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Magnetic dynamics of hedgehog 
in icosahedral quasicrystal
Shinji Watanabe

Quasicrystals (QCs) possess a unique lattice structure without translational invariance, which is 
characterized by the rotational symmetry forbidden in periodic crystals such as the 5-fold rotation. 
Recent discovery of the ferromagnetic (FM) long-range order in the terbium-based QC has brought 
about breakthrough but the magnetic structure and dynamics remain unresolved. Here, we reveal 
the dynamical as well as static structure of the FM hedgehog state in the icosahedral QC. The 
FM hedgehog is shown to be characterized by the triple-Q state in the reciprocal-lattice q space. 
Dynamical structure factor is shown to exhibit highly structured q and energy dependences. We find a 
unique magnetic excitation mode along the 5-fold direction exhibiting the streak fine structure in the q
-energy plane, which is characteristic of the hedgehog in the icosahedral QC. Non-reciprocal magnetic 
excitations are shown to arise from the FM hedgehog order, which emerge in the vast extent of the q
-energy plane.

Quasicrystal (QC) has a unique lattice structure with rotational symmetry forbidden in periodic  crystals1. 
Although progress has been made in unraveling their atomic  structure2,3, the understanding of their electric 
properties remains a challenging and fascinating problem, because the Bloch theorem can no longer be applied.

The unresolved vital issue has been whether the magnetic long-range order is realized in the three-dimen-
sional  QC4–16. Recently, the ferromagnetic (FM) long-range order has been discovered experimentally in the 
QC Au-Ga-Tb17. Theoretically, the FM long-range order has actually been shown to be realized in the QC Au-
SM-Tb (SM=Si, Al, Ge, Sn and Ga)18,19. Interestingly, the hedgehog state, where the magnetic moments at the 
Tb site located at each vertex of the icosahedron (IC) is directed outward (see Fig. 1A), has been shown to form 
a uniform long-range order as shown in Fig. 1B18. Moreover, the hedgehog state on the IC has been revealed to 
be characterized by the topological invariant, i.e., the topological charge of one, which exhibits emergent phe-
nomena such as the topological Hall  effect18.

Although the FM order has been detected in the QC, the detailed magnetic structure has not been resolved 
 experimentally17. Theoretically, the configurations of the magnetic moments in real space have been identified 
but their magnetic structure factor in reciprocal space has not been  clarified18,19. Furthermore, the dynamical 
property of the magnetism in the QC remains unresolved.

As for the dynamics in the QC, the lattice dynamics was studied by inelastic X-ray and neutron scattering 
 measurements20,21. The dynamical structure factor was theoretically calculated in the spin 1/2 Heisenberg model 
on the Fibonacci chain for the FM ground  state22 and in two-dimensional  systems23. The dynamical structure 
factor was also calculated for antiferromagnetic spin 1/2 Heisenberg model on the two-dimensional octagonal 
 tiling24. However, little has been known about the magnetic dynamics in the real three-dimensional QC theo-
retically nor experimentally.

In this report, we present the dynamical property of the uniform long-range order of the hedgehog state in 
the Tb-based QC. By calculating the magnetic structure factor, we show that the hedgehog is characterized as the 
triple-Q state. By analyzing the dynamical structure factor, we reveal unique energy and momentum dependences 
of the magnetic excitations. We find that the magnetic excitation mode along the 5-fold axis direction exhibit-
ing streak fine structure with periodicity characterized by the wavelength of the diameter of the IC, which is 
considered to be characteristic of the hedgehog in the icosahedral QC. We also find the non-reciprocal magnetic 
excitation mode in the QC. We note that we take the unit of � = 1 hereafter where � is reduced Planck constant.

