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Transformer based 
on channel‑spatial attention 
for accurate classification of scenes 
in remote sensing image
Jingxia Guo*, Nan Jia & Jinniu Bai*

Recently, the scenes in large high‑resolution remote sensing (HRRS) datasets have been classified 
using convolutional neural network (CNN)‑based methods. Such methods are well‑suited for spatial 
feature extraction and can classify images with relatively high accuracy. However, CNNs do not 
adequately learn the long‑distance dependencies between images and features in image processing, 
despite this being necessary for HRRS image processing as the semantic content of the scenes in these 
images is closely related to their spatial relationship. CNNs also have limitations in solving problems 
related to large intra‑class differences and high inter‑class similarity. To overcome these challenges, 
in this study we combine the channel‑spatial attention (CSA) mechanism with the Vision Transformer 
method to propose an effective HRRS image scene classification framework using Channel‑Spatial 
Attention Transformers (CSAT). The proposed model extracts the channel and spatial features of HRRS 
images using CSA and the Multi‑head Self‑Attention (MSA) mechanism in the transformer module. 
First, the HRRS image is mapped into a series of multiple planar 2D patch vectors after passing to 
the CSA. Second, the ordered vector is obtained via the linear transformation of each vector, and 
the position and learnable embedding vectors are added to the sequence vector to capture the 
inter‑feature dependencies at a distance from the generated image. Next, we use MSA to extract 
image features and the residual network structure to complete the encoder construction to solve 
the gradient disappearance problem and avoid overfitting. Finally, a multi‑layer perceptron is used 
to classify the scenes in the HRRS images. The CSAT network is evaluated using three public remote 
sensing scene image datasets: UC‑Merced, AID, and NWPU‑RESISC45. The experimental results show 
that the proposed CSAT network outperforms a selection of state‑of‑the‑art methods in terms of 
scene classification.

The rapid development of remote sensing technology and the continuous increase in the number of satellites has 
provided a wealth of data sources for ground  surveys1–3, as well as a solid foundation for the interpretation of 
complex and high-resolution remote sensing images. Remote sensing image classification has been extensively 
researched, laying the foundation for the effective analysis of practical applications such as urban  planning4, 
geospatial object  detection5,6, vegetation  mapping7, and environmental  monitoring8. Remote sensing image 
classification is generally divided into three categories: pixel-, object-, and scene-level9. With the continuous 
improvement in remote sensing image resolution, and an increasing number of images containing different 
target categories, pixel- and object- classification methods can no longer meet the requirements for the accurate 
classification of complex remote sensing images. Accordingly, researchers have recently adopted a method to 
automatically classify images with a specific semantic label based on the content of the entire image (i.e., remote 
sensing image scene classification) to extract high-level semantic information from remote sensing  images10 and 
provide auxiliary references to understand what appears in the images. However, scene classification capable of 
accounting for image semantics is still a challenging task due to the complex spatial distribution of objects in 
scenes and the diverse types of land  cover11.

The primary goal of high-resolution remote sensing (HRRS) image scene classification is to correctly classify 
a given remote sensing image according to its content (e.g., commercial, industrial, or residential areas)12. Clas-
sification performance largely depends on features that accurately represent the scene in the image, and thus the 
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extraction of features that describe an image more accurately has become a primary research focus. Recently, 
convolutional neural networks (CNNs) have been widely utilized in scene classification because they are capable 
of extracting high-level semantic feature representations for scene  classification13–15. However, the spatial rela-
tionships between features in HRRS images are complex, and there is a large amount of redundant information. 
Consequently, it is difficult to directly extract the features that reflect the key information of the image content. 
The human visual attention mechanism involves obtaining detailed information of the target region by scanning 
the global area. Similarly, the attention mechanism in CNNs simulates the way humans understand and perceive 
images by assigning different weights to global features, highlighting key local features, and suppressing invalid 
features. For example, Park et al.16 proposed a simple and effective bottleneck attention module (BAM) that can be 
integrated into any CNNs architecture. It focuses on high-level semantic features by allocating feature weights to 
input images through an effective combination of spatial- and channel-independent paths. Woo et al.17 proposed 
a convolutional block attention module (CBAM), which is a lightweight general attention module. CBAM infers 
the attention map along the spatial and channel dimensions and then assigns weights to features, which can be 
seamlessly integrated into CNN architectures. In addition, Yu et al.18 adopted an improved channel attention 
mechanism to enhance features at different levels. Furthermore, Tong et al.19 introduced an attentional mecha-
nism in the channel dimension that adaptively enhanced the weights of important feature channels and inhibited 
secondary feature channels. Remote sensing images not only contain rich channel information but also spatial 
information. To fully extract their features, Ma et al.20 proposed an adaptive multi-scale spatial attention module 
(AMSA) and an adaptive multi-scale channel attention module (AMCA) based on image characteristics by adopt-
ing adaptive expansion rate selection strategy (ADR-SS), so as to increase the diversity of extracted features. Zhu 
et al.21 designed an adaptive spatial attention module (ASA-Module) and an adaptive channel attention module 
(ACA-Module) to strengthen spatial features from both larger- with smaller-sized targets and spectral features 
among channels. Zhu et al.22 designed a spatial attention module (SA-module) and a channel attention module 
(CA-module), Ma et al.23 designed a local spatial attention module (LSA-module) and a global channel atten-
tion module (GCA-module), which not only highlight the advantages of spatial resolution and channel features 
but also reduced the difference between features through the interaction between the two modules. Li et al.24 
adopted an enhanced attention mechanism to prompt the beneficial information in both spatial and channel 
dimensions to push the model to capture discriminative regions as much as possible. Guo et al.25 proposed a 
global–local attention network (GLANet), which assigns different weights to different channels through global 
branch learning, and local branch learning to improve relevant spatial attention regions and weaken background 
regions. These previous studies demonstrate that channel and spatial attention mechanisms play a certain role in 
enhancing the main features, and decisions are made on this basis according to the needs of the model. Based on 
this property, our method first adopts the channel-spatial attention mechanism to focus on the key information 
in the image and form an attention map, which is used as the input to the encoder.

