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Calibrating the zenith of dinosaur 
diversity in the Campanian 
of the Western Interior 
Basin by CA‑ID‑TIMS U–Pb 
geochronology
Jahandar Ramezani1*, Tegan L. Beveridge2, Raymond R. Rogers3, David A. Eberth4 & 
Eric M. Roberts2

The spectacular fossil fauna and flora preserved in the Upper Cretaceous terrestrial strata of North 
America’s Western Interior Basin record an exceptional peak in the diversification of fossil vertebrates 
in the Campanian, which has been termed the ‘zenith of dinosaur diversity’. The wide latitudinal 
distribution of rocks and fossils that represent this episode, spanning from northern Mexico to the 
northern slopes of Alaska, provides a unique opportunity to gain insights into dinosaur paleoecology 
and to address outstanding questions regarding faunal provinciality in connection to paleogeography 
and climate. Whereas reliable basin‑wide correlations are fundamental to investigations of this 
sort, three decades of radioisotope geochronology of various vintages and limited compatibility 
has complicated correlation of distant fossil‑bearing successions and given rise to contradictory 
paleobiogeographic and evolutionary hypotheses. Here we present new U–Pb geochronology by the 
CA‑ID‑TIMS method for 16 stratigraphically well constrained bentonite beds, ranging in age from 
82.419 ± 0.074 Ma to 73.496 ± 0.039 Ma (2σ internal uncertainties), and the resulting Bayesian age 
models for six key fossil‑bearing formations over a 1600 km latitudinal distance from northwest New 
Mexico, USA to southern Alberta, Canada. Our high‑resolution chronostratigraphic framework for 
the upper Campanian of the Western Interior Basin reveals that despite their contrasting depositional 
settings and basin evolution histories, significant age overlap exists between the main fossil‑bearing 
intervals of the Kaiparowits Formation (southern Utah), Judith River Formation (central Montana), 
Two Medicine Formation (western Montana) and Dinosaur Park Formation (southern Alberta). Pending 
more extensive paleontologic collecting that would allow more rigorous faunal analyses, our results 
support a first‑order connection between paleoecologic and fossil diversities and help overcome the 
chronostratigraphic ambiguities that have impeded the testing of proposed models of latitudinal 
provinciality of dinosaur taxa during the Campanian.

Continental sedimentary successions are important archives of terrestrial flora and fauna, as well as the paleoen-
vironmental conditions that dominated the continents in the geologic past. However, establishing the tempo 
and patterns of evolution in relation to documented climatic and geologic changes is limited by the ability to 
precisely date and correlate fossil-bearing strata. Understanding the depositional history of continental records 
in absolute time thus has multiple scientific merits: (1) it makes it possible to place geographically scattered 
fossil occurrences in a proper chronostratigraphic framework as a basis for paleobiologic interpretations, (2) it 
allows the construction of time-calibrated records of terrestrial paleoenvironmental change (e.g., climatic and 
geologic) in which possible links to the coeval biotic evolution can be explored, (3) it facilitates correlation of the 
continental biotic records to the marine biostratigraphy upon which the geologic time scale has been built and, 
(4) it enables transcontinental correlation of biotic and paleoenvironmental records as a basis for assessing global 
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evolutionary and paleoecologic models. Unravelling the detailed depositional history of continental successions 
is nevertheless challenging because of the inherently discontinuous nature of non-marine sedimentation in space 
and time and the paucity of diagnostic, age-specific fossils in this setting. As such, radioisotopic geochronol-
ogy plays a crucial role in constructing reliable chronostratigraphic frameworks for continental successions by 
providing temporal tie lines independent of often equivocal litho-, bio- or magneto-stratigraphic correlations.

The Western Interior Basin (WIB) of North America (Fig. 1) contains extensive exposures of Upper Creta-
ceous rocks preserving a spectacular fossil record. In particular, the Campanian stage (ca. 84–72 Ma) is unpar-
alleled for exposures of vertebrate-bearing continental strata on the northern continents and has been termed 
the ‘zenith’ of dinosaur  diversity1–4. The cause(s) of the inferred Campanian diversification remains poorly 
understood and related evolutionary models have not been adequately tested. A subject of particular debate 
is whether or not the Campanian dinosaur record of the WIB exhibits a latitudinal  provinciality5–7. Moreover, 
whether or not the remarkable faunal richness of the Campanian is a taphonomic/preservational artefact or 
signifies a true increase in biologic diversity remains a matter of  debate8,9. Addressing these questions requires 
a thorough understanding of environmental controls on fossil preservation, sampling bias in collections, and 
high-resolution correlations between outcrop areas along nearly 2000 km of strike, as well as control on the 
tempo of climate and biological changes.

Biotic evolution during the Campanian transpired against a background of profound environmental change, 
including a global increase in atmospheric temperatures and an abrupt rise in sea levels that flooded low lying 
continental  regions10–12. The Campanian was also a time of widespread explosive volcanism in Montana (Elkhorn 
Mountain and Adel volcanics) and British Columbia (Howell Creek volcanics), but also farther to the south in 
Texas, southern Arizona, southern New Mexico and northern  Mexico13–18 (Fig. 1). Easterly Campanian trade 
winds transported volcanic ash from western and southern sources into the  WIB19–22, depositing numerous ash 
beds that are intercalated throughout the stratigraphic succession. During the last 25 years, 40Ar/39Ar (and K–Ar) 
geochronology has been widely utilized to date Upper Cretaceous strata throughout the WIB, in particular the 
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Figure 1.  Paleogeographic reconstruction of the North American continent in the late Campanian illustrating 
the areal expanse of the Western Interior Seaway separating the Laramidia and Appalachia landmasses, after 
 Blakey33. Our study locations are marked by stars. Potential centers of coeval arc volcanism are also indicated. 
Source map © 2022 Colorado Plateau Geosystems Inc.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16026  | https://doi.org/10.1038/s41598-022-19896-w

www.nature.com/scientificreports/

bentonite (devitrified and altered volcanic ash) horizons, to constrain ammonite  biozones23,24. Similarly, a num-
ber of continental sedimentary successions, including the Campanian Two  Medicine25, Judith  River26, Dinosaur 
 Park27,  Kaiparowits28, Kirtland, and  Fruitland29 formations were targeted for geochronology because of their rich 
vertebrate fossil records. This has facilitated correlation of stratigraphic sections and faunas across the marine 
and non-marine WIB. However, this and subsequent bodies of work were conducted over more than three 
decades in different laboratories and by implementing different analytical protocols, resulting in many vintages 
of geochronologic data that in many cases lack compatibility. This has hampered a full interrogation of the WIB 
paleontologic, sedimentologic, and paleoclimatologic records. Radioisotopic geochronologic techniques have 
improved dramatically over the past decade and it is now possible to build age models for Cretaceous rocks at the 
millennial to decamillennial  scales30–32. This, in turn, affords new opportunities to examine trends in geological 
and paleontological records at high resolution.

Here we present a set of internally consistent geochronologic data from five of the most richly fossiliferous 
Campanian continental successions—namely the Dinosaur Park, Two-Medicine, Judith River, Kaiparowits and 
Fruitland/Kirtland formations. These units are separated by as much as 1600 km and 15 degrees of paleolatitude 
along the WIB forelands. The geochronology presented in this paper is unique compared to previous studies in 
that it is based entirely on high-precision U–Pb analyses of bentonitic zircon by the CA-ID-TIMS method and 
that it employs the latest, community-wide, analytical practices and protocols. Our new geochronology provides 
bed-level correlation of bentonites and fossil-rich stratigraphic intervals across the study areas and serves as a 
foundation for basin-wide study of the Campanian dinosaur record. The results place in context a large and 
growing body of paleontologic, sedimentologic and paleoecologic data that has been collected throughout the 
WIB, providing an opportunity to evaluate temporal relationships among well studied floras and faunas and test 
hypotheses relating to latitudinal provinciality across Laramidia.

