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New approaches to epidemic 
modeling on networks
Arturo Gómez 1 & Gonçalo Oliveira 2,3*

In this article, we develop two independent and new approaches to model epidemic spread in 
a network. Contrary to the most studied models, those developed here allow for contacts with 
different probabilities of transmitting the disease (transmissibilities). We then examine each of these 
models using some mean field type approximations. The first model looks at the late-stage effects 
of an epidemic outbreak and allows for the computation of the probability that a given vertex was 
infected. This computation is based on a mean field approximation and only depends on the number 
of contacts and their transmissibilities. This approach shares many similarities with percolation 
models in networks. The second model we develop is a dynamic model which we analyze using a 
mean field approximation which highly reduces the dimensionality of the system. In particular, 
the original system which individually analyses each vertex of the network is reduced to one with 
as many equations as different transmissibilities. Perhaps the greatest contribution of this article 
is the observation that, in both these models, the existence and size of an epidemic outbreak are 
linked to the properties of a matrix which we call the R-matrix. This is a generalization of the basic 
reproduction number which more precisely characterizes the main routes of infection.

Context.  A very natural way to model the spread of a human-to-human transmissible infectious disease is to 
encode each individual as the vertex of a graph whose edges model the interactions through which the disease 
can propagate. See1–9 and references therein for the vast literature of epidemic modeling, including on networks. 
We also refer the reader to some very interesting related work in10–14.

However, despite the large body of work, there are substantial difficulties in implementing such methods, the 
most obvious of which being the difficulty in inferring a realistic network and in analyzing the very high dimen-
sional resulting system of ordinary differential equations. Furthermore, due to such difficulties most models make 
the additional simplifying assumption that all interactions have the same probability of transmitting the disease.

In fact, extending the theory in order to incorporate interactions with different probability of transmitting 
the disease, dealing with heterogeneity, developing approximation schemes, and understanding network based 
interventions are all listed as some of the main challenges facing network epidemic modeling as stated in7.

These challenges are in fact all linked as, for instance, understanding which interactions are the most respon-
sible for the epidemic spread would allow for better insight on which kind of interventions are the most effective 
in controlling an outbreak. This is therefore a fundamental research direction which ought to be pursued with 
more intensity in the future.

In this work we shall use a method that at the same time deals with the two difficulties mentioned above while 
at the same time incorporating the possibility of different types of interactions. Our results are insightful and 
our techniques tractable enough so that they can be effectively used in the future in a large amount of situations.

Summary of results.  We shall now summarize our approach and main results. Consider a large number of 
individuals N ∈ N interacting with each other through n ∈ N different types of interactions which have prob-
abilities T1, . . . ,Tn ∈ [0, 1] of transmitting the disease (typically 1 ≤ n ≪ N ). To encode the network we use n 
different graphs G1, . . . ,Gn whose edges represent the different interactions and G = G1 ∪ · · · ∪ Gn is the total 
graph. For example, an edge of the graph Gi encodes an interaction which has a probability Ti of transmitting 
the disease.

In reality, we shall require relatively little information on the specific properties of the network encoding the 
interactions. Namely, we will only need to know the degree distributions for the several types of interactions. Said 
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in other words, we require knowledge of the probability that a randomly chosen vertex has a certain number of 
interactions of each type (notice that this is far less than knowing the exact form of the network).

Summary of methodology and main contribution.  The key technical method which we employ to deal with 
this is to use multivariate generating functions in order to simplify computations and have a unified approach 
which only depend on the degree distributions of the graphs encoding the network. Therefore, we start in sec-
tion “Generating functions” by recalling the definition multivariate generating functions for the excess degree 
distributions following a random edge of Gi , for i = 1, . . . , n . These are denoted by G̃i(x1, . . . , xn) and we further 
use them to construct a n× n matrix with entries

which we shall call the RG̃-matrix. This matrix has several interesting properties and, as will become later clear, 
encodes much epidemic information. For example, the sum of all entries in the i-th line R0(i) =

∑

j R
G̃
ij  coincides 

with the basic reproduction number of infections caused by the individuals that originally got infected through 
an interaction of Gi . Also, the total basic reproduction number can be easily recovered from RG̃

ij  as shown in 
Remark 8.

Still in section “Generating functions” we define some modified generating functions, which we call 
H̃i(x1, . . . , xn) , and use to construct a RH̃-matrix similarly.

Section “Prevalence of infection and percolation (the late stages of an outbreak)” constructs the first, and most 
basic, of our approximate models. This looks at the late stages of an epidemic outbreak that propagated in G and 
assumes that the disease already had enough time to sufficiently spread through in the population and came to 
some sort of equilibrium with part of the population being removed after infection and transmission. We employ 
this into a mean field type approximation which, in particular, implies that all individuals with the same number 
of interactions of each kind, have the same probability of already having been infected. Our analysis can also be 
considered as a model of percolation with n different types of nodes. This important problem in itself, seems to 
not have received much attention, see15 for a honorable exception.

Our findings, stated in Propositions 1, 2, and 3, relate the existence of a phase transition in the fraction of 
infected vertices and the eigenvalues of the RG̃-matrix crossing the value 1.

Section “Dynamic modeling in a local mean field approximation” lays out an enormous system of ordinary 
differential equations (ODEs) modeling a SIR-type epidemic dynamically spreading in a network encoded by G . 
This model generalizes the more standard version by allowing for different transmissibilities depending on which 
graph Gi encodes a specific interaction. In total, this results in a system of N ODEs for N unknown functions.

The analysis of this model is mostly postponed until section “Dynamic modeling in a mean field approxi-
mation by degree similarity” , with 4 simply proving that as t → +∞ , the system converges to a disease free 
equilibrium for which some characterizations are given. For example, Theorem 1 shows that a vertex v ∈ G has 
a probability of at most 1− exp(−R(v)) of ever being infected, where R(v) denotes the number of infections v 
is expected to cause if infected. Interestingly, this simple bound highlights that individuals expected to infect 
many others are also more likely to be infected.

Section “Dynamic modeling in a mean field approximation by degree similarity” further analyses the previous 
system of ODEs by making one extra simplifying assumption. Namely, that vertices with the same joint degree 
have similar probabilities of being in each state. We then show that such a simplifying assumption reduces the 
original system of N ODEs to a much smaller one of n ODEs. In this situation, we find that the matrix RH̃ is of 
fundamental importance in understanding the dynamics of the epidemic outbreak. For example, we prove that 
the existence of an eigenvalue greater than one is related with the nearly exponential growth of the outbreak in 
its early stages.

A comment on computational methods.  Before embracing in proving the main results we want to make one 
further comment. There are computational tools which can be used to implement epidemics spreading on net-
works such as the EoN and SEIRSplus Python packages. While these do exemplify the well known epidemic 
behaviors that we describe, our main contribution is to rigorously mathematically demonstrate the mentioned 
results using the very general models we consider (recall that we allow for n ≥ 1 different transmissibilities). This 
goes beyond the current state of the art as these results had only been rigorously established in the case n = 1.