Although CNNs excel in spatial feature extraction and can achieve relatively high classification accuracy, 
there are some limitations. First, the receptive field of CNNs is limited by the size of the convolution kernel, 
which introduces difficulties in capturing global information. Second, CNNs are not suitable for mining long-
range dependencies inside image scenes. The potential spatial topological relationship can be readily ignored, 
and CNNs still have certain restrictions in processing large and small intraclass differences. Third, increasing 
the number CNN layers can extract more features and increasing the size of the convolution kernel can obtain 
a larger receptive field; however, this will greatly increase the complexity of the model and lead to the gradient 
disappearance problem.

Recently,  transformers26 have been applied in various vision tasks due to their excellent ability to capture 
long-range dependencies and sequence-based image modeling. For example, the Vision Transformer (ViT) 
demonstrates that the standard transformer architecture can achieve state-of-the-art performance in image 
 classification27. On this basis, Bazi et al.28 applied the standard transformer structure to HRRS image classification 
and achieved better classification accuracy than through other advanced classification models. In addition, Deng 
et al.29 proposed CTNet, which mines the semantic features in HRRS scene images through ViT and extracts 
local structural features in HRRS scene images via a CNN. Finally, these two features are combined to classify 
HRRS scenes. However, when a transformer processes an image, the image must be divided into patches, which 
limits the ability of the model to learn the overall image characteristics. Therefore, Li et al.30 proposed the remote 
sensing transformer (TRS), which uses self-attention integrated into a residual neural network (ResNet), Multi-
Head Self-Attention (MHSA) layers instead of spatial convolutions, and concatenates multiple pure transformer 
module encoders to improve the attention-dependent representation learning performance. Ma et al.31 proposed 
a homo- heterogenous transformer learning (HHTL) framework for HRRS scene classification according to the 
characteristics of the transformer to divide the image into multiple patches.

To address the aforementioned problems, we designed a new HRRS image scene classification framework 
based on a channel-spatial attention transformer (CSAT). First, the HRRS scene image is divided into patches, 
and local fine-grained features are extracted via the BAM attention mechanism to enhance the spatial and chan-
nel features, thereby reducing redundant information in the image and improving the ability to obtain local 
information. Then, the image is transformed into a sequence via linear transformation, during which embedding 
positions are added to the patches to preserve positional information. Finally, the transformer module was used 
as an encoder to extract the image features, which can effectively learn global and local context information. 
The experimental results for three public datasets used for HRRS image scene classification demonstrate the 
effectiveness of the proposed algorithm.