Laramidian stratigraphy and geological setting
The meridional Western Interior Seaway (WIS) covered vast areas of North America from Alaska to  Mexico33, 
bisecting the continent during much of the Cretaceous Period and isolating a narrow western landmass (Fig. 1) 
referred to as  Laramidia34. The shorelines of the WIS transgressed and regressed throughout its history in 
response to climatic and/or tectonic drivers. The Cretaceous alluvial and coastal plain deposystems that formed 
along the western shores of this vast epicontinental seaway archive a rich record of well-preserved vertebrates, 
invertebrates and plants. A long history of fossil collection (> 100 years) has rendered Laramidia a cornerstone 
of Mesozoic paleobiogeographic research on dinosaurs and numerous other land floral and faunal groups.

Continental Upper Cretaceous strata are well-preserved across western North America, from Alaska to 
Mexico (Figs. 1, 2). Not surprisingly, a census of Mesozoic vertebrate fossil occurrences in North America using 
the Paleobiology Database (paleobiodb.org/) reveals a significant spike in fossil preservation during the Late 
Cretaceous, with greatest diversity and fossil abundance linked to the Campanian and Maastrichtian  stages1,4. A 
closer inspection of the database demonstrates that the majority of these fossils come from relatively few strati-
graphic units and indeed, represent fairly narrow temporal windows. The second half of the Campanian (ca. 
77–72 Ma) is arguably the richest interval within this time frame and is highlighted by especially large curated 
collections from Alberta, Montana, Utah, and New Mexico. The bulk of the fossil occurrences are known from a 
few key regions of the WIB, including Alberta (Oldman and Dinosaur Park formations), Montana (Two Medicine 
and Judith River formations), Utah (Wahweap and Kaiparowits formations), and New Mexico (Kirtland and 
Fruitland formations) (Figs. 1, 2).

Dinosaur Provincial Park, Alberta, Canada. The Upper Cretaceous Belly River Group of Alberta has 
yielded arguably the most diverse and best sampled Cretaceous terrestrial fossil assemblage in the  world35. It 
consists in ascending order of the Foremost, Oldman, and Dinosaur Park formations (Fig. 2), which are overlain 
by the marine shales of the Bearpaw Fm.36,37. The thickness of the three formations at Dinosaur Provincial Park 
(based on both surface and subsurface data) are approximately 170 m, 40 m, and 70 m,  respectively37, with the 
Oldman and Dinosaur Park formations locally exhibiting thicknesses up to ca. 50 and 80 m, respectively, due to 
differential compaction on stacked sandstones and local paleochannel relief at the base of the Dinosaur Park Fm.

The paralic to non-marine (alluvial) clastic sediments of the Foremost Formation (Fm.) are organized into 
progradational to aggradational stratigraphic packages that reflect an overall regressive WIS  trend37. Two promi-
nent coal zones (McKay and Taber) are present in the lower and upper portions of the formation, respectively. The 
overlying Oldman Fm. is part of an east-northeast-expanding clastic wedge originating in northwest Montana 
that records maximum regression of the WIS into south-central  Saskatchewan37. It consists of a variety of fluvial 
and floodplain facies deposited seasonally across a relatively well-drained landscape. A subsequent transgressive 
phase of the WIS is recorded in the overlying bentonite-rich, alluvial-to-paralic facies of the Dinosaur Park Fm. 
The stratigraphically lower one-half of the formation is dominated by paleochannel deposits that are unusu-
ally rich in bone-beds and articulated-to-associated skeletons of large  dinosaurs35,37. The formation culminates 
upsection in the Lethbridge Coal Zone (LCZ), a package of tidally influenced wetland-to-shoreline deposits 
(including up to four coal beds)38 that interfinger with—and are overlain by—marine shales of the Bearpaw Fm.

The Oldman and Dinosaur Park formations are well exposed and extensively sampled at Dinosaur Provincial 
Park, yielding many hundreds of articulated and associated dinosaur specimens, and thousands of isolated ele-
ments from more than 140 species of  vertebrates35,39–46. Fossil collection in the Park has been conducted for more 
than a century, although a viable stratigraphic framework for the fossils is a more recent  development35,45,47,48. 
Radioisotopic geochronology in the Park extends back to the early 1990’s, but was developed in piecemeal 
 fashion27,36. Seven stratigraphically discrete bentonite horizons have been  documented49, with 40Ar/39Ar ages 
that range from 76.5 ± 1.0 Ma to 74.9 ± 0.2 Ma (2σ internal uncertainties hereafter, unless specified otherwise).
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Western and central Montana, USA. To the south of the international border in Montana, the richly 
fossiliferous Two Medicine and Judith River formations form an eastward thinning clastic wedge of alluvial, 
coastal plain, and shallow marine strata deposited during the  Campanian50. The strata of the Two Medicine Fm. 
crop out in northwestern Montana and represent the more proximal alluvial plain environments of the Two 
Medicine-Judith River wedge. The sedimentology and taphonomy of the unit are consistent with accumulation 
under seasonal, semi-arid  conditions50–52. The alluvial deposits of the Two Medicine Fm. are truncated by the 
Cordilleran thrust front to the west and are separated from the more distal outcrop belt of the correlative Judith 
River Fm. to the east by the Sweetgrass arch.

The ca. 550-m-thick Two Medicine Fm. is well known for its dinosaur fauna, and especially the exquisite 
preservation of dinosaur nests and  hatchlings51,53–57. Vertebrate fossil collection in the unit began more than a 
century ago, and Two Medicine deposits have yielded one of the best documented Cretaceous vertebrate assem-
blages in the world. Rogers et al.25 undertook a comprehensive geochronologic study in the Two Medicine Fm. 
based on 40Ar/39Ar analyses of primarily plagioclase and biotite (and one sanidine), and reported dates from 
five bentonite beds that ranged from 80.00 ± 0.56 Ma to 74.08 ± 0.19 Ma , spanning most of the formation in its 
type area. Subsequent 40Ar/39Ar work (sanidine and plagioclase) by Foreman et al.58 added an additional date 
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of 77.52 ± 0.38 Ma to a bentonite intercalated in the approximate middle of the formation. Varricchio et al.59 
reported 40Ar/39Ar analyses (plagioclase and biotite), as well as U–Pb zircon geochronology by the SIMS method 
from multiple bentonites associated with a prominent hadrosaur bone bed in the southern Two Medicine outcrop 
belt. Their geochronology from strata attributed to the uppermost Two Medicine Fm. resulted in an 40Ar/39Ar 
plateau age of 75.92 ± 0.64 Ma, whereas the youngest measured single zircon U–Pb date was 74.0 ± 1.8  Ma59. The 
published radioisotopic geochronology from Two Medicine Fm. spans much of the spatial and temporal distri-
bution of the formation from ca. 80 Ma to 74 Ma, with highly variable 2σ internal uncertainties (± 0.19 to ± 1.8 
Myr) and accuracies (Supplementary Table S1). A temporally calibrated stratigraphy with adequate resolution 
between key fossil localities has never been compiled.

The ca. 180-m-thick Judith River Fm. is widely exposed along the Missouri River corridor in north-central 
Montana, within the confines of the Upper Missouri River Breaks National Monument. Stratigraphic research 
during the mid-to-late nineteenth and early twentieth centuries on the age and correlation of the Judith River 
Fm. was instrumental in resolving the basic stratigraphy of the Western Interior Cretaceous  section60–66. The unit 
is also significant to the history of vertebrate paleontology, with some of the first skeletal remains of dinosaurs 
described from North America recovered from the Judith River strata near the confluence of the Judith and 
Missouri  Rivers67–70. The Judith River Fm. has continued to be a major focus of paleontological research to the 
present  day71–82.

Among the earliest 40Ar/39Ar geochronology from the Campanian of the WIB were the sanidine analyses of 
Goodwin and  Deino26 from two bentonite beds associated with the Taber Coal Zone of the lower Judith River 
Fm. in Kennedy Coulee, northern Montana. More recently, Rogers et al.83 reported three 40Ar/39Ar sanidine ages 
from the Judith River Fm. and overlying strata in its type area in central Montana, ranging from 76.24 ± 0.36 Ma 
to 75.21 ± 0.24 Ma.