Generating functions
This section reviews some basics of generating functions, including multivariate generating functions. For some 
fascinating early and varied applications of the method of generating functions we recommend16.

Graphs and their generating functions.  Let G be a graph whose vertices v(G) encode individuals and 
whose edges e(G) encode interactions through which the disease can spread. We consider a family of n ∈ N 
subgraphs G1, . . . ,Gn ⊂ G with v(Gi) = v(G) , e(Gi) ⊂ e(G) for i = 1, . . . , n and e(G1) ∪ · · · ∪ e(Gn) = e(G) . For 
each i = 1, . . . , n , let {Pi(k)}k∈N0 be the degree distribution of the graph Gi meaning that a randomly chosen 
vertex has degree k with probability Pi(k) . The corresponding generating functions are given by

R
G̃
ij = Tj

∂G̃i

∂xj

∣

∣

∣

∣

x1=···=xn=1

,

Gi(x) =

+∞
∑

k=0

Pi(k)x
k , for i = 1, . . . , n,
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and we define the joint multivariate generating function by

Remark 1  Notice that G′
i(x) =

∑+∞
k=1 kPi(k)x

k−1 and so the average degree of Gi , denoted E(ki) , may be com-
puted to be

Similarly, using the fact that Gi(1) = 1 , we find the total average degree to be

Remark 2  The idea of having the n subgraphs G1, . . . ,Gn is that of modeling different types of contacts between 
individuals which have unequal probability of transmitting the disease. Thus, we associate a probability of trans-
mission Ti to each i = 1, . . . , n and assume with no loss of generality that T1 > · · · > Tn.

Excess degree distributions.  Consider a randomly chosen individual which may have been infected fol-
lowing a randomly chosen transmission. Considering it as a vertex in Gi , we define its excess degree (or ramifica-
tion) as the number of extra edges emanating from it. The joint probability that such a vertex has ramification 
(k1, . . . , kn) along the graphs G1, . . . ,Gn can be computed directly from the degree distributions Pi(·) of the 
graphs Gi as in17. Indeed, given that fixing the subgraph Gi there are ki + 1 ways of arriving at a vertex with degree 
ki + 1 (ramification ki ) we find that

This will be referred to as the excess degree, or ramification, joint distribution.

Remark 3  Here we are working with the excess degree distribution for a randomly chosen individual rather than 
than the excess degree distribution for a randomly chosen infected individual.

The associated multivariate generating function

which as shown in17 can be written in terms of the Gi(xi) for i = 1, . . . , n as follows

and recall that E(k) =
∑n

l=1 G
′
l(1).

Remark 4  Let m1, . . . ,mn ∈ N0 with m1 + · · · +mn > 0 and consider a randomly chosen individual v and assume 
that the remaining population is all susceptible. Using the distribution for the excess ramification, the probability 
that, if infected, v will infect mi individuals along Gi for each i

Then, the generating function for the random variable M given by the number of infections caused by a randomly 
chosen individual, if infected, is

G(x1, . . . , xn) =

+∞
∑

k1=0

. . .

+∞
∑

kn=0

n
∏

i=1

Pi(ki)x
ki
i =

n
∏

i=1

Gi(xi).

E(ki) = G′
i(1).

E(k) =

n
∑

i=1

G′
i(1) =

d

dx
G(x, . . . , x)

∣

∣

∣

x=1
.

P̃(k1, . . . , kn) =

∑n
l=1(kl + 1)Pl(kl + 1)

∏

i �=l Pi(ki)

E(k)
.

(1)G̃(x1, . . . , xn) :=
∑

k1,...,kn

P̃(k1, . . . , kn)x
k1
1 . . . xknn ,

(2)G̃(x1, . . . , xn) =

∑n
l=1 G

′
l(xl)

∏

i �=l Gi(xi)
∑n

l=1 G
′
l(1)

,

(3)p(m1, . . . ,mn) =
∑

k1≥m1,...,kn≥mn

P̃(k1, . . . , kn)

n
∏

i=1

(

ki

mi

)

Tmi
i (1− Ti)

ki−mi .

(4)

GM(x) =
∑

m1,...,mn

p(m1, . . . ,mn)x
m1+···+mn

=
∑

k1,...,kn

k1,...,kn
∑

m1=0,...,mn=0

P̃(k1, . . . , kn)

n
∏

i=1

(

ki

mi

)

(xTi)
mi (1− Ti)

ki−mi

=
∑

k1,...,kn

P̃(k1, . . . , kn)

n
∏

i=1

(xTi + 1− Ti)
ki

= G̃(1+ T1(x − 1), . . . , 1+ Tn(x − 1)).
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Remark 5  Recall that, for a disease starting to propagate in an otherwise completely susceptible population, the 
basic reproduction numberR0 is given by R0 = G′

M(1) , which from the above formula can be computed to be

Specific excess degree distributions.  We now consider the excess degree distribution by following an 
edge of a specific graph Gi , we define its available ramification as the number of excess edges emanating from it. 
Then, as before, the joint probability that such a vertex has excess degree (k1, . . . , kn) is

Therefore, its multivariate generating function G̃i(x1, . . . , xn) =
∑

k1,...,kn
P̃i(k1, . . . , kn)x

k1
1 . . . xknn  can be com-

puted to be

Remark 6  Notice, in particular that P̃(k1, . . . , kn) =
∑n

i=1
E(ki)
E(k) P̃i(k1, . . . , kn) . Using either this fact or the previ-

ous formulas for the generating functions we find that G̃ can be computed from the G̃i as follows

Definition 1  Let i = 1, . . . , n and G̃i(x1, . . . , xx) be as in (5). Define the RG̃-matrix as the n× n matrix whose 
(i, j) entries are

Furthermore, given s(k1,...kn) ∈ [0, 1] for all (k1, . . . kn) ∈ N
n
0 and i = 1, . . . , n we shall define the generating 

function

It will prove useful to also define a R-matrix associated with these generating functions as follows.

Definition 2  Let s = {s(k1,...kn) ∈ [0, 1] | (k1, . . . kn) ∈ N
n
0} and for i = 1, . . . , n the function H̃i(x1, . . . , xx) be as 

in (6). Then, we define the n× n matrix whose (i, j) entries are

which we shall call the RH̃-matrix.

Remark 7  In the case when s(k1,...,kn) = 1 we have H̃i = xiG̃i and so the RH̃-matrix turns into

Remark 8  We can define a quantity R0(i) which yields the average number of infections caused by the individuals 
which were themselves infected from an interaction of Gi . In formulas, such a quantity is given by

or, in terms of the first reproduction matrix, as the sum of all the entries in the i-th line, i.e. R0(i) =
∑n

j=1 R
G̃
ij  . 