In this paper, we choose transformer instead of CNNs for feature extraction for the following reasons. First, 
transformer is a new encoder-decoder architecture that relies on an attention mechanism to characterize the 
global dependencies between its input and  output32, overcoming the convolutional inductive bias of CNNs on 
the overall input data insufficient grasp. Furthermore, CNNs cannot effectively extract long-distance dependent 
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features between global  data33. Second, the feature maps generated by the self-attention mechanism in trans-
former do not have the same spatial constraints as convolution calculations, can handle a larger receptive field 
than conventional  convolutions34,35, and can effectively obtain global information. It is beneficial to explore the 
global contextual knowledge hidden in HRRS scenarios. To obtain global information, CNN needs to expand the 
receptive field, use larger convolution kernels, and stack deeper convolution layers. However, as the number of 
layers increases, the amount of information will be exhausted, and dimensional disasters may occur. Third, the 
self-attention mechanism layer in transformer will have a large amount of calculation for high-resolution input 
data, while being more suitable for processing data scenarios with smaller spatial dimensions. Therefore, it is 
possible to process only small feature maps instead of the entire feature map space, which will inevitably result 
in a relatively small receptive field, which, however, is larger than the receptive field of the convolution kernel of 
the convolution  operation36. This processing method is more suitable for mining more useful information from 
complex HRRS scene images.

The main contributions of this study can be summarized as follows.

• A modified Transformer network model titled CSAT is designed to complete the HRRS scene classification 
task. This method uses the channel-spatial attention mechanism and self-attention mechanisms to extract 
feature information and avoid the loss of feature information.

• The channel-spatial attention mechanism helps improve the network’s ability to obtain local information. It 
focuses on fine-grained features in patches according to two independent paths (channel and space), which 
mitigates the effects of small differences between classes and large differences within classes.

• HRRS produces various scenario categories and rich scenario information. The core process of the network 
is a multi-head self-attention encoder block, which successfully handles the long-range dependence of the 
spatial information in HRRS images.

• The CSAT network introduces the transformer structure as an encoder to avoid the dimension disaster caused 
by too many layers and enhance the global modeling ability of the network.

• Our proposed CSAT network is interpretable and offers an enhanced capability in extracting HRRS image 
features and generalizations.

• We propose a CSAT learning scheme that combines the contributions mentioned above. Experiments were 
conducted on three different scene classification datasets, and the results demonstrate that the proposed 
method outperforms state-of-the-art methods in terms of scene classification.

Methods
The overall architecture of the CSAT is shown in Fig. 1, where the image input is sliced into evenly sized patches 
and sequential patches are fed into the CSA module to infer the attention patch (a detailed explanation is pre-
sented in the following section). The attention patches are then transformed into a vector of patch embeddings 
via flattening and linear projection. The embedding position is added to this projection and the category identity 
is sent as input to the transformer encoder along with the patch embedding vector. After a multi-layer perceptron 
(MLP) classifier is used for classification, the probability values  P1,  P2, …,  Pn are obtained for each category.

Figure 1.  Structure of the channel-spatial attention transformer (CSAT) based on the transformer and channel-
spatial attention module.
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Figure 2.  Channel-spatial attention mechanism (CSAM).

Figure 3.  Channel attention module (CAM).

Long‑range‑dependent feature extraction of high‑resolution remote sensing images. Chan‑
nel‑spatial attention mechanism for HRRS feature extraction. Attention mechanisms play an important role in 
the human visual system by enabling the neural network to selectively focus on salient parts, removing redun-
dant information, and efficiently extracting important features from images such as those obtained from HRRS.

Attention mechanisms are widely used in computer vision tasks. For HRRS images with complex spatial infor-
mation, we introduced a spatial-channel attention mechanism called the bottleneck attention module (BAM)16 
(Fig. 2). This mechanism consists of two independent attention modules, the channel attention module (CAM) 
and the spatial attention module (SAM). To emphasize or suppress the information in a remote sensing image, 
CAM uses the inter-channel relationship and SAM uses the features of different spatial locations, respectively. 
After acquiring the attention maps separately, the "residual structure" proposed by  ResNet37 was used to gener-
ate the refined feature map F′ . The process by which the CAM and SAM image feature extraction is performed 
is described in detail below.

1. The CAM process (shown in Fig. 3) is described as follows.

  Because each channel contains a specific feature response, CAM exploits the relationships between chan-
nels to aggregate the feature maps in each channel and generates the attention map Mc(F) . First, the feature 
map F ∈ R

C×H×W is passed through the global AvgPool to obtain Fcavg for 1 × 1 × C channels, and then it 
enters the MLP with a hidden layer. To reduce the number of parameters, the activation size of the hidden 
layer was set as R C/r×1×1, where r is the compression rate. Second, to adjust the scale of the CAM output, Fcavg 
is obtained as Mc(F) ∈ R

C×1×1 after entering the batch normalization (BN) layer of the MLP. The CAM was 
computed as:

where W0 ∈ RC/r×C , b0 ∈ RC/r ,W1 ∈ RC×C/r , andb1 ∈ RC.
2. The SAM process (shown in Fig. 4) is described as follows.

