
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15622  | https://doi.org/10.1038/s41598-022-19817-x

www.nature.com/scientificreports

A machine learning COVID‑19 mass 
screening based on symptoms 
and a simple olfactory test
Youcef Azeli1,2,3*, Alberto Fernández4, Federico Capriles1, Wojciech Rojewski1, 
Vanesa Lopez‑Madrid1, David Sabaté‑Lissner5, Rosa Maria Serrano1,8, 
Cristina Rey‑Reñones6,7,12, Marta Civit5, Josefina Casellas1, 
Abdelghani El Ouahabi‑El Ouahabi1, Maria Foglia‑Fernández9, Salvador Sarrá10 & 
Eduard Llobet11

The early detection of symptoms and rapid testing are the basis of an efficient screening strategy to 
control COVID-19 transmission. The olfactory dysfunction is one of the most prevalent symptom and 
in many cases is the first symptom. This study aims to develop a machine learning COVID-19 predictive 
tool based on symptoms and a simple olfactory test, which consists of identifying the smell of an 
aromatized hydroalcoholic gel. A multi-centre population-based prospective study was carried out 
in the city of Reus (Catalonia, Spain). The study included consecutive patients undergoing a reverse 
transcriptase polymerase chain reaction test for presenting symptoms suggestive of COVID-19 or for 
being close contacts of a confirmed COVID-19 case. A total of 519 patients were included, 386 (74.4%) 
had at least one symptom and 133 (25.6%) were asymptomatic. A classification tree model including 
sex, age, relevant symptoms and the olfactory test results obtained a sensitivity of 0.97 (95% CI 
0.91–0.99), a specificity of 0.39 (95% CI 0.34–0.44) and an AUC of 0.87 (95% CI 0.83–0.92). This shows 
that this machine learning predictive model is a promising mass screening for COVID-19.

Since the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) were diagnosed in 
December 2019 in the Chinese city of Wuhan, the coronavirus disease 2019 (COVID-19) has spread rapidly1. 
The strategies applied in the vast majority of countries to control the virus transmission have been ineffective. 
The first results concerning the safety and effectiveness of different types of vaccines have raised optimism in 
the scientific community due to the possibility of controlling COVID-192. But recent real-world data indicate 
that the effectiveness of the BNT162b2 and ChAdOx1 vaccines against infections with symptoms or high viral 
burden is reduced with new variants such as delta. In addition, infections in vaccinated patients have similar 
viral loads compared to unvaccinated patients3. This justifies the high number of new cases and a mortality 
rate difficult to eradicate in some countries with high vaccination rates4. On the other hand, a large part of the 
world population remains susceptible to SARS-COV2 infection, due to lack of access to vaccines, making herd 
immunity likely unachievable.

The early detection of symptoms suggestive of infection, rapid and efficient testing, contact tracing and 
isolation are the basis of an effective screening strategy to control transmission of COVID-19 and decrease the 
disease burden on healthcare systems. The Achilles’ heel in the fight against this disease is the large number 
of patients who are asymptomatic or have only a few symptoms that are difficult to differentiate from a com-
mon cold, but who are nonetheless able to transmit the disease5,6. It was estimated that 51.9% of SARS-COV-2 
infected cases were asymptomatic or had only 1 or 2 symptoms suggestive of COVID-197. The reference diag-
nostic tool for COVID-19 is reverse transcriptase polymerase chain reaction (RT-PCR). Its accessibility may be 
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limited for low-resource healthcare systems and its cost and time requirements preclude its use as a mass triage 
tool. Recently a screening tool based on a machine learning model including clinical features and symptoms 
has been constructed to prioritize testing for COVID-198. It was found that a predictive model for COVID-19 
that included the combination of symptoms and wearable sensor data performed better than a model based on 
symptoms alone9.

Olfactory dysfunction (OD) has recently been described as one of the most prevalent symptoms reaching 
50% to 75% of COVID-19 patients and could be used as a means of screening to help identify people who should 
self-isolate10–12. With the delta variant OD has been described in the 39% of the cases being as well one of the 
most prevalent symptom13.

A symptom predictive model for COVID-19 based on a smartphone app including age, sex, loss of smell and 
taste, persistent cough, severe fatigue and skipped meals obtained a sensitivity of 65%14. At the time of diagnosis, 
a recent prospective study found that 31% of patients affected by COVID-19 presented OD15. Between 11.8 and 
23% of cases presented OD before any other symptoms10,16. The validated olfactory tests are subjective and dif-
ficult to implement. A recent study showed that a simplified test based on the identification and the assessment 
of intensity of three different scents was able to detect unperceived OD in COVID-19 patients15.