Results
Lattice structure of QC. Let us start with the lattice structure of the QC. Although the FM long-range 
order has recently been identified by bulk measurements in the QC Au65Ga20Tb15 , the detailed lattice structure 
has not been solved  experimentally17. In general, the rare-earth atoms in the rare-earth-based icosahedral QC 
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are considered to form the lattice structure of Yb in the Cd5.7Yb-type  QC3. Figure 1B shows the main structure of 
the QC where the Tb-12 cluster, i.e., IC is located at each vertex of the icosidodecahedron with the total number 
of the vertices being 30. In the Cd5.7Yb-type QC, there exists a few other ICs as well as Tb sites located between 
the ICs. In this study, as a first step of analysis, we consider the Tb sites shown in Fig. 1B with the total lattice 
number N = 12× 30 = 360 to get insight into the magnetic dynamics in the QC. Here, we employ the real Tb 
configuration for the IC (see Fig. 1A) as well as the icosidodecahedron in the 1/1 approximant crystal (AC) Au70
Si17Tb13 whose lattice structure was solved by the X-ray  measurement25, as a typical case. The diameter of the IC 
is 10.56 Å. In Fig. 1B, the IC is located at 30 vertices of the τ 3-times enlarged icosidodecahedron in the Tsai-type 
cluster of Au70Si17Tb13 with τ being the golden mean τ ≡ (1+

√
5)/2.

Minimal model in rare earth-based QC. The Tb3+ ion with 4f 8 configuration has the ground state of the 
crystalline electric field (CEF) with the total angular momentum J = 6 according to the Hund’s rule. The quan-
tization axis of the CEF is the vector passing through each Tb site from the center of the IC, which is the pseudo 
5-fold axis (see Fig. 1A). The detailed analysis of the CEF has revealed that the magnetic anisotropy arising from 
the CEF plays a key role in realizing the unique magnetic state such as the hedgehog on the  IC18,19. Then, we 
consider the minimal model for the magnetism in the Tb-based QC as

where Jij is the exchange interaction between the ith and jth Tb sites and Si is the “spin” operator with Si = 6 . 
In the second term, the unit vector ê3 indicates the direction of the magnetic anisotropy arising from the CEF, 
which can be controlled by the compositions of Au and SM in Au-SM-Tb18,19. This model is expected to be rel-
evant to not only the Tb-based QC but also rare-earth based QCs. In this study, to discuss the hedgehog state, ê3 
is set to be the pseudo 5-fold axis direction. For the strong limit of the magnetic anisotropy, it has been shown 
that the uniform long-range order of the hedgehog state is realized in the QC for J2/J1 > 2 where J1(J2) is the 
nearest neighbor (N.N.) (next N.N.) exchange interactions (Supplementary information, Fig. S1). Each IC is 
characterized by the topological charge of one nTC = +1 , which is distributed quasi-periodically in Fig. 1B18. 
The hedgehog is the source of emergent field, which is regarded as monopole with the charge nTC = +126,27.

Magnetic excitation in QC. In the hedgehog state, “spins” are non-collinearly aligned as shown in Fig. 1A. 
Hence it is convenient to introduce the local coordinate at each Tb site where the ê3 axis is set as the ordered 
“spin” direction as shown in Fig. 1C (see Methods section for detail). Then, by applying the Holstein-Prima-
koff  transformation28 to H, the “spin” operators are transformed to the boson operators as S+i =

√
2S − niai , 

S−i = a†i
√
2S − ni  and Si · êi3 = S − ni with ni ≡ a†i ai . Here, S−i (S

+
i ) is the lowering (raising) “spin” operator and 

ai(a
†
i ) is an annihilation (creation) operator of the boson at the ith Tb site. Here the quadratic terms of the boson 

operators are retained because the higher order terms are considered to be irrelevant at least for the ground state.
We employ J1 = 1.0 and J2 = 2.3 as a typical parameter for the Tb-based QC. Actually, J2/J1 = 2.3 has 

been experimentally identified in the model Eq. (1) for the large D limit applied to the 1/1 AC Au72Al14Tb1429. 
We confirmed that the hedgehog state shown in Fig. 1B with the N = 360 sites under open boundary condi-
tion is realized as the ground state for D ≥ 17.85 in Eq. (1), which gives the positive excitation energy ωi for 
i = 1, · · · ,N , as shown in Fig. 2A. The D dependence of the lowest excitation energy, i.e., the gap � ≡ ωN/(J1S) 
between the first-excited energy and the ground enegy is shown in Fig. 2B. In the spectrum, there exist several 
gaps, as remarkably seen in Fig. 2A as �1 ≡ (ω90 − ω91)/(J1S) . As D increases, the energy gap � as well as �1 