The SAM generates spatial attention maps Ms(F) , which are used to emphasize or suppress features in dif-
ferent spatial locations. First, the input feature map F ∈ R

C×H×W is subject to a 1 × 1 convolution operation, 
and then the F dimension is reduced to RC/r×H×W to integrate and compress F across the channel dimensions, 
where r = 16 is consistent with the setting found in the  literature16. Second, we adopted two 3 × 3 convolutions to 

(1)
Mc(F) = BN

(

MLP
(

AvgPool(F)
))

,

= BN
(

W1

(

W0AvgPool(F)+ b0
)

+ b1
)
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extract useful information from the context, and then adjusted the spatial attention map dimension to R1×H×W 
through a 1 × 1 convolution. Finally, to adjust the scale of the SAM output, Ms(F) ∈ R

1×H×W was obtained after 
the BN layer. The SAM is described as:

where f i×i represents an i × i convolution operation with i =1, 3.

Transformer encoder for HRRS classification. The  transformer18 mainly relies on the self-attention 
mechanism to construct a global dependency model between the input and output. Additionally, a standard 
transformer module usually includes multi-head self-attention (MSA), MLP, and layer norm (LN)38. Our trans-
former encoder was composed of three standard transformer modules, with the MSA module as the core part 
of the transformer module. In contrast to CNNs, which use convolutional and pooling layers to obtain feature 
information, the data used to extract features predominantly contains local information, and the ability to cap-
ture global information is poor. These conditions are not conducive to obtaining global spatial information in 
HRRS images or semantic information between images. The transformer extracts global features based on the 
attention mechanism and learns long-range dependencies, which helps encode patches according to global con-
textual information and captures the information between ordered patches, thus improving the performance of 
global feature extraction from HRRS images.

Specifically, the patches are first flattened, then positional embedding is added to the patch embedding vector 
 Zn to maintain the spatial location information between the input patches. Then, the learnable embedding vector 
for category classification is input to the transformer encoder along with  Zn. At this point, a set of sequential 
patches are input to the transformer encoder, as shown in Fig. 1. Two important components of the transformer 
module are MSA and the MLP, which are computed via Eqs. (3) and (4), respectively.

The latter consists of two fully connected (FC) layers and an activation function, the Gaussian Error Linear 
Unit (GeLU). Residual connections are used in both components in the transformer module, and each compo-
nent is preceded by an LN.

Among the above components, the MSA block is the central part of the transformer module, which can 
learn rich semantic features from patches of sequence of size n, capture internal data correlations, and establish 
dependencies among different features.

Specifically, each element in the input sequence Z is multiplied by three learnable weight matrices  WQKV, 
which are composed of three values: Q, K and V (“query”, “key”, and “value” of dimensions  Dq,  Dk and  Dv, 
respectively). These values can be calculated as:

To determine the correlation between elements in the sequence, the dot product between the Q-vector of that 
element and the K-vectors of the other elements was calculated, and the result determined the relative importance 
of the patches in the sequence. The softmax function was used to calculate the weights of V. Subsequently, the 
value of each patch embedding vector was multiplied by the output of the softmax function to obtain the patches 
with higher attention, which were calculated according to

MSA uses the previous operation multiple times to perform multiple dot-product attention calculations for 
Q, K, and V (i.e., h times), and then connects the results of these attentions via Eq. (7), which is the MSA process.
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Figure 4.  Spatial attention module (SAM).
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Each result of these parallel attention calculations is called a head, which are defined as:

where WQ
i ∈ R

d×Dq ,WK
i ∈ R

d×Dk ,WV
i ∈ R

d×Dv , andWO ∈ R
h×Dv×d.

The weights extracted via MSA are sent to the MLP layer, where an LN is performed before entering the MLP 
 layer38. The LN serves not only to reduce the training time, but also to mitigate the effects of gradient disappear-
ance and explosion. The MLP layer is composed of two fully connected (FC) layers, and the nonlinearity between 
the layers is called the activation of the  GELU39, which is calculated as:

where �(x) is the standard Gaussian cumulative distribution function and erf (x) =
∫ x
0e

−t2dt.