It is easy to check that

R0 =

n
∑

j=1

Tj
∂G̃

∂xj

∣

∣

∣

x1=···=xn=1
.

P̃i(k1, . . . , kn) =
(ki + 1)Pi(ki + 1)

∏

j �=i Pj(kj)

E(ki)
.

(5)G̃i(x1, . . . , xn) =
G′
i(xi)

G′
i(1)

∏

j �=i

Gj(xj).

G̃(x1, . . . , xn) =

∑n
l=1 G

′
l(1)G̃l(x1, . . . , xn)
∑n

l=1 G
′
l(1)

.

R
G̃
ij := Tj

∂G̃i

∂xj

∣

∣

∣

x1=···=xn=1
.

(6)H̃i(x1, . . . , xn) =
∑

k1,...,kn

P̃i(k1, . . . , kn)s(k1,...,ki+1,...kn)x
k1
1 . . . xki+1

i . . . xknn .

R
H̃
ij := Tj

∂H̃i

∂xj

∣

∣

∣

x1=···=xn=1
,

R
H̃
ij := Tiδij + Tj

∂G̃i

∂xj

∣

∣

∣

x1=···=xn=1
= Tiδij +R

G̃
ij .

(7)R0(i) :=

n
∑

j=1

Tj
∂G̃i

∂xj

∣

∣

∣

x1=···=xn=1
,

R0 =

n
∑

i=1

E(ki)

E(k)
R0(i).
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Prevalence of infection and percolation (the late stages of an outbreak)
Recall that for i = 1, . . . , n the transmissibilities Ti denote the probability that an interaction, encoded by an edge 
of Gi , will transmit the disease if one of its ends is infected. We point out that this approach is in different from 
that of multiplex networks as in that case it is the different nodes that have different transmissibilities, see for 
example18–20. In our case each node can have several Ti and so our approach can be interpreted as a generaliza-
tion of the multiplex networks case. We also point out that we shall work in full generality and our results are 
widely applicable.

At this point we follow a well known trick first introduced in1 and21 in the case when there is only one trans-
missibility. In order to implement this trick in the case when there is more than one transmissibility we introduce 
n quantities, called q1, . . . , qn : Each qi corresponds to the average probability that a vertex is not infected through 
a specific interaction (edge) of Gi . For this to happen, either:

•	 the infection is not transmitted (independently of whether the individual in the other end of this interaction 
is infected or not) which has probability 1− Ti , or

•	 the infection would be transmitted by the interaction, with probability Ti , but the other individual was not 
infected, which happens with probability 

∏n
j=1 q

kj
j  if it has excess degree (k1, . . . , kn).

Hence, on average we have

for i = 1, . . . , n . This is a fixed point equation for the function F(q1, . . . , qn) = (F1, . . . , Fn) with Fi(q1, . . . , qn) 
given by the right hand side of Eq. (8).

Then, the average probability that a randomly chosen vertex does not get infected is given by

Remark 9  Notice that the probability a vertex with degree (k1, . . . , kn) does not get infected is given by

and so P is simply the average of these probabilities. So, we see that this mean field type approximation also 
implies the weaker approximation where the probability that a vertex gets or not infected only depends on its 
degree.

We turn now to the question of finding conditions which guarantee that (8) has a solution other than the obvi-
ous one at (1, . . . , 1) , which corresponds to the absence of disease. Before we embrace in the general analysis we 
consider the simple special case when n = 1 which already appears in the literature, for example chapter 16 in2.

Example 1  In the case when n = 1 the fixed point equation (8) reads

Denoting the right hand side by F(q), we have F(1) = 1 and F(0) = 1− T + TG̃(0) ≥ 1− T > 0 while 
F ′(q) = TG̃′(q) > 0 and F ′′(q) = TG̃′′(q) ≥ 0 . It then follows from the intermediate value theorem that there 
is a fixed point q ∈ (0, 1) of F if and only if F ′(1) > 1 . Such a condition is given by TG̃′(q) > 1 which can equally 
be written as R0 > 1.

In this simple setting when n = 1 , we can further try to better understand the transition phenomena at T = Tc 
such that TcG̃

′(1) = 1 . For this we expand G̃ around qc = 1 as a Taylor series

and inserting into Eq. (10) we have

where we have used G̃′(1) = T−1
c  . This can be rewritten as

(8)qi = 1− Ti + Ti

∑

k1,...,kn

P̃i(k1, . . . , kn)

n
∏

j=1

q
kj
j = 1− Ti + TiG̃i(q1, . . . , qn),

(9)P =
∑

k1,...,kn

P(k1, . . . , kn)q
k1
1 . . . qknn = G(q1, . . . , qn).

P(k1,...,kn) = qk11 . . . qknn ,

(10)q = 1− T + TG̃(q).

G̃(x) = 1+ G̃′(1)(1− q)+
G̃′′(1)

2
(1− q)2 + · · · ,

q = 1− T + T

(

1+ G̃′(1)(q− 1)+
G̃′′(1)

2
(q− 1)2

)

+ · · ·

= 1+ (q− 1)
T

Tc
+ (q− 1)2

TG̃′′(1)

2
+ · · · ,

1 =
T

Tc
− (1− q)

TG̃′′(1)

2
,
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from which we find

Then, expanding P in a Taylor series around qc = 1 we find

valid for T ≥ Tc and which describes the phase transition as a power law with exponent 1.

Continuing to explore the case when n = 1 we shall now give two very simple examples which can be solved 
explicitly.

Example 2  (2 neighbors and n = 1 ) In this situation each individual contacts with only two other ones, we have 
G(x) = x2 and G̃(x) = x . Then, the fixed point equation is q = 1− T + Tq which has the unique solution q = 1 
independently of T ∈ (0, 1) . The only other solution is q = 0 which occurs in the case when T = 1.

This is to be expected as if there is a probability that the interactions will not transmit the disease, then almost 
surely there will be someone which does not transmit it and so it does not get passed that individual. In a large 
population, almost everyone will be left uninfected.

Example 3  (3 neighbors and n = 1 ) In this example we consider n = 1 and G(x) = x3 so G̃(x) = x2 . Then, the 
fixed point equation turns into q = 1− T + Tq2 . The only solution T ∈ (0, 1) is given by

Hence, we see an interesting explicit phase transition occurring at T = Tc = 1/2 . In terms of the probability P 
that a randomly chosen individual escapes infection we find that

Notice that this is compatible with Eq.  (11). Indeed, expanding P near Tc = 1/2 we find that 
P = 1− 12(T − Tc)+ · · ·.

When n ≥ 1 we can equally prove existence of a critical point in (0, 1)n if certain n quantities are greater than 
one (in the n = 1 case there is a single quantity which can be readily identified with R0 > 1 ). However, in this 
more general case the proof is slightly less elementary as this is a codimension n > 1 problem for which the 
intermediate value theorem no longer applies.