(1)H =
∑

�i,j�
JijSi · Sj − D

∑

i

(Si · ê3)2,

Figure 1.  (A) The hedgehog state in the IC. Each arrow illustrates the magnetic moment at Tb, which is 
directed to the pseudo 5-fold axis. (B) The hedgehog state in Cd5.7Yb-type QC. Green (brown) lines at the front 
(back) connect the vertices of the icosidodecahedron. Scale bar (5 Å) is shown in (B). (C) Local coordinate at 
the Tb site with the orthogonal unit vectors ê1 , ê2 , and ê3 (see text).
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increases. Hereafter, we show the results for D = 30 as the representative case. The lowest and highest energies 
of the excitation spectrum are � = ωN/(J1S) = 15.47 and ω1/(J1S) = 24.59 , respectively.

Static structure factor of magnetism. Then we calculate the magnetic structure factor

The largest peak is located at Q1 ≡ (1.77, 0, 1.02) Å
−1 as shown in Fig. 2C. Since the alignment of the magnetic 

moments in the hedgehog shown in Fig. 1A is invariant under the permutation of x, y, and z axis, the same 
results in Fs(q) as Fig. 2C are obtained by replacing (qx , qy , qz) with (qy , qz , qx) and also with (qz , qx , qy) . Indeed 
we confirmed that the largest peak in Fs(q) appears at Q2 ≡ (0, 1.02, 1.77) and Q3 ≡ (1.02, 1.77, 0) in Fs(q) (Sup-
plementary information, Figs. S2A and S2B). Namely, Fs(Q1) = Fs(Q2) = Fs(Q3) holds. Thus the hedgehog state 
is characterized by the triple-Q (Q1,Q2 , and Q3) state.

In Fig. 2C, the spots lie along the pseudo 5-fold axis indicated by the dashed line with an arrow named d∗ei  . 
Here, �d∗e

i
 (i = 1, · · · , 6) is the primitive vector of the six-dimensional reciprocal lattice space as the physical 

(external) space components as shown in Fig. 2C30. Hereafter, we express the pseudo-5 fold axis for the �d∗e
i

 direc-
tion as the d∗ei  line with an arrow. We note that the slope of the d∗ei  line for i = 2 in Fig. 2C is 1.736 reflecting the 
real configuration of the Tb sites in the  IC25 shown in Fig. 1A, which is known to be τ in the regular  IC30. The 
slope of the d∗e3  , d∗e5  , and d∗e4  lines is the sign-reversed value of the slope of the d∗e2  , d∗e1  , and d∗e6  lines within each 
qz-qx , qx-qy , and qy-qz plane, respectively (see Fig. 2D).

It is noted that Sxx(q) , Szz(q) , and Syy(q) have the maximum at q = Q1 , Q2 , and Q3 , respectively, where Sαβ(q) 
is defined as Sαβ(q) ≡ 1

N

∑

i,j e
iq·(ri−rj)�SiαSjβ � (α = x, y, and z).

Dynamical structure factor of magnetism. The dynamical magnetic structure factor is defined as 
Sαβ(q,ω) ≡ − 1

π
ImGαβ(q,ω)22, where Gαβ(q,ω) = 1

N

∑

i,j e
iq·(ri−rj)G

αβ
ij (ω) with

Here, |GS� is the ground state satisfying αi|GS� = 0 and E0 is the ground-state energy. We set η = 10−6.

(2)Fs(q) =
〈∣

∣

∣

∣

∣

1

N

∑

i

Sie
iq·ri

∣

∣

∣

∣

∣

2〉

.

(3)G
αβ
ij (ω) = �GS|Siα

1

ω + E0 −H + iη
Sjβ |GS�.