Details of the patch size. An initial HRRS image of size (w,h,o) was mapped onto a set of images of 
size (l,l,o), which were first divided into patches of size (p,p,o) with sample data of size (m,p,p,o), where p is 
the height and width of the sample and m = (l × l)/(p× p) is the number of samples. Second, the patches are 
passed through the CSAM module to redistribute the weights of the channel and spatial information. Because 
the CSAM does not change the shape of the input feature map, the shape of the output sample data remained 
(m,p,p,o). Finally, the output of m samples were flattened, and the 2D patch of size (p,p,o) with a sequence was 
entered into the transformer encoder after adding position encoding and category identification. The size of p 
was the same as the size of the patch designed by  Dosovitskiy26. The purpose of this design strategy was to verify 
that the CSAM module can focus on the local features of the ordered patches before entering the transformer 
encoder, thereby improving the performance of the model, as described later.

Experimental results and analysis
Dataset description. In our experiments, three public remote-sensing datasets were used: the University 
of California Merced Land Use Dataset (hereafter “UCM”), the Aerial Image Dataset (hereafter “AID”), and the 
Northwestern Polytechnical University NWPU-RESISC45 Dataset (hereafter “NWPU”). The characteristics of 
each dataset are listed in Table 1. AID and NWPU are large-scale datasets.

Training details. We conducted all the experiments on a Dell Precision station with the following technical 
specification: an Intel(R) Xeon(R) Silver 4216@2.10 GHz central processing unit (CPU) with 64 GB of RAM and 
an NVIDIA RTX A4000 graphical processing unit (GPU) with a 16-GB memory. The code used for the experi-
ments was implemented using PyTorch, an open-source deep neural network library written in Python. We used 
the Adam e optimizer with an initial learning rate of 0.001 and a weight decay of 0.00001. All experiments were 
trained using 300 epochs. We set the size of the UCM, NWPU, and AID datasets to 224 × 224 and the batch size 
to 64. We used 12 transformer blocks as encoders, the number of MSA headers in the transformer block was 12, 
the patch size was 16, and the ImageNet1K pre-trained parameters were used in the encoders.

Comparison with the state‑of‑the‑art methods. The main purpose of this study is to demonstrate 
that channel and spatial attention mechanisms optimize the transformer, which can improve the network per-
formance. We used the overall accuracy as the evaluation criterion for this model, and all the experiments results 
used in the comparison were obtained from the literature.

UCM dataset. The experimental results are listed in Table 2. The "–" in Table 2 indicates that the model did not 
complete the experiment at 50% or 80% of the training rate (the other two datasets are presented in the same 
form). When the training rate was 50%,  APDCNet47 used a trainable pooling operation method to improve the 
training effect, achieving an accuracy of 95.01 ± 0.43%. Our CSAT achieved an accuracy of 95.72 ± 0.23%, which 
was 0.61% higher than that of APDCNet. When the training rate was 80%, our method achieved an accuracy 
of 97.86 ± 0.16%, which was 0.81% higher than that of RADC-Net46 (which uses residual dense connectivity), 
0.76% higher than that of the fine-tuned and pre-trained  GoogLeNet41 model. ViT-Base26,30 and ViT-Large26,30 
were classified with patch sizes of 16 and 32, respectively, and their accuracies were 95.81% and 96.06%, respec-
tively. Compared to these two methods, our CSAT method achieved an 2.05% and 1.8% improvement, respec-
tively, in terms of accuracy. This not only proves the effectiveness of our method, but also demonstrates that 

(7)MultiHead(Q,K ,V) = concat(Head1, · · · , Headh)W
O .

(8)Headi = Attention
(

QW
Q
i ,KW

K
i ,VW

V
i

)

,

(9)GELU = X�(x) = X ·
1

2

[

1+ erf

(

X
√
2

)]

,

Table 1.  Characteristics of the dataset.

Dataset Number of classes Number of images/class Image size Total Publishing organization Ref

UCM 21 100 256 × 256 2100 United States Geological Survey 40

AID 30 220–420 600 × 600 10,000 Wuhan University 41

NWPU 45 700 256 × 256 31,500 Northwestern Polytechnical University 42
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the optimized transformer outperforms certain state-of-the-art (SOTA) methods. The confusion matrix for the 
UCM test set is shown in Fig. 5.

AID dataset. AID datasets are better than UCM datasets for testing the model performance, as there are more 
types and numbers of AID datasets than there are UCM datasets. The experimental results are shown in Table 3. 
At a 20% AID training rate, the accuracy of CSAT was 92.55 ± 0.28%, which was 0.67% higher than that of 
ViT-Large and 1.39% higher than that of ViT-Base. At a 50% AID training rate, the accuracy of CSAT was 
95.44 ± 0.17, which was 0.97% higher than that of D-CNN with AlexNet, 0.13% higher than that of ViT-Large, 
and 1% higher than that of ViT-Base. The experimental results show that the CSAT performs better on the AID 
dataset. The confusion matrix for the AID test set is shown in Fig. 6.