On possible approach would be to denote by F : [0, 1]n → [0, 1]n the function defined by the right hand side 
of (8) and find hypothesis so that there is δ > 0 such that F([0, 1− δ]n) ⊂ [0, 1− δ]n . Then, the Brower fixed 
point theorem would guarantee the existence of such a fixed point in (0, 1)n . However, we shall instead proceed 
in a slightly different manner.

Proposition 1  Suppose that for all i = 1, . . . , n , the quantities R0(i) defined in (7) are all greater than 1, i.e.

Then, there is a solution (q1, . . . , qn) ∈ (0, 1)n of Eq. (8) and so P ∈ (0, 1).

Proof  We shall look for solutions of (8) in (0, 1)n and it will prove convenient to write these as qi = 1− Tiεi . 
Then, the fixed point equation (8) turns into the equations

for ε = (ε1, . . . , εn) . Then, we look for fixed points of the function F given by the right hand side of equa-
tion above with ε  = 0 . By Brower’s fixed point theorem, for such a fixed point to exist, it is enough if 
F : [0,T−1

1 ] × · · · [0,T−1
n ] → [0, 1]n maps [δ, 1]n to itself, for some positive δ ≪ 1 . First, notice that each entry

is nondecreasing in each coordinate and its image lies in [0, 1]n . Furthermore, by Taylor’s formula

q = 1−
2

TG̃′′(1)

(

T

Tc
− 1

)

+ · · · .

(11)
P = 1+ (q− 1)G′(1)+ · · ·

= 1−
2G′(1)

G̃′′(1)

1

T

(

T

Tc
− 1

)

+ · · · ,

q =
1− |2T − 1|

2T
=

{

1, if T ≤ 1
2 ,

1−T
T , if T > 1

2 .

P =

{

1, if T ≤ 1
2 ,

(

1−T
T

)3
, if T > 1

2 .

R0(i) =

n
∑

j=1

Tj
∂G̃i

∂qj

∣

∣

∣

q1=···=qn=1
> 1.

εi = 1− G̃i(1− T1ε1, . . . , 1− Tnεn), i = 1, . . . , n,

Fi(ε1, . . . , εn) = 1− G̃i(1− T1ε1, . . . , 1− Tnεn),
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for |ε| ≪ 1 . This shows that for sufficiently small δ > 0

if

The quantities in the left hand side can be readily identified with the R0(i) , from which we conclude that under 
these hypothesis F([δ, 1]n) ⊂ [δ, 1]n and a fixed point exists. 	�  �

Inspired by this proof and the computation in example 1, also for n ≥ 1 we shall search for a phase transition 
(or bifurcation) from qc = (1, . . . , 1) due to a variation in the parameters T = (T1, . . . ,Tn) . In order to set up the 
nomenclature, we shall consider a 1-parameter family t ∈ I ⊂ R �→ T(t) of transmissibilities. For all t ∈ I we 
have that qc = (1, . . . , 1) is a solution to (8). We shall say that a bifurcation from qc occurs at T(0) if any neigh-
borhood of (qc ,T(0)) in Rn × I contains solutions of (8) not equal to qc . This will be called a phase transition if 
such solutions lie in a continuous curve parameterized by t. The following result gives a necessary condition for 
the existence of a phase transition.

Proposition 2  Consider a 1-parameter family of parameters T(t) = (T1(t), . . . ,Tn(t)) and suppose that there is 
a continuous t  → q(t) = (q1(t), . . . , qn(t)) solution to (8), for t ∈ (−δ, δ) with q(t) = (1, . . . , 1) for t ≤ 0 and 
q(t) ∈ (0, 1)n for t > 0 . Then, the RG̃-matrix at T(0) must have 1 as one of its eigenvalues.

Proof  Bifurcations of q from qc at T(0) are in one to one correspondence with bifurcations of ε from εc = 0 at 
T(0). Defining the function G = (G1, . . . ,Gn) whose entries are

for i = 1, . . . , n . By the implicit function theorem, if for a given T we had dG0 : R
n → R

n being an isomorphism, 
then no bifurcation could occur. This already gives us a necessary condition for a bifurcation to occur.

The (i, j) entry of dG0 is given by

and so dG0 is non-invertible if and only if the RG̃-matrix has 1 as an eigenvalue. We have thus concluded that 
for a bifurcation to occur at a given T, the RG̃-matrix must have a unit eigenvalue. 	�  �

Remark 10  We also mention in passing that in biology, such phase transitions and bifurcation phenomena are 
sometimes referred to as branching processes. We direct the reader to the Refs.22,23 for more on such branching 
processes in biology.

Suppose now that the RG̃-matrix associated with T(t), which we shall denote by RG̃(t) has exactly one eigen-
value �(t) such that �(0) = 1 (this means that the algebraic multiplicity of �(t) is one). If we further assume that 
�̇(0) �= 0 , i.e �(t) crosses 1 transversely at t = 0 . Then, the computation (12) shows that at t = 0 the map dG0 has 
a 1-dimensional kernel and cokernel and that (∂t |t=0dG0)(ker(dG0)) /∈ im(dG0) . Then, the Crandall–Rabinowitz 
theorem (Theorem 1.7. in24) shows that a phase transition must occur at t = 0 . We shall state this separately as 
follows.

Proposition 3  Consider a 1-parameter family of parameters T(t) = (T1(t), . . . ,Tn(t)) whose associated RG̃-matrix 
has a unique eigenvalue �(t) satisfying �(0) = 1 . If �̇(0) �= 0 , then a phase transition must occur at t = 0.

Example 4  (n = 2 ) We have G̃i(x1, x2) =
G′
i(xi)

G′
i(1)

Gj(xj) for i = 1, 2 and j  = i . In particular,

and similarly for G̃2 . Hence, the R1-matrix can be written as

Fi(ε1, . . . , εj) =

n
∑

j=1

Tj
∂G̃i

∂xj

∣

∣

∣

x1=···=xn=1
εj + o(|ε|),

Fi(δ, . . . , δ) =





n
�

j=1

Tj
∂G̃i

∂xj

�

�

�

x1=···=xn=1



δ + o(δ) > δ,

n
∑

j=1

Tj
∂G̃i

∂xj

∣

∣

∣

x1=···=xn=1
> 1.