Figure 2.  (A) ωi vs i for J1 = 1.0 and J2 = 2.3 with various D. (B) CEF excitation gap vs D. (C) Top view of 
Fs(q) in the qz-qx plane for qy = 0 . The gray dashed line in (C) denotes the pseudo 5-fold axis d∗e2  defined in (D). 
(D) Primitive vectors in the six-dimensional reciprocal-lattice space �d∗e

i
 (i = 1, . . . , 6) as the physical (external) 

space components.
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The result of Sxx(q,ω) for q along the d∗e2  line in the qz-qx plane is shown in Fig. 3A. The spectra appear at 
ω/(J1S) = 0 (see Fig. 3B) with strong intensity of ∼ O(108) and also appear above the energy gap � with intensity 
of ∼ O(104) . The energy gap in the excitation spectra � reflects the magnetic anisotropy arising from the CEF. For 
ω/(J1S) > � , the large intensity appears at the energy ω90/(J1S) = 22.90 , where the highest peak appears at the 
Ŵ point. At ω = 0 , i.e., elastic energy, the maximum peak appears at q = Q1 , as shown in Fig. 3B indicated by the 
dashed line. In the ω dependence of Sxx(q,ω) , spiky peak structures appear as shown in Fig. 3C for q = Q1 . These 
results indicate that the peak Sxx(Q1) is governed by the elastic contribution Sxx(Q1, 0) , which is understandable 
from the sum rule with respect to ω as Sxx(Q1) = 1

2π

∫

dωSxx(Q1,ω).
This is in sharp contrast to the result recently reported in the uniform long-range order of the ferrimagnetic 

state in the icosahedral  QC31. Namely, the high-intensity peak appears at the ordered vector q = 0 and the low-
est CEF excitation energy ω/(|J1|S) = � , from which the high-intensity peaks are continuously formed in the 
dynamical structure factor, giving rise to the pseudo-magnon  mode31.

Then we search the q dependence of Sxx(q,ω) for ω = ω90 where the large intensities appear as shown in 
Fig. 3A. Consequently, we identify that the maximum is located at q0 ≡ (2.169, 3.436, 1.442) Å

−1 . Around 
q = q0 , we find that a series of the packet structures appears along the pseudo 5-fold axis direction, as shown 
in Fig. 4A where the d∗e2  line and d∗e3  line through q = q0 is illustrated by the dashed line in the qz-qx plane with 
qy = 3.436 Å

−1 . The peak in the central packet gives the maximum Sxx(q0,ω90) = 1.027× 105 . A series of packet 
structures with sub-leading intensity is also aligned along the pseudo 5-fold axis direction. For slightly larger 
ω than ω90 , the packets still appear along the d∗e2  line at slightly different positions as shown in Fig. 4B, which 
suggests the magnetic excitation propagating along the pseudo 5-fold direction.

Figure 4C shows Sxx(q,ω) for q along the d∗e2  line through q = q0 . A series of the packet structures remark-
ably appears at the lower edge ω90 with strong intensity, which continuously forms the streak with fine structure 
down to the lower-ω region as also seen in the intensity plot in Fig. 4D.

Interestingly, we find that a series of the packet structures is the reflection of the bottom of the continuous 
mode periodic along the d∗e2  line in the q-ω plane as shown in Fig. 4D. The period of the streak structure is evalu-
ated as �q ∼ 0.6 Å

−1 in the reciprocal space. From the relation of the wavenumber and wavelength �q = 2π/� , 
the scale of the wavelength is estimated to be � ∼ 10 Å . It turns out that this corresponds to the diameter of the 
IC d = 10.56 Å (see Fig. 1A). Since the hedgehog is the magnetic texture on the IC, the excitation gives rise to the 
dynamics whose intensity decreases with periodicity �q ∼ 2π/d with distance from q0 in the reciprocal space 
of the QC. A series of the packet structure as well as the intensity streak in the q-ω plane also appears along the 
d∗e3  direction (Supplementary information, Fig. S3). The emergence of the intensity streak with fine structure 
in the q-ω plane indicates unique excitation mode along the 5-fold axis direction, which is considered to be 
characteristic of the hedgehog in the icosahedral QC.