Hydroalcoholic gels are widely distributed as they are one of the main strategies for decreasing virus 
transmission17. Fragrance essential oils such as lavender, eucalyptus and lemon make them more pleasant and 
can enhance their anti-viral effect18,19. These features make an aromatized hydroalcoholic gel a good candidate 
for being used as part of a simple, fast and cost-effective large-scale olfactory screening test.

The aim of this study was to develop and validate, using cross-validation techniques, a machine learning 
diagnostic predictive model for COVID-19 mass screening using symptoms and a simple olfactory test based on 
an aromatized hydroalcoholic gel, which could be especially useful when testing resources are limited.

Results
Characteristics of the study population.  During the study period 3788 patients underwent RT-PCR 
to diagnose COVID-19 at one of the study health centres. The inclusion of cases and RT-PCRs performed per 
week at the centres while participating in the study can be consulted in the supporting information Fig. S1. A 
total of 626 patients were initially included in the study protocol. Of these, 107 patients were excluded because 
of incomplete data or exclusion criteria as shown in Fig. 1.

The final analysis of the study included 519 patients, out of whom 341 patients (65.7%) were from primary care 
and 179 (34.3%) were from the hospital Emergency Department. According to the criteria for carrying out a RT-
PCR test, 386 (74.4%) had at least one symptom suggestive of COVID-19, 118 (22.7%) were asymptomatic and 
were close contacts of a COVID-19 case, and 15 (2.9%) were asymptomatic and were tested for unknown reasons. 
A positive RT-PCR was found in 117 patients (22.5%) and a negative RT-PCR was found in 402 patients (77.5%).

The mean (SD) age of the study population was 42.3 (16.3) years, the age range was between 18 and 98 years 
and 48% were male. None of the patients requiring hospital admission died. Table 1 shows the background and 
clinical characteristics of the study population.

COVID‑19 symptoms and olfactory test results.  The mean (SD) number of days of the symptom 
evolution was 5.8 (5.6) for the COVID-19 positive patients and 5.1 (12.1) for the COVID-19 negative patients 
with an absolute difference of 0.75 (95% CI − 1.35 to 2.84; P = 0.48). The symptoms most strongly associated with 
COVID-19 were OD and GD. Fever, dry cough, asthenia, myalgia, headache, diarrhoea, OD, and GD were the 
eight symptoms associated with COVID-19. Table 2 shows the reported symptoms and olfactory test results in 
the population study.

In the total population study, the olfactory test 1 was positive in 267 patients (51.4%) and negative in 252 
patients (48.6%). Among patients with a positive olfactory test result 112 cases (41.9%) identified the gel smell 
as alcohol, 57 cases (21.3%) as cologne, 27 cases (10.1%) as aromatic herbs, 10 cases (3.7%) as non-citrus fruits 
(3.7%), 6 cases (2.2%) as alcoholic beverages (2.2%) and 22 cases (8.2%) as other responses. In 25 cases (9.4%) 
participants reported that they “didn’t smell anything at all” and in 8 cases a “don’t know” response (3%) was 
reported. Among patients with a negative olfactory test result, 207 cases (82.1%) identified the gel smell as lemon, 
26 cases (10.3%) as citrus, 13 cases (5.1%) as orange, 2 cases (0.8%) as tangerine, 2 cases (0.8%) as citronella, 
and 2 cases (0.8%) as lime.

A positive olfactory test 1 was associated with COVID-19 (OR 1.86; 95% CI 1.22–2.85, P < 0.01). The response 
“do not smell anything at all” was strongly associated with COVID-19 (OR 4.06; 95% CI 1.8–9.17). Among the 13 
asymptomatic COVID-19 positive patients, 10 (76.9%) had a positive olfactory test 1 result and only 3 patients 
presented a negative olfactory test 1. An olfactory test 1 positive result in asymptomatic patients was associated 
with COVID-19 (OR 3.94; 95% CI 1.03–15.03). The detailed results of the olfactory test and the diagnostic val-
ues of the relevant symptoms, the combination of symptoms and olfactory test for predicting COVID-19 were 
available in the S1 and S2 Tables.

Results of the machine learning predictive model.  Table 3 shows the results of the different classifica-
tion trees constructed with machine learning according to the variables introduced in the model.