Gi(ε1, . . . , εn) = 1− G̃i(1− T1ε1, . . . , 1− Tnεn)− εi ,

(12)
∂Gi

∂εj

∣

∣

∣

ε=0
= Tj

∂G̃i

∂xj

∣

∣

∣

x=1
− δij = R

G̃
ij − δij ,

∂G̃1

∂x1
=

G′′
1 (x1)

G′
1(1)

G2(x2),
∂G̃1

∂x2
=

G′
1(x1)G

′
2(x2)

G′
1(1)

,
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Example 5  (n = 2 with 2 neighbors each) Consider T1 < T2 and G1(x) = x2 , G2(x) = x2 . Then, we have 
G̃i(x1, x2) = xix

2
j  for i = 1, 2 and j  = i . Then, the RG̃-matrix is

whose eigenvalues are

Clearly, �− < 0 and so a phase transition must occurs when �+ crosses 1, i.e. when

Furthermore, in this case the equations for (q1, q2) read

In particular, using the first equation to write q1 in terms of q2 and inserting in the second we find that solutions 
are given by q2 = 1 and solutions of the quartic equation

Example 6  (n = 2 with 2 exponentially distributed graphs) Again, we consider T1 < T2 and G1(x) = x−N1(1−x) , 
G2(x) = x−N2(1−x) for N1 > N2 . In this situation we have

Then, the R1-matrix is

whose eigenvalues are 0 and

which in this case coincides with R0 and we therefore find that a phase transition occurs when R0 crosses 1. In fact, 
it is tempting to regard T1N1 and T2N2 as the respective contributions to R0 by the networks G1 and G2 . Indeed, 
R0(1) = 2T1N1 and R0(2) = 2T2N2 so that

as shown in Remark 8.
These interpretations of R0(1) and R0(2) may, however, not be appropriate to interpret some non-intuitive 

phenomena. For example, one may be lead to think that both q1 and q2 are non-increasing with respect to R0(1) 
and R0(2) . However, this need not be true as we shall illustrate in an example. In this case the equations for 
(q1, q2) read

and we shall now iterate the right hand side to approximate two solutions. Say, in the case when N1 = 50,T1 = 0.1 
and N2 = 2,T2 = 0.6 , which corresponds to R0(1) = 5 and R0(2) = 1.2 we have (q1, q2) ∼ (0.9, 0.4) . On the 
other hand, if instead N1 = 5,T1 = 0.2 , which corresponds to R0(1) = 1 , while the rest remains as before, we 
have (q1, q2) ∼ (0.83, 0.49) and so q1 did decrease but q2 increased.

However, this situation is not totally counter-intuitive as overall, the value of P , the probability that a random 
vertex escapes infection, does increase in the second example where P ∼ 0.17 in comparison with a P ∼ 0.13 
in the first example.

R
G̃ =





T1
G′′
1 (1)

G′
1(1)

T1G
′
1(1)

T2G
′
2(1) T2

G′′
2 (1)

G′
2(1)



 =





T1
E(k21)−E(k1)

E(k1)
T1E(k1)

T2E(k2) T2
E(k22)−E(k2)

E(k2)



 .

R
G̃ =

(

T1 2T1

2T2 T2

)

,

�± =
T1 + T2

2
+

1

2

√

T2
1 + T2

2 + 14T1T2.

T1 + T2 +

√

T2
1 + T2

2 + 14T1T2 = 2.

q1 = 1− T1 + T1q1q
2
2

q2 = 1− T2 + T2q
2
1q2.

T2
1q

4
2 + T2

1T2q
3
2 + (T2T1 − 2)T1q

2
2 + T1T2(T1 − 2)q2 − T2 + 1 = 0.

G̃1(x1, x2) = e−N1(1−x1)−N2(1−x2) = G̃2(x1, x2).

R
G̃ =

(

T1N1 T1N1

T2N2 T2N2

)

,

� = T1N1 + T2N2.

R0 =
1

2
(R0(1)+ R0(2)),

q1 = 1− T1 + T1e
−N1(1−q1)−N2(1−q2)

q2 = 1− T2 + T2e
−N1(1−q1)−N2(1−q2),
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Dynamic modeling in a local mean field approximation
In section “Prevalence of infection and percolation (the late stages of an outbreak)” we studied a mathemati-
cal framework, related to percolation models, and used the properties of the network in order to compute the 
probability that a given node will eventually be infected. However, this framework does not look at the specific 
way the infection propagates in the network through time. That will be the topic of the current section. Here, we 
investigate an extended SIR type system modeling the spread of an epidemic on a network with different types 
of contacts, meaning that the transmissibilities are not all the same and can be gauged to approximate different 
kinds of contacts. As before, we consider a set of n graphs G1, . . . ,Gn with the same vertices but different edges. 
These encode the interactions and each graph Gi is weighted by a transmissibility per unit time βi encoding the 
probability of transmitting the disease through that interaction (per time unit). Our model is a simple alternative 
to25 which more directly deals with contact duration.

The model.  For each vertex v of G we shall denote by Gi(v) all its neighbors through the graph Gi , in other 
words Gi(v) is the set of all vertices which are connected to v through a an edge of Gi . Then, we respectively 
denote by sv , xv and rv the probabilities that v is either susceptible to the disease, infected, or removed. The 
dynamics of this network SIR model is then approximately governed by

where γ > 0 is the rate of recovery.

Remark 11  Alternatively, we can let Ai
vw be the entries of the adjunction matrix of the graph Gi and write the 

sum 
∑

w∈G(vi)
svxw as 

∑

w Ai
vwsvxw.

Remark 12  The system (13) is an approximation because the average probability that v is susceptible and w 
infected is only approximately given by svxw . In order to work with a non-approximate model one would have 
to write an infinite array of equations modeling the dynamics of the average probabilities of all such nonlinear 
quantities. See also3 for such an analysis carried out in the situation where there is only one type of interaction.

Classifying the disease free equilibrium.  It is clear from the equation ṙv = γ xv that any equilibrium 
solution of the system (13) we must have xv = 0 for all v. Hence, any equilibrium solution is disease free. In 
fact, setting xv = 0 and sv + rv = 1 gives a 1-parameter family of equilibrium solutions of the system and any 
equilibrium solution must be one of these.

An important question is then to understand if a non-constant solution converges to one of these equilib-
ria and to which? The fact that any solution {(sv(t), xv(t), rv(t))| t ∈ [0,+∞)}v converges to an equilibrium is 
immediate from the fact that rv(t) is nondecreasing and bounded, hence the limit

exists. Furthermore limt→+∞ ṙv = 0 which implies xv(∞) = 0 as we wanted to show. The main question then 
becomes:

Question 1 What is the disease free equilibrium (sv(∞), 0, rv(∞)) to which a solution starting at 
(sv(0), xv(0), rv(0)) converges? Can we understand how this depends on the properties of G1, . . . ,Gn and 
β1, . . . ,βn?