Kaiparowits Plateau, Utah, USA. The Campanian strata of the Kaiparowits Plateau encompass the Wah-
weap and Kaiparowits formations, which were deposited in the southern part of the WIB. The Wahweap Fm. 
is a ca. 400-m-thick succession of channel sandstones and floodplain mudstones of fluvial and estuarine origin 
deposited by meandering rivers under a seasonal  climate84–86. Its sedimentation was largely influenced by trans-
gression of the WIS until a tectonically-driven drop in the base level led to a change in depositional setting and 
sediment source reflected in its uppermost Pardner Canyon (capping sandstone) Member. This change is repre-
sented at the member’s lower boundary by prominent channel incisions into the underlying  strata87.

The overlying 1005-m-thick Kaiparowits Fm.88,89 represents extensive flood basin pond, lake, and river depo-
sition on a low-relief alluvial plain characterized by a warm, subhumid  paleoenvironment90. High volcanic 
input and rapid rock accumulation rates due to active tectonic subsidence characterizes this  unit28,91,92. The 
Kaiparowits Fm. preserves an abundant and remarkably diverse flora and fauna ranging from invertebrates to 
large  vertebrates7,93,94.

Documentation of the fossil vertebrates and stratigraphy of the Kaiparowits and Wahweap formations extends 
back to the 1930’s, although very little work transpired in this region due to its remoteness until the 1980’s, when 
the importance of the mammalian and other microfossils from these units was  recognized95,96. Renewed inter-
est in macrofossils from the Kaiparowits Fm. began in the early 2000s and has led to many new discoveries of 
vertebrate, invertebrate, and plant macrofossils, including many new dinosaur species. As a result of these efforts, 
the fossil record of southern Utah now eclipses that of most other Cretaceous formations in North America in 
terms of diversity and  abundance7,97–104.

A high resolution stratigraphic record has been developed in parallel to vertebrate fossil exploration in the 
Kaiparowits Fm., which has resulted in the identification of at least 10 discrete bentonite  horizons28,105. 40Ar/39Ar 
dating of sanidine was used to determine depositional ages for five of these bentonites, which ranged from 
75.97 ± 0.36 Ma to 74.69 ± 0.36 Ma.

San Juan Basin, New Mexico, USA. The non-marine Campanian succession of the San Juan Basin 
(northwestern New Mexico and southwestern Colorado) consists of the Fruitland Fm. and the overlying Kirt-
land Fm.106, with a maximum combined thickness in excess of 300 m in portions of the basin. The coal-bearing 
Fruitland Fm. consists of sandstones, siltstones, and carbonaceous shales that were deposited in a nearshore 
swamp setting on top of the regressive shoreline beds of the Pictured Cliff  Sandstone107. It grades upward (and 
laterally) into the predominantly fluvial sandstones and shales of the Kirtland Fm., which in turn is overlain 
unconformably by the early Paleocene Ojo Alamo/Animas Fm.108. The strongly transitional and time-transgres-
sive nature of the contact between the Fruitland and Kirtland formations complicates their lithostratigraphic 
division across the  basin107.

Vertebrate fossil collections from the Upper Cretaceous strata of the San Juan Basin extend back over 
100 years, with early collecting efforts led by  Hay109 and  Gilmore110,111. Since then, thousands of specimens have 
been collected, with the richest stratigraphic intervals characterized by two main “local” faunas, namely the 
Hunter Wash and Willow Wash local  faunas112,113.

The earliest published radioisotopic dates for the Fruitland and Kirtland formations are those of Fassett and 
 Steiner29, who reported 40Ar/39Ar sanidine dates for five bentonites distributed throughout the Fruitland-Kirtland 
succession. These 40Ar/39Ar ages (compiled in  Fassett107) range from 75.56 ± 0.41 Ma (Huerfanito Bentonite Bed) 
at the base of the Fruitland Fm to 73.04 ± 0.25 Ma (Ash J) at the top of the Kirtland Fm., although most are within 
error of each other, limiting their utility for fine temporal resolution. More recent 40Ar/39Ar geochronology from 
three bentonites (DEP, Ash 2 and Ash J) in this succession have resulted in improved precision and  accuracy114.
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Previous radioisotopic age framework
Early radioisotopic age constraints on the Campanian formations of the WIB consisted of K–Ar analyses of bio-
tite and feldspar from interbedded  bentonites115,116, with assumed uncertainties on the order of ± 5%, and these 
analyses are not discussed further here. Biotite ages, in particular, are considered of questionable accuracy by 
modern standards because of the suspected alteration-related 39Ar recoil and redistribution effects in multigrain 
 analyses117. The advent of the 40Ar/39Ar isotopic method greatly improved the internal precisions of measured 
dates by allowing the parent and daughter isotopes to be measured on the same sample aliquot by the same tech-
nique. Early 40Ar/39Ar geochronology of bentonites from northern Montana and southern Alberta confirmed 
the Campanian ages of the Judith River Fm.26, as well as those of the Oldman and Dinosaur Park  formations27,36. 
Subsequent systematic geochronologic studies were aimed at constructing chronostratigraphies for the Two 
Medicine Fm.25 and Judith River Fm.83 in Montana, the Kaiparowits Fm. in  Utah28 and the Kirtland/Fruitland 
formations in New  Mexico29,107. These 40Ar/39Ar data were produced in three different laboratories in the course 
of nearly three decades (Supplementary Table S1), during which time significant revisions were made to the 
decay constant of 40 K used for age  calculation117,118. In addition, various mineral standards were co-irradiated 
with samples as neutron flux monitors (e.g., Mmhb-1  hornblende119) prior to the general adoption of the Fish 
Canyon Tuff (FCT) sanidine, whose independent age has been revised frequently (e.g., 27.84  Ma120, 28.02  Ma121, 
28.201  Ma122). This incompatibility of 40Ar/39Ar geochronology of different vintages limits the accuracy of pub-
lished bentonite ages beyond the typically reported uncertainties of ± 0.2–0.5% (see Supplementary Table S1). 
In order to improve the compatibility of legacy data, various authors have attempted to recalculate previously 
published ages from the WIB with modern mineral standard ages and/or decay  constants105,114,123. However, these 
recalculations do not account for dissimilar protocols for Ar gas extraction or mass spectrometric data acquisi-
tion and data reduction employed by different laboratories at different times. This 40Ar/39Ar ‘interlaboratory 
bias’ was estimated to be larger than ± 2% by Min et al.117, which exceeded the reported analytical uncertainties. 
Although ongoing intercalibration efforts under the EARTHTIME  initiative124 promise a significant reduction 
in bias among the participating laboratories, its present magnitude remains difficult to quantify. Supplementary 
Table S1 summarizes the previously published geochronology with available analytical data from the upper 
Campanian of the WIB, without any further recalculation. It is notable that the most recent astronomically tuned 
calibration of the FCT sanidine standard recommends a revised age of 28.176 ± 0.023 Ma for this  standard125.

About a dozen U–Pb zircon dates have previously been reported from the Campanian of the WIB (Supple-
mentary Table S1) and all but two are microbeam U–Pb analyses of detrital  zircons59,91. The only two published 
CA-ID-TIMS bentonite ages were from the lower portion of the Kaiparowits Fm. in  Utah105 and the basal Bear-
paw Fm. in southern  Alberta126.

New U–Pb CA‑ID‑TIMS geochronology
Meaningful paleobiologic analyses of fauna associated with the zenith of dinosaur diversity in the Campanian 
requires a set of internally consistent radioisotopic ages of wide geographic distribution upon which high reso-
lution chronostratigraphic frameworks can be constructed and unambiguous temporal correlations across the 
WIB successions can be made. A total of 118 single-zircon U–Pb analyses were carried out by the CA-ID-TIMS 
method on 16 bentonite samples (Supplementary Figures S1 and S2) from seven lithostratigraphic units across 
the WIB. The selected units are the Oldman, Dinosaur Park and Bearpaw formations in southern Alberta, the 
Judith River, Two Medicine and Bearpaw formations in Montana, the Kaiparowits Fm. in southern Utah, and 
the Kirtland/Fruitland formations in New Mexico (Fig. 3 and Table 1). The application of EARTHTIME isotopic 
tracers, data reduction software and recommended analytical protocols for CA-ID-TIMS geochronology assures 
consistency and effective mitigation of interlaboratory bias in the acquired data.