By only introducing the relevant symptoms into the model, the sensitivity was 0.86 (95 CI 0.79–0.92), the 
specificity was 0.37 (95% CI 0.33–0.42) and the AUC was 0.86 (0.81–0.9) for the total population study, and 
0.97 (95%CI 0.92–0.99), 0.11 (95% CI 0.07–0.15) and 0.89 (95% CI 0.81–0.9) respectively for the symptomatic 
population. The sensitivity and specificity obtained was 0.94 (95%CI 0.88–0.98) and 0.32 (95% CI 0.28–0.37) 
when the olfactory test was introduced into the model for the total study population. The constructed sensitive 
classification tree only took into account the result of the olfactory test 1 and ignored the result of the olfactory 
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test 2. Considering other clinical variables, the model also included sex and age, reaching a sensitivity of 0.97 
(0.91–0.99), a specificity of 0.39 (0.34–0.44) and an AUC of 0.87 (95% CI 0.83–0.92) for the total study popula-
tion, and 0.98 (95%CI 0.93–1), 0.31 (95% CI 0.26–0.37) and 0.89 (95% CI 0.84–0.93) for the symptomatic popu-
lation, respectively. The specific classification tree built took into account the relevant symptoms and age and 
obtained a sensitivity of 0.29 (0.21–0.38), a specificity of 0.95 (95% CI 0.92–0.97) and an AUC of 0.85 (0.8–0.89) 
for the total study population.

The resulting receiver operating characteristic (ROC) curve is shown in the Fig. 2 and the precision-recall 
curve of the sensitive and specific tree algorithm are shown in Figs. S2 and S3.

Discussion
The combination of symptoms and a simple olfactory test based on identifying the smell of a hydroalcoholic gel 
made it possible to develop a predictive model with high sensitivity, which has important clinical implications.

A predictive model based on symptoms reported on a smartphone-based app obtained a lower sensitivity of 
0.65 (95% CI 0.62–0.67) and a lower AUC of 0.76 (95% CI 0.74–0.78) to predict COVID-19 than our predictive 
model14. Another predictive model using machine learning based on symptoms, gender, age and close contacts 
obtained a lower sensitivity which was between 0.85 and 0.87 depending on the possible working points and a 
similar AUC of 0.86 (95% CI 0.85–0.87)8. The different results of our model, depending on the variables included, 
show similar or even higher diagnostic values with respect to those models proposed as population screening. 
The model presented has the advantage that it includes asymptomatic patients and does not include close contacts 
in its variables as this could be difficult to determine in a situation of community transmission. To our knowl-
edge, this is the first model including an olfactory test and built using a prospective population-based study. It 

626 patients included in the study protocol 

107 Excluded patients 
 With exclusion study criteria 
 14 under 18 year-old 
  1 schizophrenia 
  1 Cognitive impairment 
  2 Chronic sinusitis 
  1 Parkinson’s disease 
 Incomplete data 
 9 No RT-PCR results, 
 11 no Covid Gel Test result 
 Study protocol not followed: 
  1 no data of CovidGel test 1 
 67 no data of CovidGel Test 2 

252 recognize citrics: Negative Test 267 do not recognize citrics: Positive 

218 do not recognize 
citrics: Positive Test 

Olfactory test 2 

         49 Negative Test 

Olfactory test 1 

RT-PCR analysis 

43 Positive 209 Negative 

37 Negative 12 Positive 

RT-PCR analysis RT-PCR analysis 

156 Negative 62 Positive 

519 included in the final analysis 

Figure 1.   Flow chart.
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is important to highlight that the symptoms combination have the higher weight in the model results, although 
the low false negative rate of the olfactory test among asymptomatic COVID-19 patients, helps improving the 
sensitivity of the model. The sample for this population-based study was obtained from patients following cur-
rent indications for RT-PCR testing, and the sensitivity and specificity figures obtained make this model useful 
as a population-based screening.

In the same direction, new advances are being made in the development of new point-of-care, rapid, sensi-
tive and inexpensive diagnostic methods to detect COVID-19 that can be useful to fight this pandemic and 
prepare for the next ones20. An effective mass screening based on antigen test detection of SARS-CoV-2 has been 
described21. But a recent review of several antigen tests on the market states that two-thirds had overall sensi-
tivities (30.8%-68.9%) below the World Health Organization recommended standard of ≥ 80% raising concerns 
whether the antigen detection alone is sufficient for COVID-19 mass screening22. Combining our predictive 
model with an antigen test could be a promising mass screening strategy.

Regarding the olfactory test, it has obtained a sensitivity almost twice as high as a more complex olfactory test 
for predicting COVID-19 based on identifying the smell of three scented paper strips and a 4-item scale intensity 
rate15. In addition, the simplicity of the olfactory test means it can be implemented as a self-test, making it a more 
suitable population screening olfactory test than any test reported so far. The wide distribution of this predictive 
tool due to its low cost also contributes to improving the disease situational awareness of the population. This 
may be especially useful in those scenarios where preventive measures are gradually being relaxed and there is 
still a need to protect older and more vulnerable people due to the rapid waning of vaccine protection over time 
against new variants such as omicron23,24.