From the system of equations (13) we find that for each vertex v of G , there are two conserved quantities

and

Let N be the total number of vertices. These conserved quantities reduces the system of 3N equations for 3N 
functions to a system involving only N functions. In fact introducing sv = 1− rv − xv and the last equation of 
system (13) into the previous conserved quantity we find that

Suppose v starts susceptible, then ṙv(0) = 0 = rv(0) and so H(v) = 1 , from which we have

(13)

ṡv = −

n
∑

i=1

βi
∑

w∈Gi(v)

svxw

ẋv = −γ xv +

n
∑

i=1

βi
∑

w∈Gi(v)

svxw

ṙv = γ xv ,

rv(∞) := lim
t→+∞

rv(t) ∈ [0, 1]

1 = sv + xv + rv ,

H(v) := sv exp





1

γ

n
�

i=1

βi
�

w∈Gi(v)

rw



.

H(v) =

�

1− rv −
ṙv

γ

�

exp





1

γ

n
�

i=1

βi
�

w∈Gi(v)

rw



.
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for all time. Given that the solution converges to an equilibrium, we must have limt→+∞ ṙv = 0 and so

where in this equation we have written rv(∞) as rv to simplify notation. It will prove convenient to have the 
following notion at hand.

Definition 3  Let v be a vertex of G and ki(v) its degree as a vertex of Gi we shall denote by

the expected number of infections v will cause if infected.

Remark 13  Notice that the quantity βi/γ represents the probability that an interaction of Gi , between an infected 
and a susceptible individual, results in an infection. Hence, the quantity 

∑n
i=1

βiki(v)
γ

 can be regarded as the aver-
age number of infections the individual represented by v is expected to cause if it is infected.

Remark 14  For example, let us assume we have a sufficiently simple situation so that rw ≈ rv for all w ∈ Gi(v) . 
Then, inserting this into (14) we find that

In this situation, the right hand side equals 1 when rv = 0 and vanishes when rv = 1 . Hence, by the mean value 
theorem, a solution with rv ∈ (0, 1) exists if and only if the derivative of the right hand at rv = 0 , is positive. Such 
a derivative can be computed to be R(v)− 1 which is positive if and only if R(v) > 1.

In order to investigate the existence of solutions to Eq. (14) with rv  = 0 it is convenient to rewrite this equa-
tion as

Hence, our problem is now recast as the problem of looking for fixed points of the function F : [0, 1]N → [0, 1]N 
given by F(r1, . . . , rN ) = (F1(r1, . . . , rN ), . . . , FN (r1, . . . , rN )) where

The first obvious fixed point is that occurring at the origin which corresponds to all individuals still being sus-
ceptible, i.e. the disease never spread. In the next result we give a criteria for the existence of another fixed point.

Theorem 1  Suppose that for all vertices v of G we have R(v) > 1 . Then, the solution to the system (13) starting 
with rv(0) = 0 converges to a disease free equilibrium with rv  = 0 for all v. This satisfies Eq. (15) and the bound

In particular, we find that the upper bound is increasing with R(v) (in agreement with basic intuition).

Proof  The proof that the solution converges to a disease free equilibrium is given in the beginning of this sub-
section. This must satisfy (15) and we shall now prove that, under the conditions stated, rv ∈ (0, 1) , i.e. rv  = 0 . 
We proceed as in the proof of Proposition 1 by applying Bower’s fixed point theorem. Let ε > 0 to be fixed later, 
then the Taylor expansion of Fv around the origin reads

�

1− rv −
ṙv

γ

�

exp





1

γ

n
�

i=1

βi
�

w∈Gi(v)

rw



 = 1

(14)1 = (1− rv) exp





1

γ

n
�

i=1

βi
�

w∈Gi(v)

rw



,

R(v) :=

n
∑

i=1

βi

γ
ki(v)

1 = (1− rv) exp

(

rv

n
∑

i=1

βi

γ
ki(v)

)

= (1− rv) exp (rvR(v)).

(15)rv = 1− exp



−

n
�

i=1

βi

γ

�

w∈Gi(v)

rw



 = 1− exp

�

−

n
�

i=1

βi

γ

�

w

Ai
vwrw

�

.

Fv(r1, . . . , rN ) = 1− exp

(

−

n
∑

i=1

βi

γ

∑

w

Ai
vwrw

)

.

rv ≤ 1− exp (−R(v)).

Fv(ε, . . . , ε) =
�

p

∂Fv

∂rp
ε + O(ε2) =





n
�

i=1

βi

γ

�

p

Ai
vp



ε + O(ε2) =

n
�

i=1

βiki(v)

γ
ε + O(ε2) = R(v)ε + O(ε2).
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Furthermore, Fv is non-decreasing with respect to each entry. Hence, if R(v) > 1 for all v we find that for suf-
ficiently small ε > 0 the function F|[ε,1]N maps [ε, 1]N to itself and by the Brower fixed point theorem must have 
a fixed point in [ε, 1]N.

We turn now to the proof of the upper bound for rv given in the statement. Recall that ki(v) denotes the degree 
of v in Gi . From Eq. (14) we immediately find that the argument of the exponential in the right hand side satisfies

Hence, we discover that rv = rv(∞) satisfies

Inserting the Definition 3, of R(v), in this bound gives rv ≤ 1− exp (−R(v)) , as claimed in the statement. � �

Remark 15  Inserting the equation ṙw = γ xw for w ∈ Gi(v) , in the first equation of (13) we find that

this can be integrated using the initial condition rw(0) = 0 to obtain

This is a very nice and beautiful formula, but it is not of much use if we know nothing about rw(t) . However, we do 
can take the limit as t → +∞ and assume we are converging to a disease free equilibrium (sv , xv , rv) = (sv , 0, rv) 
whose existence is assured, for example, under the assumptions of Proposition 1. In such a situation we have 
limt→+∞ sv(t) = 1− limt→+∞ rv(t) . Hence, in this limit the previous equation turns into

By setting sv(0) = 1 this is the same equation which we have previously derived. This situation is slightly more 
general than the one we have analyzed in Theorem 1 and a similar results hold yielding the bound

Dynamic modeling in a mean field approximation by degree similarity
The system of the previous section, though very general is extremely large and difficult to investigate. For this 
reason, it is convenient to find simpler systems which we can more easily analyze. This is the content of this 
section where we will consider a system for the average probability that vertices of a given degree are in specific 
states. This is an oversimplified assumption which nevertheless allows one to gain a lot of insight on the dynam-
ics of an epidemic in a network. The approach we take here is mostly inspired from that of2, where the authors 
first learned it for the case n = 1 . There are also interesting individual based approaches which however require 
knowing the whole network structure and they also only have n = 1 , see for example26. See also27 for some com-
putational results using a model on a weighted network.

The model.  For each k = (k1, . . . , kn) we shall denote by sk , xk and rk the average probabilities that a vertex 
with degree k is susceptible, infected and removed respectively. Such a network SIR model is governed by the 
following system

where for i = 1, . . . , n

1

γ

n
∑

i=1

βi
∑

w∈Gi(v)

rw ≤

n
∑

i=1

βi

γ

∑

w∈G(vi)

1 =

n
∑

i=1

βi

γ
ki(v).