Details of analytical procedures including zircon chemical abrasion and age interpretations are described in 
the Methods. Bentonite ages are derived from weighted mean 206Pb/238U dates of statistically coherent zircon 
analyses and are reported at the 95% confidence interval in the format ± X/Y/Z Ma, where X is the internal error 
based on analytical uncertainties only, Y includes X and the tracer calibration uncertainty, and Z includes Y plus 
the 238U decay constant uncertainty (Table 1). For comparing CA-ID-TIMS analyses that used the same U–Pb 
isotopic tracer, including the age-stratigraphic models discussed below, the systematic uncertainties (Y and Z) 
can be ignored and only the internal age uncertainties (X) are considered. However, meaningful comparisons 
between U–Pb and 40Ar/39Ar ages require external uncertainties (including decay constant errors) to be taken 
into account. Bayesian age-stratigraphic modelling was employed to extrapolate ages with objective uncertainties 
for stratigraphic levels of interest (e.g., fossil beds) in between dated horizons (Supplementary Table S3). The 
model produces larger (asymmetric) age uncertainties with distance from dated bentonites in order to account 
for possible discontinuities or changes in the rock accumulation rate.

The Cretaceous time scale calibration of Gale et al.127 is followed here, in which the base and top of the Cam-
panian Stage is placed at 83.7 ± 0.5 Ma and 72.2 ± 0.2 Ma, respectively. As the biostratigraphically defined base 
of the Campanian Stage based on WIB ammonite zonation lacks reliable age constraints, extrapolation of the 
boundary to the base of the geomagnetic polarity Chron 33R is presently used as an indirect calibration. The base 
of the Maastrichtian is better defined by belemnite, inoceramid and ammonite biostratigraphy and calibrated 
by 40Ar/39Ar  geochronology127. The primary focus of this study has been the Campanian rocks deposited after 
ca. 78 Ma.

Results
Our CA-ID-TIMS U–Pb geochronology provides a set of high-precision ages for 16 Campanian tuffs across the 
WIB based on statistically robust weighted mean 206Pb/238U dates derived from three to ten overlapping zircon 
analyses (within X) from each sample. All weighted mean dates obey the stratigraphic superposition and thus 
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represent with confidence the eruption ages of the corresponding ash beds; higher confidence is associated with 
larger number of overlapping analyses (n) and fewer outliers. No outlier has been excluded from date calcula-
tion for being too young. All of the dated samples are high-purity bentonites interpreted as direct products of 
volcanic ash fall deposits, whose eruption ages within uncertainty represent good approximations for the age of 
sedimentary deposition. Complete U–Pb isotopic data are given in Supplementary Table S2; the calculated ages 
and the breakdown of their uncertainties are listed in Table 1 and illustrated in Fig. 3.

The new U–Pb geochronology has an average internal uncertainty (X) of ± 26 kyr (fully propagated average 
uncertainty of Z =  ± 88 kyr), which is an order of magnitude improvement in precision over the latest published 
40Ar/39Ar geochronology from the WIB (excluding decay constant errors: Supplementary Table S1). This allows 
temporal resolution of closely spaced ash beds with eruption frequency as high as ca. 40 kyr and thus their 
unambiguous correlation over 1600 km of latitudinal distance.

The high-precision geochronology and Bayesian age-stratigraphic models of this study are used to place robust 
age constraints on select fossiliferous intervals of the WIB Campanian formations (see below). These intervals are 
defined as those containing the highest concentrations of vertebrate fossils based on historical discoveries and 
including fauna that have formed the basis of dinosaur provinciality hypotheses. They by no means incorporate 
all known Campanian fossil beds from the corresponding units. Also excluded from discussions are earlier 
Campanian fossil assemblages (e.g., those of the Oldman Fm. in Alberta and the Wahweap Fm. in Utah), which 
fall outside the scope of this study.

Dinosaur Provincial Park, Alberta, Canada. U–Pb ages for five bentonites from well-correlated strati-
graphic sections within the Park and its vicinity are used to construct a high resolution age-stratigraphic model 
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Figure 3.  Ranked age plot of analyzed zircons from Campanian ash beds of the Western Interior Basin. (A) 
Dinosaur Provincial Park, southern Alberta, Canada; (B) Two Medicine and Judith River formations, Montana; 
(C) Kaiparowits Formation, southern Utah; (D) Kirtland and Fruitland formation, San Juan Basin, New 
Mexico. Vertical bars are individual zircon analyses with their 2σ analytical uncertainty; black bars are analyses 
used in age calculation. Arrows represent the analyses that plot outside the diagram. Blue band signifies the 
weighted mean age with its 95% confidence level (2σ) internal uncertainty (X). See Table 1 for bentonite and age 
information, and Supplementary Table S2 for complete U–Pb isotopic data. JC, Jackson Coulee; LCZ, Lethbridge 
Coal Zone; PPF, Power Plant Ferry; SF, Stafford Ferry.
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for the Dinosaur Park Fm. (Fig. 4 and Supplementary Fig. S2-A). The ages (Table 1) range from 76.718 ± 0.020 Ma 
(Fieldstation tuff, Oldman Fm.) to 74.289 ± 0.014 Ma (Bearpaw tuff, Bearpaw Fm.), spanning 89 m of strata. The 
resulting age model places the lower and upper boundaries of the Dinosaur Park Fm. at 76.470 + 0.14/ − 0.084 Ma 
and 74.44 + 0.30/ − 0.11 Ma, respectively. This extends the duration of the formation to 2.03 ± 0.18 Myr from the 
Eberth (2005) estimate of 1.7 Myr. The main vertebrate fossil-bearing stratigraphic interval of the formation is 
constrained between 76.61 and 75.04 Ma (range incorporates 95% confidence intervals).

Western and central Montana, USA. U–Pb geochronology from the Two Medicine Fm. includes a ben-
tonite age of 82.419 ± 0.074 Ma (sample CB061417-1) from 15.5 m above the base of the formation on the eastern 
flank of Cut Bank Creek, about 12 km south of Cut Bank, Glacier County, Montana (Supplementary Fig. S2-C). 
Another bentonite (sample 90TMT-590) from approximately 40 m below the top of the formation in its type area 
produced a U–Pb age of 75.259 ± 0.027 Ma. The former is so far the oldest reported age from the Two Medicine 
Fm., extending its age into the lower Campanian and indicating more than 7 Myr of deposition for the forma-
tion. The principal fossil-rich interval of the Two Medicine Fm. starts below its lacustrine carbonate facies (ca. 
290 m above the formation base) in its type area, and includes the many fossil discoveries in the classic Egg 
Mountain locality. Pending a more comprehensive age model for the formation, our limited U–Pb geochronol-
ogy broadly constrains its fossil-rich interval between ca. 78.2 Ma and 74.6 Ma.