NWPU dataset. The NWPU dataset has more remote sensing images but is more difficult to train than AID 
and UCM datasets. The experimental results are listed in Table 4. At an NWPU training rate of 10%, the accuracy 
of CSAT was 89.70 ± 0.18%, which was 2.11% and 0.54% higher than that of ViT-Base and ViT-Large, respec-
tively. At a training rate of 20%, the accuracy of CSAT was 93.06 ± 0.16%, which was 2.19% and 1.12% higher 
than that of ViT-Base and ViT-Large, respectively. The experimental results show that the proposed method 
performs well on the NWPU dataset. The confusion matrix for the NWPU in the test set is shown in Fig. 7.

The proposed the CSAT network combines the CSA mechanism to optimize the transformer. As shown in 
Tables 2, 3 and 4, this method was validated on the UCM, AID, and NWPU datasets and outperformed some 
existing SOTA models. In addition, the advantages of CSAT compared with some other methods were not 
significant. For example,  TRS29 cleverly used ResNet to develop an upgraded version of MHSA, and integrated 
transformers into CNNs. Based on the basic CNN,  CTNet30 delicately develops an enhanced version of the CNN-
based network.  HHTL31 carefully designed the patch before it was input to the transformers and subtly fused 
them after feature extraction. Some methods improved the classification performance by adding operations, 
e.g., multi-scale, spatial attention, and feature aggregation. However, our CSAT network did not include these 
advanced skills. In the future, we will attempt to introduce some targeted operations into our CSAT network to 
improve its performance in terms of HRRS scene classification.

Training and testing time and parameters. The training and testing time can directly reflect the efficiency of 
the model and the time cost of running the model. We use the tqdm package to compare the time required for 
training and testing the model. As shown in Table 5, the efficiency and time costs of all methods are acceptable. 
CSAT takes longer to train and test an epoch than ResNet-101 or ResNet-152; however, it outperforms both of 
them in terms of accuracy. Compared with the SE-Net model, its training time and parameters are higher than 
those of CSAT. However, the parameters and Flops of the CSAT model are not optimal among models. The rea-
sons for this analysis are as follows. The transformer embedded in the CSAT is the MSA block. It mainly obtains 
long-term context information from the HRRS scene by measuring the relationship between the HRRS scene 
patches, which further increases the amount of computation. However, we found that the CSAT model has a 
slight advantage over the ViT-Base model in terms of time cost, parameter quantity, and Flops, which means that 
embedding the BAM module into the CSAT model is effective.

Ablation study for the proposed CSAT. In the ablation study, we explored how the components of 
the CSAT model affected its performance. To obtain more convincing results, we selected three datasets (i.e., 
AID, NWPU, and UCM) with different resolutions for the ablation experiments. The training rates of the AID, 
NWPU, and UCM datasets were chosen to be 50%, 20%, and 80%, respectively.

Table 2.  Classification results of the UCM dataset.

Method

Training ratio

50% 80%

GoogLeNet41 92.70 ± 0.60 94.31 ± 0.89

AlexNet41 93.98 ± 0.67 95.02 ± 0.81

VGGNet-1641 94.14 ± 0.69 95.21 ± 1.20

TEX-Net with  VGG43 94.22 ± 0.50 95.31 ± 0.69

SPP with  AlexNet44 94.77 ± 0.46 96.67 ± 0.94

D-CNN with VGGNet-1645 – 96.67 ± 0.94

D-CNN with  AlexNet45 – 97.42 ± 1.79

RADC-Net46 94.79 ± 0.42 97.05 ± 0.48

APDCNet47 95.01 ± 0.43 97.05 ± 0.43

Fine-tuned  GoogLeNet48 86.02 ± 0.81 97.10

ViT-Base26,30 93.57 95.81

ViT-Large26,30 94.00 96.06

T2T-ViT-1231,49 95.68 ± 0.61 97.81 ± 0.49

CSAT (ours) 95.72 ± 0.23 97.86 ± 0.16
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Influence of other attention blocks. We changed the components in the CSAM, which contained the spatial and 
channel attention modules, as described previously in this paper. We set up the ablation experimental deploy-
ment with the channel attention module, and spatial attention module, and replaced CSAM with the channel 
bottleneck attention module (CBAM). The experimental results are shown in Table 6, in which the results with 
three sets of experiments are compared. We found that with the channel attention module alone, the classifi-
cation accuracy of the AID, NWPU, and UCM datasets decreased by 5.08%, 7.26%, and 2.12%, respectively. 
With the spatial attention module alone, the classification accuracy of the AID, NWPU, and UCM datasets 
decreased by 6.01%, 8.13%, and 3.09%, respectively. Finally, in the case where the CSAM components were 
replaced with CBAM, the classification accuracy of the AID, NWPU, and UCM datasets decreased by 3.13%, 
4.12%, and 1.07%, respectively. The experimental results show that the CSAM component effectively improves 
the ViT network performance in the overall model structure.