(16)rv ≤ 1− exp

(

−

n
∑

i=1

βi

γ
ki(v)

)

ṡv = −





n
�

i=1

βi

γ

�

w∈Gi(v)

˙rw



sv .

sv(t) = sv(0) exp



−

n
�

i=1

βi

γ

�

w∈Gi(v)

rw(t)



.

1− rv(∞) = sv(0) exp



−

n
�

i=1

βi

γ

�

w∈Gi(v)

rw



.

rv(∞) ≤ 1− sv(0) exp (−R(v)).

(17)

ṡk = −

n
∑

i=1

βikivisk

ẋk = −γ xk +

n
∑

i=1

βikivisk

ṙk = γ xk ,

vi :=
∑

k1,...,kn

P̃i(k1, . . . , kn)x(k1,...,ki+1,...,kn),
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is the averaged probability of an individual being infected after following a random edge of the graph Gi.

Remark 16  Again, in writing the system (17) we have used one large simplification. Namely, we have approxi-
mated the average value of xk′ sk by the product of the average values of xk′ and sk.

An equivalent (much reduced) system of equations.  Notice that (17) can potentially be an extremely 
large system, as there are as many groups of 3-equations as degree combinations. It is remarkable that this sys-
tem can be extremely reduced to one that only involves n equations for n functions. For this, it is convenient to 
introduce quantities wi measuring the average number of removed individuals following an edge of Gi . These 
are given by

for i = 1, . . . , n . Then, we have ẇi = γ vi which inserting into the equation for ṡk yields ṡk = − 1
γ

∑n
i=1 βikiẇisk . 

Assuming that the epidemic outbreak starts with no-one removed from previous infections, we have wi(0) = 0 
(which follows from rk(0) = 0 for all k ∈ N

n ) and so

which we can also rewrite as

for ui(t) = exp
(

−
βi
γ
wi

)

 . Now, recall that sk + xk + rk = 1 and so

where in the last equality we have used the generating function (6) whose definition we recall to be

which depends on the initial conditions s(k1,...,kn)(0).

Remark 17  Consider the case where one is willing to make the simplifying assumption that sk(0) = s(0) for all 
k ∈ N

n , i.e. the initial proportion of susceptible individuals is independent of their degree distribution (this may 
be a reasonable assumption for a new disease which begins to spread in an unknown part of the population). 
Then, H̃i(x1, . . . , xn) = s(0)G̃i(x1, . . . , xn) for all i = 1, . . . , n . Notice a few properties of the function H̃ , namely 
it is nondecreasing with respect to each coordinate, and

i.e. the average number of initially susceptible individuals in Gi , meaning those which have edges in Gi.

Using vi = 1
γ
ẇi and wi = −

γ
βi
log ui and rearranging, we find that (17) can be written as a system for 

w = (w1, . . . ,wn) given by

and further using and wi = −
γ
βi
log ui this can be rewritten as a system for u = (u1, . . . , un)

which is a substantially smaller than the initial one in (17).

Existence of an equilibrium.  At an equilibrium point we either have the rights hand side of (19) vanish-
ing, i.e.

wi :=
∑

k1,...,kn

P̃i(k1, . . . , kn)r(k1,...,ki+1,...,kn),

sk(t) = sk(0) exp

(

−

n
∑

i=1

βi

γ
kiwi

)

,

sk(t) = sk(0)u
k1
1 . . . uknn ,

(18)

vi =
∑

k1,...,kn

P̃i(k1, . . . , kn)(1− r(k1,...,ki+1,...,kn) − s(k1,...,ki+1,...,kn))

= 1−
∑

k1,...,kn

P̃i(k1, . . . , kn)r(k1,...,ki+1,...,kn)

−
∑

k1,...,kn

P̃i(k1, . . . , kn)s(k1,...,ki+1,...,kn)(0)u
k1
1 . . . uki+1

i . . . uknn

= 1− wi − H̃i(u1, . . . , un),

H̃i(x1, . . . , xn) =
∑

k1,...,kn

P̃i(k1, . . . , kn)s(k1,...,ki+1,...,kn)(0)x
k1
1 . . . xki+1

i . . . xknn ,

H̃i(1) =
∑

k1,...,kn

P̃i(k1, . . . , kn)s(k1,...,ki+1,...,kn)(0) = E[s(0)|Gi],

(19)γ−1ẇi = 1− wi − H̃i

(

e
−

β1
γ
w1 , . . . , e

−
βn
γ
wn

)

.

(20)u̇i = −βiui

(

1+
γ

βi
log ui − H̃i(u1, . . . , un)

)

,



13

Vol.:(0123456789)

Scientific Reports |          (2023) 13:468  | https://doi.org/10.1038/s41598-022-19827-9

www.nature.com/scientificreports/

or, written as a fixed point equation, as

for i = 1, . . . , n . In particular, notice from Eq. (18) that this implies that vi = 0 for all i = 1, . . . , n and so this 
equation encodes a disease free equilibrium to which the solution of the system is expected to converge.

As in section “Prevalence of infection and percolation (the late stages of an outbreak)”, we shall start by ana-
lyzing the case when n = 1 in the following example. It will serve as a good exercise for the n > 1 case. See also2 
for this analysis in the case n = 1.

Example 7  (n = 1 ) In this situation, there is only one H̃i(x) which is given by

and the Eq. (21) for an equilibrium is

Hence, an equilibrium is determined by fixed points of the function g(w) given by the right hand side of (22). 
Notice that g(0) = 1− E[s(0)] > 0 (even though it may be very small) while g(1) = 1− H̃(e

−
β
γ ) < 1 , and so a 

fixed point weq always exist by the intermediate value theorem. Moreover, we find from

that g(w) is increasing while from

we find that its concavity always faces down. Hence, the equilibrium point weq must be unique. We further deduce 
the equilibrium value of sk to be

However, when E[s(0)] = 1 , then there is fixed point of g at w = 0 which corresponds to never having a disease 
spreading. For another fixed point weq ∈ (0, 1) to exist we must have g ′(0) > 1 which can be written as

and can be identified with the initial basic reproduction number. This situation with E[s(0)] = 1 is relevant, 
for example, when considering an approximately infinite number of individuals with only a finite number of 
infected individuals.

Example 8  (n = 1 and every vertex with k neighbors) In this case H̃(x) = xk and so the equilibrium is attained at 
a weq = w such that w = 1− s(0)e

−
β
γ
kw.

Also in this case, the insights given by the previous example can be extended to higher dimensions to prove the 
existence of an equilibrium point of the system starting at a given configuration of initially susceptible individuals.