Non-reciprocal magnetic excitation in QC. To further clarify the general property of the dynamics of 
the hedgehog state, we show Sxx(q,ω) at ω/(J1S) = 23.18 for q along the pink lines in the cube whose side is 
parallel to the 2-fold axis qα ∈ [0, 2.56] Å−1 (α = x, y, and z) in the inset of Fig. 5A. Here we also plot Sxx(−q,ω) 

Figure 3.  Dynamical structure factors (A) Sxx(q,ω) and (B) Sxx(q, 0) for q along the d∗e2  line through Q1 with 
qy = 0 . Inset illustrates the d∗e2  line through Q1 inside the cube with a side length of 2× 3.54 Å

−1 . (C) The ω 
dependence of Sxx(Q1,ω) . The dashed line in (B) is the guide for q = Q1.
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along the green line in the inset of Fig. 5A. We see remarkable differences in the intensity for q and −q . In Fig. 5B, 
we plot |Sxx(q,ω)− Sxx(−q,ω)| for q along the pink lines in the inset of Fig. 5A. The finite values indicate that 
Sxx(q,ω)  = Sxx(−q,ω) . These results indicate that non-reciprocal magnetic excitation appears in the hedgehog 
state in the QC. This is, to our best knowledge, the first discovery of the non-reciprocal magnetic excitation in 
the topological magnetic long-range order in QC.

We confirmed that non-reciprocal magnetic excitation does not appear in the case of the collinear magnetic 
order in the QC (Supplementary information, Fig. S4). This implies that the noncollinear and noncoplanar 

Figure 4.  Dynamical structure factor Sxx(q,ω) in the qz-qx plane with qy = 3.436 Å
−1 for (A) ω/(J1S) = 22.90 

and (B) 23.07. The dashed lines indicate the d∗e2  line and d∗e3  line. (C) Sxx(q,ω) for q along the d∗e2  line through 
q0 = (2.169, 3.436, 1.442) Å

−1 . Inset illustrates the d∗e2  line through q0 inside the cube with a side length of 
8.31× 2 Å

−1 . (D) Top view of (C).

Figure 5.  (A) Dynamical structure factor Sxx(q,ω) [Sxx(−q,ω)] at ω/(J1S) = 23.18 for q along the pink (green) 
lines in the inset. Inset illustrates the cube with a side length of 2.56× 2 Å

−1 . (B) |Sxx(q,ω)− Sxx(−q,ω)| for q 
along the pink lines in the inset and for ωN ≤ ω ≤ ω1.
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magnetic structure on the IC of the hedgehog (Fig. 1A) is the origin of the nonreciprocal excitation. Recently, 
non-reciprocal magnetic excitation from the uniform ferrimagnetic order (characterized by the zero topological 
charge nTC = 0 ) in the icosahedral QC has been shown to  appear31. These results suggest that non-reciprocal 
excitation is common character of the noncollinear and noncoplanar alignment of the magnetic moments on the 
IC. As shown in Fig. 5B, emergence of many spiky peaks with fine structure as continuum are the consequence 
of the QC structure, which is in sharp contrast to the magnon branch in periodic crystals as the collective mode. 
This gives rise to the emergence of nonreciprocity as continuum in the vast extent of the q-ω plane (see Fig. 5B), 
whose feature is unique to the QC.

Summary and discussion. We have revealed the dynamical as well as static property of the hedgehog state 
in the QC. The FM hedgehog state is shown to be characterized by the triple-Q state. The magnetic dynamical 
structure factor shows highly structured energy and momentum dependences unique to the QC. We have dis-
covered the magnetic excitation mode along the pseudo 5-fold axis direction. A series of the packet structure 
in the dynamical structure factor is found to exist, which is shown to be the reflection of the periodic streak 
structure in the reciprocal lattice q-energy ω plane. Non-collinear and non-coplanar magnetic alignment of the 
hedgehog state gives rise to non-reciprocal magnetic excitations which appear in the vast extent of the energy 
and momentum plane.