Our U–Pb geochronology from key stratigraphic horizons of the Judith River and Bearpaw formations 
(Table 1 and Fig. 3) includes an age of 78.594 ± 0.024 Ma from a bentonite (sample KC061517-1) within Coal 
Marker A bed at Kennedy Coulee, Hill County, Montana (Supplementary Fig. S2-B), as well as 76.329 ± 0.035 Ma 
(Stafford Ferry tuff, McClelland Ferry Member) and 75.213 ± 0.021 Ma (Powerplant Ferry tuff, Bearpaw Fm.) 
from the Judith River Fm. type area in the Upper Missouri River Breaks National Monument. Kennedy Coulee 
is located about 170 km to the north-northwest of the type area and its prominent coal beds have been linked 
to the widespread Taber Coal Zone of southern  Alberta25, making them stratigraphic correlatives to the coal 
beds of the lower McClelland Ferry Member in the type area. The three U–Pb ages can be used to construct 
an age-stratigraphic model (Fig. 5) that places the top of the Judith River Fm. (base of the Bearpaw Fm.) at 
75.255 + 0.27/ − 0.039 Ma in the type area. Accordingly, the base and top of the McClelland Ferry Member are 
constrained to 78.70 + 2.0/ − 0.11 Ma and 76.269 + 0.052/ − 0.34 Ma, respectively. However, there is considerable 
uncertainty associated with the lower age constraint as the Taber coal zone is expected to be time  transgressive36 

Table 1.  Summary of calculated U–Pb ages and their uncertainties. a JC, Jackson Coulee; LCZ, Lethbridge 
Coal Zone; PPF, Power Plant Ferry; SF, Stafford Ferry. b CR, Coal Ridge Member; MCF, McClelland Ferry 
Member. c Latitude/Longitude relative to WGS 84 datum. For San Juan Basin samples they are estimated from 
 Fassett107 maps locations. d Stratigraphic elevation above the formation boundary, where measured. e X-internal 
(analytical) uncertainty in the absence of all external or systematic errors; Y-incorporates X and the U–Pb 
tracer calibration error; Z-includes X and Y, as well as the uranium decay constant errors of Jaffey et al.163. 
f MSWD, mean square of weighted deviates. g n, number of analyses included in the calculated weighted mean 
date out of total number of analyses (#).

Sample Tuff  namea Formation/Memberb Latitudec Longitudec
Elevation 
(m)d

206Pb/ 238U Uncertainty (2σ)e

MSWDf ng #Age (Ma) X Y Z

Dinosaur Park, Alberta

IL082717-1 Bearpaw Bearpaw 50° 45′ 21.0″  − 111° 22′ 52.0″ 83.25 74.289 0.014 0.024 0.083 2.0 10 11

LCZ2 LCZ Dinosaur Park 50° 49′ 26.3″  − 111° 19′ 27.4″ 61.50 75.017 0.020 0.028 0.085 0.31 5 6

CD082717-1 Plateau Dinosaur Park 50° 44′ 46.9″  − 111° 29′ 18.7″ 36.00 75.639 0.025 0.032 0.087 1.3 6 7

JC082817-1 JC Dinosaur Park 50° 45′ 05.5″  − 111° 24′ 33.4″ 1.25 76.354 0.057 0.061 0.10 1.9 3 12

FS082717-1 Fieldstation Oldman 50° 45′ 33.1″  − 111° 31′ 04.1″  − 5.50 76.718 0.020 0.029 0.087 0.58 5 5

Central and northern Montana

PPF1-03 PPF Bearpaw 47° 43′ 29.2″  − 108° 56′ 36.7″ 180 75.219 0.031 0.046 0.093 1.7 7 9

ST1-03 SF Judith River/CR 47° 45′ 37.2″  − 109° 19′ 46.9″ 84 76.329 0.035 0.043 0.092 0.92 4 4

KC061517-1 – Judith River/MCF 48° 56′ 58.5″  − 110° 36′ 09.3″ 31 78.594 0.024 0.032 0.090 1.4 6 7

Western Montana

90TMT-590 – Two Medicine/upper 48˚29′ 50.0″  − 112˚36′ 16.4″ 460 75.259 0.027 0.034 0.087 0.59 4 4

CB061417-1 – Two Medicine/lower 48° 31′ 33.1″  − 112° 17′ 22.3″ 15.5 82.419 0.074 0.086 0.12 1.4 3 8

Kaiparowits Plateau, Utah

KBC-195 – Kaiparowits/upper 37° 38′ 12.7″  − 111° 50′ 41.7″ 612 75.231 0.021 0.038 0.089 0.73 6 9

KBC-144 – Kaiparowits/middle 37° 37′ 59.9″  − 111° 50′ 51.3″ 498 75.427 0.012 0.023 0.084 1.80 7 12

KBC-109 – Kaiparowits/middle 37° 37′ 46.8″  − 111° 51′ 18.7″ 420 75.609 0.015 0.025 0.085 0.62 5 5

KP-07A – Kaiparowits/Middle 37° 26′ 11.9″  − 111° 41′ 51.8″ 180 76.394 0.040 0.045 0.093 0.60 5 5

San Juan Basin, New Mexico

SJB-1801 Ash J Kirtland 36° 21′ 28.2″  − 108° 07′ 55.7″ 384 73.496 0.039 0.046 0.091 2.0 3 7

SJB-1802 Ash 2 Fruitland 36° 17′ 48.2″  − 108° 13′ 36.8″ 136 75.166 0.014 0.025 0.084 0.69 4 6
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and is likely to shift lower in stratigraphy towards Kennedy Coulee. Therefore, the ca.78.70 Ma age for the 
member boundary should be considered a maximum estimate. The main concentration of vertebrate fossils 
in the formation occurs within its Coal Ridge  Member83, which is very well constrained to between 76.32 and 
75.22 Ma (Fig. 5).

Kaiparowits Plateau, Utah, USA. Weighted mean U–Pb dates of this study from the Kaiparowits Fm. 
(Table 1) incorporate four bentonites from its middle and upper (informal) units, three of which are in suc-
cession from the Kaiparowits Blues type section (Supplementary Fig.  S2-D), whereas the stratigraphically 
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Figure 4.  Lithostratigraphy, U–Pb geochronology and Bayesian age-stratigraphic models for the Dinosaur 
Park (top) and Kaiparowits (middle) formations. Dinosaur Park and Kaiparowits stratigraphy after Eberth and 
 Hamblin36 and Roberts et al.105, respectively. Red shading corresponds to the principal fossil-bearing intervals 
and their model ages, dotted lines incorporate the model age uncertainties. Bottom panel illustrates the 
interformational correlation of fossil intervals based on this study. *Boundary age from Beveridge et al.86.
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lowest one is from the Horse Mountain  section90. They range in age from 76.394 ± 0.04 Ma (Sample KP-07A, 
middle unit) to 75.231 ± 0.021 Ma (Sample KBC-195, upper unit), encompassing 432 m of strata (Fig. 4). The 
resulting age-stratigraphic model places the middle unit of the formation between 76.63 + 0.44/ − 0.19 Ma and 
75.364 + 0.046/ − 0.085 Ma, with the primary vertebrate fossil-producing interval of the formation constrained 
to between 77.24 and 75.02 Ma.

Our U–Pb age model is unable to accurately constraint the age of the lower boundary of the Kaiparowits Fm., 
as bentonites are notoriously absent from its lower unit, making the stratigraphic positions of our dated benton-
ites relative to the underlying Wahweap Fm. somewhat uncertain. However, a new U–Pb geochronologic study of 
the Wahweap Fm.86 has more reliably placed the Wahweap-Kaiparowits formation boundary at 77.29 ± 0.72 Ma, 
which is used here as the lowermost constraint for our age model (Fig. 4).

San Juan Basin, New Mexico, USA. Only two of the collected bentonites from the Campanian of the San 
Juan Basin yielded zircons suitable for U–Pb analyses. These samples (SJB-1801 and SJB-1802, respectively) cor-
respond to Ash J and Ash 2 of  Fassett107 and both were collected from the Hunter Wash area, San Juan County, 
New Mexico. Ash 2 from the middle stratigraphic levels of the Fruitland Fm. yielded a weighted mean 206Pb/238U 
date of 75.166 ± 0.014 Ma, whereas Ash J from the uppermost Kirtland Fm. produced a weighted mean 206Pb/238U 
date of 73.496 ± 0.039 Ma (Table 1 and Fig. 3). While insufficient to construct a detailed age-stratigraphic model, 
these new ages bracket the main stratigraphic range of the Campanian vertebrate fauna in the San Juan Basin.