Proposition 4  Suppose that the average number of initially susceptible individuals E[s(0)] < 1 . Then, there is an 
equilibrium point weq = (w

eq
1 , . . . ,w

eq
n ) ∈ (0, 1)n such that

In particular,

Proof  We are looking for fixed points of the (continuous) map g : [0, 1]n → [0, 1]n is given by

1− wi − H̃i

(

e
−

β1
γ
w1 , . . . , e

−
βn
γ
wn

)

= 0,

(21)wi = 1− H̃i

(

e
−

β1w1
γ , . . . , e

−
βnwn
γ

)

,

H̃(x) =

+∞
∑

k=0

P̃(k)sk+1(0)x
k+1 =

1

E(k)

+∞
∑

k=1

kP(k)sk(0)x
k .

(22)w = 1− H̃(e
−

βw
γ ).

g ′(w) =
β

γ
H̃ ′(e

−
βw
γ ) > 0,

g ′′(w) = −

(

β

γ

)2

H̃ ′′(e
−

βw
γ ) < 0,

s
eq
k = s(0)e

−
kβ
γ
weq

.

β

γ
H̃ ′(1) > 1,

s
eq
k = sk(0) exp

(

−

n
∑

i=1

βi

γ
kiw

eq
i

)

.

r
eq
k = 1− sk(0) exp

(

−

n
∑

i=1

βi

γ
kiw

eq
i

)

≤ 1− sk(0) exp

(

−

n
∑

i=1

βi

γ
ki

)
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and again at least one such equilibrium weq = (w
eq
1 , . . . ,w

eq
n ) exists from Brower’s fixed point theorem. Using 

this we find

which again we can see to be exponentially decreasing with ki and Ti (notice however that the weq
i  themselves are 

also functions of the βi/γ so this statement is somewhat imprecise).
Given that at the equilibrium point all xk = 0 (recall that γ vi = ẇi ) we have seqk + r

eq
k = 1 from which the last 

equality and inequality in the statement follow. 	�  �

Remark 18  Of course, when E[s(0)] = 1 there is an equilibrium point with weq = 0 and seqk = 1.

Convergence to the equilibrium.  We consider the cases n = 1 and n = 2 for which we have the flow 
equation (20) which we rewrite as u̇i = fi(u1, . . . , un) , for

In the case n = 1 we have

In particular, limu→0+ f (u) = 0 with limu→0+ f ′(u) = +∞ and so there is ε > 0 such that f (u) > 0 in (0, ε) . On 
the other hand while limu→1− f (u) = −β(1− s(0)) < 0 . Hence, the solution to (20) with n = 1 stays bounded 
inside (0, 1) and therefore converges to an equilibrium point ueq ∈ (0, 1) with f (ueq) = 0 . Hence,

We now turn to the case when n = 2 . In this situation we have limui→0+ fi(u1, u2) = 0 and

and similarly for ∂f2
∂u2

 . In particular, we find that limui→0+ fi(u1, u2) = +∞ . Hence, we have that there is ε > 0 
such that fi(u1, u2) > 0 for ui ∈ (0, ε) . Furthermore,

Hence, the solutions stay inside the square [0, 1]2 and by the Poincaré–Bendixon theorem, it must therefore con-
verge to an equilibrium point (ueq1 , u

eq
2 ) with fi(u

eq
1 , u

eq
2 ) = 0 for i = 1, 2 . Notice that here we have implicitly used 

the fact that there are no non-constant periodic solutions. That can easily be proven by looking at the system (17) 
from which we find that the rk must be non-decreasing and can only be constant at a disease free equilibrium.

Short time behavior.  Recall from Eq. (19) that the system is governed by the set of ordinary differential 
equations

for i = 1, . . . , n . Given that initially we have wi(0) = 0 we may Taylor expand right hand side above using 
H̃i(1) = E[s(0)] as alluded to in remark 17. This gives

g(w1, . . . ,wn) =

(

1− H̃1

(

e
−

β1w1
γ , . . . , e

−
βnwn
γ

)

, . . . , 1− H̃n

(

e
−

β1w1
γ , . . . , e

−
βnwn
γ

))

,

s
eq
k = sk(0) exp

(

−

n
∑

i=1

βi

γ
kiw

eq
i

)

,

(23)fi(u1, . . . , un) = −βiui

(

1+
γ

βi
log ui − s(0)G̃i(u1, . . . , un)

)

.

f ′(u) = −β

(

1+
γ

β
log u− s(0)G̃(u)

)

− βu

(

γ

β

1

u
− s(0)G̃′(u)

)

= −β − γ log u+ s(0)TG̃(u)− γ + s(0)uβG̃′(u).

f ′(ueq) = −βu

(

γ

β

1

u
− s(0)G̃′(u)

)

= −
(

γ − βs(0)G̃′(u)u
)

.

∂f1

∂u1
= −β1

(

1+
γ

β1
log u1 − s(0)G̃1(u1, u2)

)

− β1u1

(

γ

β1

1

u1
− s(0)

∂G̃1

∂x1
(u1, u2)

)

= −β1 − γ log u1 − s(0)β1G̃1(u1, u2)− γ − s(0)u1β1
∂G̃1

∂x1
(u1, u2),

lim
u1→1−

f1(u1, u2) = −β1
(

1− s(0)G̃1(1, u2)
)

= −β1(1− s(0)G2(u2))

≤ −β1(1− s(0)) < 0.

(24)γ−1ẇi = 1− wi − H̃i

(

e
−

β1
γ
w1 , . . . , e

−
βn
γ
wn

)

,
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where RH
ij  is the (i, j) entry of the RH̃-matrix associated with the transmissibilities Tk = βk/γ as in definition 2, 

and the . . . denote terms of order O(|w|2) . In this way, the above equation may be written as

Suppose that RH̃ can be diagonalised and let with eigenbasis v1, . . . , vn and �1 ≤ · · · ≤ �n the corresponding 
eigenvalues. Then, we write w(t) =

∑n
l=1 w

l(t)vl we find that each wl must solve

which we can integrate to obtain

We therefore find that the initial exponential growth observed at the beginning of an outbreak is codified in the 
existence of an eigenvector of RH̃ greater than 1, as alluded to in the introduction.

Major limitations
As with any model, those considered in this article have a scope and are therefore heavily limited. Obviously, 
there are limitations associated with the several assumptions and approximations made, but there are also sev-
eral others. For instance, the fact that one does not need to consider the full form of the network, which can be 
interpreted as a strength of the model, may also be a severe limitation. Indeed, there are many different multi-
graphs G = G1 ∪ · · · ∪ Gn having the same degree distributions and the spread of an epidemic outbreak may have 
different features in such in-equivalent networks. This is not incorporated by our models which simply use the 
information on the degree distributions. However, as previously mentioned, this is limitation can also be seen 
positively. Indeed, while the exact form of the network is practically impossible to obtain in practice, estimating 
the degree distributions is a feasible endeavor. Nevertheless, one must bear such limitations into consideration 
anytime these models are used.

Data availibility
All data generated or analysed during this study are included in this published article.
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