In the uniform long-range order of the ferrimagnetic state, the high-intensity peaks appear continuously 
from the ordered vector q = 0 and the lowest CEF excitation energy ω = �|J1|S , which are identified as the 
pseudo-magnon  mode31. On the contrary, in the dynamical structure factor for the uniform hedgehog order, the 
high-intensity peaks do not appear at the ordered vector Qi for i = 1 , 2, and 3 beyond the CEF excitation energy. 
This implies that the peak in the static structure factor at the triple Q vector q = Qi is governed by the elastic 
(ω = 0) contribution of the dynamical structure factor for the uniform hedgehog order.

The streak structure with periodicity characterized by the wavelength corresponding to the diameter of the IC 
in the q-ω plane is considered to be the unique character of the excitation from the uniform hedgehog order. To 
establish this point, the systematic analysis of the dynamical structure factor in the magnetically ordered states 
in the icosahedral QC is necessary, which is left for future studies.

The non-reciprocal magnetic excitation has also been found to emerge in the uniform ferrimagnetic  order31. 
Hence, as noted above, non-reciprocity is considered to be general feature of the excitation from the non-collinear 
and non-coplanar magnetic texture on the IC.

Our results are useful not only for resolving the magnetic structure of the long-range order discovered recently 
in Tb-based icosahedral QC, but also for future neutron measurements of the magnetic dynamics in the QC. 
So far, the dynamical structure factor in the magnetically ordered phase in the QC has not been reported. It is 
expected that present study stimulates future experiments to detect the dynamical property in the QC and also 
in the approximant crystal.

Methods
Theory of Magnetic Excitation in QC. Magnetic excitation from the uniform hedgehog long-range 
order in the QC can be calculated by transforming spin operators in the model (1) into boson operators. Since 
the hedgehog is a noncoplanar magnetic state, it is convenient to introduce the local coordinate at each Tb  site32. 
The unit vectors in the global xyz coordinate r̂1 = x̂ , r̂2 = ŷ , and r̂3 = ẑ are expressed by the local orthogonal 
coordinate with the unit vector êi3 , whose direction is indicated by the polar angles (θi ,φi) , as

(see Fig. 1C). Here, Ri is the rotation matrix defined as

Then, the first term in Eq. (1) is expressed as

By using Si · êi1 = (S+i + S−i )/2 and Si · êi2 = (S+i − S−i )/(2i) where S+i  and S−i  are raising and lowering “spin” 
operators, respectively, we apply the Holstein-Primakoff  transformation28 to H. Namely, “spin” operators are 
expressed by the boson operators as S+i =

√
2S − niai , S−i = a†i

√
2S − ni  and Si · êi3 = S − ni with ni ≡ a†i ai . 

We retain the quadratic terms with respect to a†i  and ai , which are considered to be at least valid for the ground 
state. In the noncollinear magnetic state as the hedgehog, anomalous terms such as a†i a

†
j  and aiaj appear. The 

resultant H is expressed as

where χ† = (a†1, a
†
2, · · · , a†N ) and � is the 2N × 2N matrix. By performing the para unitary transformation

(4)r̂α = Ri
αβ ê

i
β

(5)Ri =
[

cos θi cosφi − sin φi sin θi cosφi
cos θi sinφi cosφi sin θi sin φi
− sin θi 0 cos θi

]

.

(6)
∑

�i,j�
Ji,j(Si · eiα)(Sj · e

j
β)

∑

γ

Ri
α,γR

j
γ ,β .

(7)H = [χ†χ̃ ]�
[

χ

χ̃†

]

,
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where ζ = (α1,α2, · · · ,αN ) and J  is the para unitary  matrix33, we obtain

Here, ω̄ is the N × N diagonal matrix ω̄ = diag(ω1,ω2, · · · ,ωN ) with ωi > 0 , ω̃ = diag(ωN ,ωN−1, · · · ,ω1) , and 
0̄ is the N × N matrix with all elements being zero. Here, the index i represents the eigenvalue of the excitation 
energy from the magnetically ordered state.

Data availability
All the data supporting the findings are available from the corresponding author upon reasonable request.
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