Influence of patch size. In this experiment, we changed the size of the 2D flattening patch sequence and set the 
patch size to 16 and 32. According to the  literature20, the patch size should be 14, 16, and 32, but due to hardware 
limitation, the experimental setting was limited to the smallest patch size (i.e., 16). The corresponding results, 
which indicate that the number of linear embedding sequences input to the encoder module is inversely pro-
portional to patch  size20, are shown in Table 7. The smaller the patch size, the more pieces are cut; the larger the 
patch size, the fewer pieces are cut. When the model uses a smaller patch size, the computation is more expensive 
because the sequence length increases. In this experiment, when the patch size was 32, the accuracy of the AID, 
NWPU, and UCM datasets decreased by 2.26%, 1.96%, and 2.78%, respectively. This verifies that a large patch 
size reduces the linear embedding sequence and affects the accuracy.

Figure 5.  Confusion matrix for the UCM dataset for a training ratio of (a) 50% and (b) 80% linear assessments.
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Visual attention map. To gain insight into the impact of the CSAM components on the proposed model 
performance, we provide some visualization examples, which are shown in Fig. 8. Figure 8a,b show the original 
scene image, the image without CSAM components, and the image with CSAM components, respectively. The 
area highlighted in the feature map indicates a greater significance assigned to the classification of that area. Five 
scenes were selected, namely, harbor, golf course, tennis court, storage tank, and airplane. These results suggest 
that the network structure with CSAM components extracts the discriminative information of these scenes more 
accurately. The main target in each scene was more accurately captured, which greatly promoted scene classifica-
tion and reflected the positive effect of CSAM components on the overall network structure.

Conclusion
In this paper, a CSAT network combined with a channel-spatial attention (CSA) mechanism to optimize the 
ViT network is proposed for HRRS image scene classification. The proposed network first processes the HRRS 
image into a linear embedding sequence, uses the CSA module to extract fine-grained image features, and then 
enters the transformer encoder. There, the core MSA module resolves the long-range dependencies between 
HRRS images while discarding convolutional operations to avoid information loss caused by the irregular pro-
cessing of typical convolutional kernels during classification. Overall, the proposed CSAT network combines 
the CSAM module, MSA, linear mapping, regularization, activation function, and other operations and utilizes 
the residual structure to form the encoder blocks. To improve the performance of the CSAT network, multiple 
encoder blocks were stacked to form the main model structure. We conducted two sets of experiments using 
three public datasets to validate the effectiveness of the proposed model. The first set of experiments defined 
the training ratio of the dataset, and the proposed model was then compared with a selection of existing SOTA 
classification methods, including ViT-Base, ViT-Large, RADC-NET, and GoogLeNet. The experimental results 
show that the proposed CSAT model outperforms the SOTA methods. One of the components of the CSAT 
network is the CSA component. In this component, we selected the BAM module, which divided the attention 
process into two independent parts (i.e., the channel and spatial attention modules), and fused the attention 
weights of these two levels in parallel. The BAM module is a simple and effective attention module, which could 
be integrated into existing network architectures as a plug-and-play module with higher  flexibility16. In the second 
set of experiments, we analyzed the effect of the CSA component on the model performance by removing the 
spatial and channel attention modules for comparison, as well as replacing the CSA component with the CBAM 
component. The experimental results indicated that CSA was more beneficial to the performance of the CSAT 
model. By changing the hyperparameter patch size, the experimental results illustrated that a patch size of 36 
decreases the number of linearly embedded sequences and affects the classification accuracy.

In conclusion, the classification results of the CSAT network for the UCM, AID, and NWPU datasets signifi-
cantly outperformed a selection of existing SOTA methods, thereby illustrating the effectiveness of our proposed 
network. However, our proposed method still has some limitations: the method validation is based on public 
datasets and lacks real data application. In future work, we will explore the application of real remote sensing 
images based on deep learning  methods55. For example, the proposed CSAT network will be applied to crop 
identification, a field where deep learning is widely used. According to a literature  survey56, deep learning is 
rarely used for particular special crops, such as medicinal plants. Due to the lack of data sets for such crops and 
their low coverage, the relative fragmentation of acreage compared to conventional crops such as large maize 

Table 3.  Classification accuracy of AID dataset.

