7). Previous researchers manually segmented all vertebrae, extracted the vertebrae, and then measured the 
angle. However, we directly measured the angle by annotating only the vertebral vertices needed for the angle 
measurement. This reduced the number of processing steps and might contribute to reducing the absolute error. 
The reduction in the process made the annotation work task easier. As a result, we could annotate more images, 
leading to more training data.

One of the limitations of AI in our study was that the maximum absolute error was large. Because we excluded 
no participants, congenitally fused or malformed vertebrae were included (Fig. 8). Some of the advanced deformi-
ties were difficult to measure, even for surgeons (Fig. 3). Initially, we considered excluding such difficult cases 
because it would be too much to ask AI to measure them. However, we felt that these difficult cases should be 
included because they are rather valuable as training data. As a result, the maximum error became larger. Influ-
enced by the maximum error, the mean absolute error was slightly larger at 3.3 degrees, but the median error 
was 2.2 degrees, which is acceptable for measuring the C2-C7 angle of the cervical spine.

Addressing rare cases is a complex problem, but there are two possible ways to manage them. One is data aug-
mentation. Because it is difficult to collect rare cases, data is generated using a generative adversarial  network25. 
The other method is to report rare case measurements as outliers. If the AI exhibits an angle at the C2 or C7 
slope that would not usually occur, AI should display a warning. For this purpose, an upper and lower limit of 
the measured value should be set. For example, the minimum value of the C2 slope at the neutral position was 
−90.0°, but the 2.5th percentile was only −47.9°. If the AI measurement exceeds this 2.5th percentile or 97.5th 
percentile, the AI will report it as an outlier and recommend human confirmation.

Despite some errors, we can advocate many uses for this AI. For example, incorporating an AI measurement 
function into an existing image viewer to help in measurement will greatly improve work efficiency. Surgeons 
do not need to measure manually but only need to check AI measurement lines. If surgeons determine that the 
measurement is incorrect, they can correct it. As AI learns more and more, it is expected to become more and 
more accurate.

Figure 8.  A case of correct measurement despite the presence of fused vertebrae. Left: before measurement. 
Right: after measurement. The solid lines represent the ground truth, and the dashed lines represent the 
measurement obtained by artificial intelligence.

https://ykszk.github.io/c2c7demo/
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Researchers can use AI for clinical research. Researchers take a long time to measure manually, and their 
work efficiency decreases over time because of fatigue. However, AI can take measurements quickly, and there 
is no such decrease in work efficiency. Researchers can control the error by adjusting the confidence score. The 
accuracy of the measurement can be assured by stating the set confidence score and the absolute error in the 
report. For x-rays with low confidence scores and unreliable AI measurements, researchers should measure these 
x-rays themselves. Although it is difficult to determine a uniform standard, we recommend a threshold of 0.6 for 
the confidence score; setting it at 0.6, 94.2% of x-rays can be measured, with a mean absolute error of 2.7°. This 
is better than the human measurement error, which is generally considered to be over 3°7,8. In previous clinical 
research involving x-ray measurements without AI, a researcher needed another researcher to measure and 
report inter-examiner errors. However, by using AI trained on data agreed upon by multiple researchers, AI may 
be able to replace the other researcher. This can reduce the human resources needed to conduct the  research10.

In conclusion, we have successfully developed an AI tool for rapid and accurate automated measurement of 
cervical x-rays. These tools have a high clinical application value. However, because of the large errors in rare 
cases such as highly deformed ones, AI may, in principle, be limited to assisting humans.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files. The X-ray images used to support the findings of this study are available upon request from 
the corresponding author. The algorithm is available in the repository, [https:// github. com/ ykszk/ c2c7d emo].
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