Discussion
High‑resolution chronostratigraphy of the Campanian dinosaur record. The high-precision U–
Pb zircon geochronology and Bayesian age models presented here provide high-resolution temporal frameworks 
for major Campanian vertebrate-bearing formations over a 1600-km latitudinal distance across the WIB. Our 
ash bed zircon ages significantly improve upon a substantial database of legacy 40Ar/39Ar ages from the WIB, 
which accumulated in a piece-meal fashion over nearly three decades (see Supplementary Table  S1). A key 
advantage of the U–Pb CA-ID-TIMS method over alternative geochronologic techniques (e.g., 40Ar/39Ar and 
microbeam U–Pb dating) is that its measured isotopic ratios are metrologically traceable to the basic SI units 
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Figure 5.  Lithostratigraphy (after Rogers et al.83), U–Pb geochronology and Bayesian age-stratigraphic 
model for the Judith River Formation in its type area. Pm Ss Mbr, Parkman Sandstone Member. Red shading 
corresponds to the principal fossil-bearing interval and its model age, dotted lines incorporate the model age 
uncertainties. Note that the single U–Pb age from Kennedy Coulee (KC051517-1) has been projected onto the 
type stratigraphy (see text for explanation).
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of weight, time and radioactivity via a carefully calibrated isotopic  tracer128, which lacks the geologic (and age) 
complexities of natural mineral standards. Owing largely to the chemical abrasion  technique129 and the use of 
EARTHTIME mixed U–Pb  tracers128,130, modern CA-ID-TIMS geochronology is capable of generating highly 
reproducible ash bed ages with internal uncertainties as low as ± 12 ky in the Campanian (Table 1). The precision 
of individual zircon 206Pb/238U analyses (average of ± 72 kyr or 1.9‰ in this study) is crucial to the accuracy of 
the calculated weighted mean ages for bentonites, as it enables the detection of detrital and/or antecrystic zircon 
populations, which are present in many ash beds. The latter poses an important challenge to the application 
of U–Pb geochronology to the terrestrial stratigraphic record. An example of reproducibility of modern U–Pb 
CA-ID-TIMS ages between different laboratories is presented in the Methods. While 40Ar/39Ar geochronology 
continues to develop as a viable tool for high-resolution chronostratigraphy, the practice of repeatedly recal-
culating legacy 40Ar/39Ar ages (e.g.,  Fowler123) using new and evolving parameters only compounds embedded 
analytical issues (see discussion above) and is arguably counterproductive to building a reliable age framework.

Whereas individual vertebrate-bearing formations of the WIB may represent several million years of terres-
trial deposition, the fossils are not uniformly distributed throughout each unit. For example, the megaherbivore 
dinosaur assemblages of the Dinosaur Park Fm. are thought to reflect turnovers with durations on the order 
of 300  kyr45. Each assemblage zone may in turn consist of multiple fossil horizons or bone-beds, which may 
have been separated from each other by only a few tens of thousands of years. It is therefore imperative for the 
employed geochronologic technique to have uncertainties compatible with the desired stratigraphic resolution. 
The level of age precision provided in this study is also necessary to explore possible links between faunal/
floral turnovers, depositional sequences tied to sea level cyclicity and paleoenvironmental change driven by 
Milankovitch cycles.

The fossil-rich stratigraphic intervals of the Dinosaur Park, Two-Medicine, Judith River and Kaiparowits 
formations are known to coincide with an increase in the abundance of bentonites and/or volcanic components 
in the associated alluvial  sediments36,83,105. Our geochronology indicates that this lithologic change occurred at ca. 
76.4 Ma, broadly coincident with the Dinosaur Park Fm. in southern Alberta, Coal Ridge Member of the Judith 
River Fm. in Montana and the middle unit of the Kaiparowits Fm. in southern Utah. A likely explanation for the 
temporal association between volcanism and fossil abundance would be environmental change and enhanced 
habitability (ecological expansion), either as a direct result of elevated volcanic activity, or in association with 
foreland basin tectonic and landscape evolution. It has been hypothesized that extensive volcanism can impact 
atmospheric circulation, hydrological cycles, and nutrient transport in the environment, impacting the ter-
restrial  biota131. Alternatively, diagenetic characteristics of volcanogenic sediments may favor vertebrate fossil 
preservation and increase their occurrence. While vertebrate fossil burial and preservation in pyroclastic flows 
are well  documented132, the taphonomic influence of distal tuffaceous sediments on fossil preservation is less 
understood. If the latter plays the dominant role, the apparent stratigraphic ranges of fossil occurrences in the 
above formations may underestimate their true temporal ranges. More focused research is necessary to resolve 
the paleoecologic versus taphonomic influence of volcanism on vertebrate fossil occurrences.

Our new age models for the Campanian formations elucidate their detailed depositional histories and allow a 
quantitative assessment of associated rock accumulation rates, demonstrating that these rates were highly variable 
across the WIB during the Campanian. The average rock accumulation rates (disregarding post-depositional 
sediment compaction) vary dramatically among our studied formations, ranging from 36.6 ± 0.4 m/Myr for the 
Dinosaur Park Fm. to 372 ± 15 m/Myr in the Kaiparowits Fm. The rates for the Judith River and Two Medicine 
formations are 44.2 ± 0.5 m/Myr and 62.1 ± 0.7 m/Myr, respectively, indicating an anomalously high accumula-
tion rate for the Kaiparowits Fm. (Fig. 6). Overall, our results reveal disparate basin evolution and subsidence 
histories throughout the WIB.

Drastically different rock accumulation rates across the WIB translates into potentially variable deposi-
tional settings, and possibly dissimilar foreland basin architectures. Nevertheless, the main vertebrate fossil-
bearing intervals of the Kaiparowits (77.24–75.02 Ma), Judith River (76.32–75.22 Ma) and Dinosaur Park 
(76.61–75.04 Ma) formations largely overlap in their age ranges (Figs. 2 and 6). The same generally holds true 
for the Two Medicine Fm., although more work is needed to tie all of its fossil occurrences to the current age-
stratigraphic model. Interestingly, this fossil-bearing interval occurs distinguishably later in the San Juan Basin 
(ca. 75.2–73.5 Ma). A lack of correlation between fossil abundance and depositional setting (e.g., burial rates) 
argues against a strong depositional control on fossil preservation and suggests that fossil distributions in the 
Campanian formations to the first order reflect paleoecologic richness (see discussion below).

Concept of intracontinental dinosaur endemism and latitudinal provinciality. It has been 
hypothesized that coeval Late Cretaceous vertebrate fauna (and flora) throughout the Laramidia can be divided 
into distinct, latitudinally arrayed ‘provinces’5,6. Whereas the same major clades (e.g., hadrosaurids, ceratop-
sids, ankylosaurids, tyrannosaurids) are present in dinosaur assemblages throughout the WIB, the northern and 
southern assemblages are thought to be distinct at the genus and species levels. Sampson et al.7,99 argued that 
latitudinal provinciality can be best observed among the chasmosaurine and centrosaurine ceratopsids of the 
late Campanian of the Laramidia, in light of new taxa being discovered from the Kaiparowits Fm. in the south. 
The biogeographic analyses of Gates et al.133 based on multivariate analyses of terrestrial vertebrate taxa (includ-
ing freshwater fish, reptiles/amphibians and mammals in addition to dinosaurs) added further support to a late 
Campanian latitudinal gradient. Rapidly growing datasets and expanded collections of the Laramidian fauna 
and  flora2,7,35,45,54–56,102,104,112,113,133–140 provide new opportunities for analyzing paleobiogeographic patterns, 
including biotic endemism, with increasing resolution. It has been suggested that physiographic elements such 
as the Elkhorn Mountains volcanic field and their impact on the adjacent alluvial systems could have generated 
distinct Laramidian ecosystems capable of engendering faunal  divergence141. The possible extent and duration 
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of such ecological partitioning, however, have not been demonstrated. The alternative view is that the observed 
biogeographic zonation was driven by climatic gradients (e.g., mean annual temperature and rainfall) across the 
meridional WIB  expanse133,142.