Method

Training ratio

20% 50%

GoogLeNet41 83.44 ± 0.40 86.39 ± 0.55

AlexNet41 86.86 ± 0.47 89.53 ± 0.31

VGGNet-1641 86.59 ± 0.29 89.64 ± 0.36

TEX-Net with  VGG43 87.32 ± 0.37 90.00 ± 0.33

SPP with  AlexNet44 87.44 ± 0.45 91.45 ± 0.38

D-CNN with  AlexNet45 85.62 ± 0.10 94.47 ± 0.12

RADC-Net46 88.12 ± 0.43 92.35 ± 0.19

MobileNet50 88.53 ± 0.17 90.91 ± 0.18

SPP-Net44 87.44 ± 0.45 91.45 ± 0.38

Fussion by  addition51 – 91.87 ± 0.36

ViT-Base26,30 91.16 94.44

ViT-Large26,30 91.88 95.13

T2T-ViT-1231,49 90.09 ± 0.08 93.82 ± 0.55

PiT-S31,52 90.51 ± 0.57 94.17 ± 0.36

PVT-Medium31,53 92.13 ± 0.45 95.28 ± 0.23

CSAT (ours) 92.55 ± 0.28 95.44 ± 0.17
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and wheat, introduces certain difficulties into the research. Therefore, capturing the characteristic information 
of the limited medicinal plant data through the proposed CSAT network will be part of our future work. Such 
research will play an important role in achieving the sustainable use of medicinal plant resources, the coordinated 
development of economic and social resources, and the conservation of the ecological balance.

Figure 6.  Confusion matrix for the AID dataset for a training ratio of (a) 20%, and (b) 50% linear assessments.
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Table 4.  Classification accuracy of the NWPU dataset.

Method

Training ratio

10% 20%

GoogLeNet41 76.19 ± 0.38 78.48 ± 0.26

AlexNet41 76.69 ± 0.21 79.85 ± 0.13

VGGNet-1641 76.47 ± 0.18 79.79 ± 0.15

SPP with  AlexNet44 82.13 ± 0.30 84.64 ± 0.23

D-CNN with  AlexNet45 85.56 ± 0.20 87.24 ± 0.12

RADC-Net46 85.72 ± 0.25 87.63 ± 0.28

MobileNet50 80.32 ± 0.16 83.26 ± 0.17

SPP-Net44 82.13 ± 0.30 84.64 ± 0.23

ViT-Base26,30 87.59 90.87

ViT-Large26,30 89.16 91.94

T2T-ViT-1231,49 84.91 ± 0.30 89.43 ± 0.23

PiT-S31,52 85.85 ± 0.18 89.91 ± 0.19

PVT-Medium31,53 87.40 ± 0.36 91.36 ± 0.09

CSAT (ours) 89.70 ± 0.18 93.06 ± 0.16

Figure 7.  Confusion matrix for the NWPU dataset for a training ratio of (a) 10%, and (b) 20% linear 
assessments.
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Figure 7.  (continued)

Table5.  Training and testing time and parameter comparison between different models.

Method

UCM (50%)

Accuracy Train (s/epoch) Test (s/epoch) Parameters (M) Flops (G)

ResNet-10137 92.47 16.1 6.9 46.0 7.6

ResNet-15210 92.95 23.5 9.3 60.0 11.0

SE-Net54 95.38 49.7 23.6 146.0 42.0

ViT-Base26 93.57 25.9 10.4 86.4 17.5

CSAT (our) 95.72 25.3 10.19 85.99 16.88

Table 6.  Influence of CSAM.

AID (50%) NWPU (20%) UCM (80%)

Channel attention 90.36 85.80 95.74

Spatial attention 89.42 84.93 94.77

CBAM + Transformer 92.31 88.94 96.79

CSAT (ours) 95.44 93.06 97.86
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Data availability
The three public remote sensing scene image datasets used in this study are available in the following sites: (1) 
UC-Merced:http:// weegee. vision. ucmer ced. edu/ datas ets/ landu se. html; (2) AID: http:// capta in- whu. github. io/ 
AID/; (3) NWPU-RESISC45: http:// www. escie nce. cn/ people/ Junwe iHan/ NWPU- RESIS C45. html. The author 
commit to sharing the raw data and materials upon acceptance of the Stage 2 manuscript.

Code availability
The datasets generated and analyzed during the current study are available in the gjx2017/csam repository, https:// 
github. com/ gjx20 17/ csam. The authors commit to sharing all codes upon acceptance of the Stage 2 manuscript.
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