The notion of WIB vertebrate endemism has been challenged on the grounds of fossil sampling bias, ambigu-
ous correlations among diachronous units, and arbitrary taxonomic  classifications123,143–145. More specifically, 
Dean et al.146 suggested that grouping non-contemporaneous fossil-bearing geological units into large time bins 
in order to assess faunal richness and diversity on a regional scale can give the appearance of high endemicity 
to the Campanian dinosaurs of WIB. Similarly, Maidment et al.147 highlighted the current challenges associated 
with investigating large scale patterns of endemism for the same reasons, but highlighted the potential of smaller, 
focused investigation of specific groups within well calibrated stratigraphic intervals.
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Interior Basin, based on the age models of this study. Stratigraphic columns are drawn to the same scale. Black is 
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Rigorous examination of the Campanian dinosaur provinciality hypotheses requires a systematic, data-driven 
approach involving careful stratigraphic, temporal and statistical considerations, which have been all or in part 
absent from pervious paleobiogeographic reconstructions. We maintain that a critical evaluation of dinosaur 
faunal distribution and diversity will rely on the following variables:

1. Environmental control on fossil preservation and accumulation Changes in the depositional environment 
and landscape induced by tectonic and climatic drivers can not only influence the preservation potential of 
vertebrate fossils, but their taxonomic composition, as  well148. For example, an apparent decline in dinosaur 
diversity prior to the end-Cretaceous  extinction149,150 coincides with the end of the Cretaceous sea level 
mega cycle characterized by accelerated regression starting from the late  Campanian10, suggesting a poten-
tial causal  link146. At a local scale, different depositional settings can selectively preserve different aspects 
of faunal assemblages, leading to systematic variations in taphonomic composition as a function of fluvial 
 facies83,151. These fossil-facies associations must be taken into account when investigating paleoecology, 
paleobiogeography and patterns of dinosaur distribution and turnover.

2. Sampling bias The intensity of fossil collection within and between formations is a source of potential bias 
when considering provinciality arguments. For instance, collecting of vertebrate fossils in the Dinosaur Park 
and Judith River formations began during the mid-late 1800s, whereas the first comprehensive collecting 
efforts in the Kaiparowits and Wahweap formations began nearly a century later. However, it can be difficult 
to assess the overall collecting effort/intensity among formations regardless of when collection began. Not 
only does this lead to potential cross-formation bias, but there are clearly biases in collecting efforts within 
individual formations, as well. For example, in a comprehensive biostratigraphic study of the lower Cam-
panian Wahweap Fm. in southern Utah (Kaiparowits Plateau), Beveridge et al.86 noted that the majority of 
dinosaur localities were clustered around vehicle-accessible roads, which were built predominantly above 
steep cliff-forming sandstone horizons.

3. High-resolution age control Undoubtedly, imprecise (and inaccurate) age constraints can lead to oversimpli-
fied—if not erroneous—paleobiologic and paleoecologic reconstructions. Therefore, the focus of high-reso-
lution radioisotopic geochronology must be fossil-rich stratigraphic intervals, and not merely the formations 
that host them. This approach is necessary to quantitatively identify gaps in the fossil record and accurately 
elucidate patterns of evolutionary change, albeit not always possible, due to scarcity of datable ash beds in 
some fossiliferous intervals.

The present contribution was aimed primarily at developing a robust, internally consistent temporal frame-
work for fossiliferous strata across the WIB (item 3 above). Our results reveal a remarkable overlap in age among 
the main fossil-bearing intervals in the Kaiparowits, Judith River, Two Medicine, and Dinosaur Park formations, 
which predate the apparently younger fossil-rich interval in the Fruitland/Kirtland formations (Figs. 2 and 4). The 
strong temporal correlation across most of these key intervals refutes the argument of  Fowler123 that the apparent 
latitudinal provinciality of the Campanian dinosaur fauna is simply an artefact of erroneous age interpretations. 
Moreover, we have demonstrated that the largely coeval fossil assemblages across the WIB are preserved in rocks 
deposited in different basinal settings with drastically dissimilar accumulation rates. Represented in these assem-
blages, however, are broadly similar dinosaur lineages (e.g., hadrosaurids, ceratopsids and tyrannosaurids), as 
well as a host of other vertebrate and invertebrate fossil groups. This observation contradicts a strong taphonomic 
control on taxonomic richness and diversity and suggests that the observed WIB-wide fossil associations may 
serve as good representatives of the true Campanian biogeography and paleoecology.

In the absence of compelling evidence for taphonomic bias (1 above), and with the improved chronostrati-
graphic framework presented here (3 above), limited sampling and collection bias (2 above) emerges as the chief 
source of uncertainty in resolving the Campanian paleobiogeography and paleoecology of dinosaur fauna. Col-
lection bias can emanate from a combination of prospecting history, outcrop exposure and quality, land access, 
and fossil type preferences and can occur both within and between formations. Sustained efforts in systematic 
fossil collection integrated with high-resolution stratigraphy, sedimentology, taphonomy, and geochronology 
throughout the WIB promise to offer new insights into the evolutionary patterns of dinosaurs during the zenith 
of their diversity in the Campanian.

Conclusions
New U–Pb CA-ID-TIMS geochronology based on 16 volcanic ash beds from several richly fossiliferous Upper 
Cretaceous units across North America’s Western Interior Basin is used to construct a high-resolution chron-
ostratigraphic framework across 1600 km of Campanian terrestrial ecosystems. This significantly enhanced 
temporal context allows robust correlations among geographically distant fauna as a basis for addressing long 
standing questions regarding dinosaur paleogeography, paleoecology and evolution during the Campanian. Our 
results demonstrate a remarkable overlap in age among most of these Campanian fossil-producing intervals 
from Utah to Alberta, refuting inferences that the proposed latitudinal provinciality of dinosaur taxa is simply 
an artefact of age misinterpretation.

The contemporaneous occurrence of abundant and diverse fossil assemblages in a latitudinal array of depo-
centers characterized by a variety of depositional settings argues against a dominant taphonomic control on 
fossil preservation and lends support to the notion that the Campanian dinosaur assemblages are indeed credible 
representatives of paleoecologic richness and diversity. An improved and high-resolution temporal framework 
helps identify gaps in the fossil record and facilitate further targeted collecting with the goal of diminishing fos-
sil sampling bias, which remains the chief source of uncertainty in understanding large-scale patterns of faunal 
evolution during the ‘zenith’ of dinosaur diversity.
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Methods
Stratigraphy. Detailed stratigraphic sections were measured in the context of previous 
 studies25,29,36,37,50,83,90,92,105,114, which had identified and sampled a number of target bentonite beds. New benton-
ite samples aimed at U–Pb zircon geochronology were collected during the 2016 and 2017 field seasons and their 
locations where placed within the corresponding stratigraphic frameworks by using the global positioning sys-
tem (GPS) and by measuring distance relative to known stratigraphic horizons (Supplementary Fig. S2). Sample 
selection strategy was based primarily on bracketing the stratigraphic intervals of interest, including lithostrati-
graphic contacts and sequence stratigraphic surfaces of significance, in addition to fossiliferous horizons.

U–Pb geochronology. Samples of bentonite collected for zircon geochronology were on the order of 4 to 
6 kg in weight and were carefully excavated from at least 2 cm above the bottom to avoid the basal crystal-lithic 
tuff horizon rich in reworked/detrital grains. Sampled bentonites were 5–90 cm-thick and were characteristically 
clay rich with variable silt- and sand-sized contents, and commonly formed recessed benches or hilltop flats in 
the local landscape. The typical bentonite is homogeneous, with a lustrous olive-green color on fresh surfaces 
and has no visible lamination or parting. Samples were processed in the lab by soaking in water for 48 h, followed 
by complete liquefaction in a blender and gradual clay disintegration and removal in a sonic dismembrator 
 device152. Heavy-mineral concentrates were obtained using magnetic as well as high-density liquid separation. 
Final zircon selection was carried out by hand picking under a binocular microscope.

Bentonite samples contained to varying degrees mixed populations of zircon characterized by a variety of 
grain sizes and morphologies. These ranged from equant/sub-equant grains to prismatic and acicular zircon 
with high aspect ratios and up to 500 µm in length. Preference in zircons selection was given to sharply faceted, 
prismatic/acicular zircon that contained elongate glass (melt) inclusions parallel to their long axis (Supplemen-
tary Fig. S1). Past experience has demonstrated that these grains typically yield the youngest dates in samples 
characterized by mixed zircon populations and this has proven an efficient screening technique for xenocrystic 
and/or far transported detrital zircon  grains153.

Zircons selected for U–Pb analysis were pre-treated by a chemical abrasion technique modified after 
 Mattinson129, which involved thermal annealing in a 900 °C furnace for 60 h, followed by partial dissolution 
(leaching) in concentrated hydrofluoric acid (HF) in order to mitigate the effects of Pb-loss in zircon that often 
result in anomalously young dates. For leaching, annealed zircons were loaded with ca. 75 µl of 29 M HF into 
200 µl FEP Teflon® microcapsules, placed within a high-pressure Parr® vessel and left in a 210 °C oven for 12–13 h. 
This is considered a rather aggressive leach schedule, but proven necessary as a remedy for persistent Pb loss in 
certain  zircons154. The leached grains were transferred into 3 ml Savillex® FEP beakers and fluxed in successive 
steps in a dilute  HNO3 solution and in 6 N HCl over a hot plate (1 h per step), with each step followed by agita-
tion in an ultrasonic bath (1 h) and rinsing with several milliliters of ultra-pure water to remove the leachates. 
Thoroughly rinsed zircon grains were loaded back into their microcapsules, spiked with the EARTHTIME 
ET2535 mixed 202Pb-205Pb-233U-235U isotopic  tracer128,130 and dissolved completely in 29 M HF at 210 °C for 48 h.

Dissolved Pb and U were chemically separated using a miniaturized HCl-based ion-exchange chemical 
procedure modified after  Krogh155, using 50 µl columns of 1 × 8 anion-exchange resin. Purified Pb and U were 
loaded with a silica gel—H3PO4 emitter  solution156 onto single, degassed Re filaments and their isotopic ratios 
were measured on the Isotopx X62 multi-collector thermal ionization mass spectrometer equipped with a Daly 
photomultiplier ion counting system at MIT. Pb isotopic measurements were made on monoatomic Pb ions in 
a peak-hopping mode on the ion counter, whereas U isotopes were measured as  UO2

+ in a static mode on three 
Faraday detectors simultaneously.

A total of 118 single zircons were analyzed from 16 bentonite beds from the four WIS study localities. Com-
plete Pb and U isotopic data are given in Supplementary Table S2. Data reduction, as well as calculation of U–Pb 
dates and propagation of uncertainties were accomplished using the Tripoli and ET_Redux  applications157,158. 
Measured isotopic ratios were corrected for mass-dependent isotope fractionation in the mass spectrometer 
using the tracer 202Pb/205Pb and 233U/235U isotopic ratios, as well as for U and Pb contributions from the spike 
and laboratory blanks. Common Pb in the analyses averaged 0.37 pg, all of which was attributed to laboratory 
blank, and its isotopic composition was determined from long-term measurements of the total procedural Pb 
blank in the lab (see Supplementary Table S2 footnotes). The radiogenic 206Pb concentrations were also corrected 
for initial 230Th disequilibrium in magma using a magma initial Th/U model ratio of 2.8 ± 1.0 (2σ). This range 
of Th/U ratios encompasses all likely compositions of the magma source of an intermediate to felsic  tuff159. 
The Pb isotopic ratios were corrected for isobaric interferences from Tl and  BaPO2 on mass 205 by monitoring 
masses 203 and 201, respectively, and using natural isotopic abundances of 138Ba and 205Tl. Measured U isotopic 
ratios were also corrected for isobaric interference of 233U18O16O with 235U16O16O using an 18O/16O ratio of 
0.00205 ± 0.00004 (2σ), which has been determined from long-term measurements of 272/270 mass ratio from 
large U loads. The present-day natural U isotopic composition of 137.818 ± 0.044 (2σ) was used in data reduc-
tion following Hiess et al.160.

In general, 206Pb/238U dates are considered the most precise and accurate in high-precision U–Pb geochronol-
ogy as they are independent of suspected inaccuracy of the 235U decay  constant161,162, which potentially biases 
the 207Pb/235U or 207Pb/206Pb dates. Since the presence of xenocrystic/antecrystic or detrital (reworked) zircon 
in volcanic ash cannot be ruled out, our sample ages are derived from the weighted mean 206Pb/238U date of 
a statistically coherent cluster of the youngest zircon analyses in each sample, after excluding older analyses 
(outside 2σ analytical uncertainty) that are considered xenocrystic or detrital. With only three exceptions, the 
youngest cluster comprised between 58 and 100% of the total analyses from the sample (Table 1), rendering some 
calculated dates more statistically robust than others. Uncertainties in calculated 206Pb/238U dates are reported 
at 95% confidence level (Table 1 and Fig. 3) and in the ± X/Y/Z Ma format, where X is the internal (analytical) 
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uncertainty in the absence of all external errors, Y incorporates X and the U–Pb tracer calibration errors and Z 
includes the latter as well as the decay constant errors of Jaffey et al.163. The external uncertainties must be taken 
into account if the results are to be compared with U–Pb dates obtained in other laboratories with different 
tracers, with different techniques (e.g., microbeam U–Pb), or ones derived from other isotopic chronometers 
(e.g., 40Ar/39Ar). However, for establishing a chronology based on the results of this study alone (or from other 
studies that used the same U–Pb isotopic tracer), only the analytical uncertainties (X) need to be considered.

The reproducibility of U–Pb CA-ID-TIMS geochronology among different laboratories is often tested using 
large grains (or fragments) of a well-characterized zircon  standard164, but it is rarely demonstrated based on 
lithologically complex samples such as bentonites. The Bearpaw tuff (our sample IL082717-1) from the basal 
Bearpaw Fm. in the Dinosaur Provincial Park, Alberta, was independently sampled and analyzed in the Jack 
Satterly Geochronology Laboratory at the University of Toronto, using an EARTHTIME isotopic tracer and 
essentially similar analytical procedures, and yielded a weighted mean 206Pb/238U date of 74.308 ± 0.031/0.050/0.
130  Ma126. The latter is older than the Bearpaw tuff age reported here (74.289 ± 0.014/0.024/0.083 Ma) by 0.26‰, 
well within analytical uncertainty. However, Eberth and  Kamo126 chose a natural 238U/235U ratio of 137.88118 and 
a magma Th/U ratio of 4.2 in their U–Pb age calculations. If the same data reduction parameters are used in both 
studies, the offset between the two ages will be reduced to a nominal 0.16‰.

Age‑stratigraphic modelling. In order to construct robust chronostratigraphic frameworks for the fos-
sil-bearing successions of the Belly River Group (Alberta), Judith River Fm. (Montana) and Kaiparowits Fm. 
(Utah), we employed a Bayesian age-stratigraphic model using the Bchron software  package165,166. The model 
utilizes the weighted mean dates of all analyzed samples and their relative stratigraphic positions to extrapolate 
the age of any given stratigraphic horizon of interest. The underlying Markov chain Monte Carlo rejection algo-
rithm of Bchron takes into account possible changes in the rock accumulation rate and results in more objective 
stratigraphic age uncertainties that the conventional linear extrapolation or spline-fit methods. The Bchron age 
model is shown with its median (solid) line and 95% confidence interval (shaded band) in Figs. 4 and 5. Code 
scripts, input data, and numerical model outputs are included in Supplementary Table S3.

Repository. Mineral and zircon separates from the processing of tuff samples are archived at the MIT Iso-
tope Lab in Cambridge, Ma.

Data availability
All data generated and analyzed as part of this study are included in this published article and its Supplementary 
Information files.
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