Our work has some limitations. Our study was conducted when the alpha variant was the most predominant 
variant in our area. Recent data show a high prevalence of classical symptoms such as cough, fever and olfac-
tory and taste dysfunction among vaccinated and unvaccinated COVID-19 infected patients where the delta 
variant is predominant suggesting that our model may be useful in this setting3. The omicron variant has been 
associated with a reduced capacity to penetrate olfactory epithelial cells and produce anosmia25. A prospec-
tive study based on a focused questionnaire for assessing olfactory function found that the prevalence of OD 
caused by the omicron variant was 24.6%26. This drop in the prevalence of OD with this variant may affect the 

Table 1.   Background and clinical characteristics of the study population. Values are median (Standard 
Deviation) and n (%).

Variable

Total SARS-CoV2 positive SARS-CoV2 negative

N = 519 N = 117 N = 402 Absolute difference (95% CI). %

Demographic data

Male patients 249 (48) 68 (58.1) 181 (45) 13.09 (2.92 to 23.27)

Age (years) 42.3 (16.3) 43.4 (15.95) 41.9 (16.3) 1.51 (− 1.82 to 4.83)

Background

Hypertension 96 (18.8) 24 (20.9) 72 (18.2) 2.64 (− 5.7 to 10.99)

Diabetes 39 (7.6) 9 (7.8) 30 (7.6) 0.23 (− 5.33 to 5.79)

Dyslipidaemia 57 (11.2) 16 (13.9) 41 (10.4) 3.53 (− 3.47 to 10.54)

Smoking 82 (16.1) 11 (9.6) 71 (18) − 8.41 (− 14.98 to − 1.83)

Enolism 18 (3.5) 8 (7) 10 (2.5) 4.42 (− 0.48 to 9.33)

Chronic bronchopathy 60 (11.8) 13 (11.3) 47 (11.9) − 0.59 (− 7.2 to 6.02)

Chronic heart disease 28 (5.5) 5 (4.3) 23 (5.8) − 1.47 (− 5.86 to 2.91)

Neoplasia 19 (3.7) 4 (3.5) 15 (3.8) − 0.32 (− 4.16 to 3.52)

Autoimmune disease 14 (2.7) 6 (5.2) 8 (2) 3.19 (− 1.1 to 7.49)

Chronic renal failure 4 (0.8) 0 (0) 4 (1) − 1.01 (− 2 to − 0.03)

Chronic liver disease 14 (2.7) 5 (4.3) 9 (2.3) 2.07 (− 1.94 to 6.08)

Hypothyroidism 26 (5.1) 3 (2.6) 23 (5.8) − 3.21 (− 6.93 to 0.5)

Obesity 43 (8.3) 11 (9.4) 32 (8) 1.44 (− 4.47 to 7.35)

Chronic cortico-therapy 16 (3.1) 11 (9.6) 5 (1.3) 8.3 (2.81 to 13.79)

Immunosuppressive therapy 5 (0.98) 2 (1.7) 3 (0.8) 0.96 (− 1.55 to 3.48)

Disease severity

Mild 334 (64.5) 74 (63.2) 260 (64.8) − 1.59 (− 11.5 to 8.32)

Moderate 30 (5.8) 22 (18.8) 8 (2) 16.81 (9.6 to 24.02)

Severe 6 (1.2) 2 (1.7) 4 (1) 0.71 (− 1.83 to 3.25)

Oxygen therapy 38 (7.34) 21 (17.9) 17 (4.2) 13.71 (6.48 to 20.94)

Diagnosis

Upper respiratory tract infection 66 (12.7) 34 (29.1) 32 (8.0) 21.1 (12.5 to 29.7)

Lower respiratory tract infection 22 (4.2) 2 (1.7) 20 (5.0) − 3.3 (− 6.4 to − 0.10)

Pneumonia 28 (5.4) 21 (18.0) 7 (1.7) 16.2 (31.5 to 50.5)



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15622  | https://doi.org/10.1038/s41598-022-19817-x

www.nature.com/scientificreports/

sensitivity of our model. Regarding the olfactory test, a high percentage of patients identified the smell of the 
gel as alcohol. The alcoholic matrix of the gel could hinder olfactory recognition, explaining the low specificity 
found. Moreover, the patient’s capacity to identify smell may decrease in an uncomfortable scenario such as an 
emergency department during a pandemic.

It is important to highlight that in our study no side effects related to the inhalation of the hydroalcoholic gel 
were reported. One study described that repeated exposure to a hydroalcoholic gel by inhalation does not increase 
blood ethanol levels27. The side effects described in the literature are related to the occurrence of dermatitis or 
are due to the ingestion of the gel28,29.

The value added by our COVID-19 predictive model in this field is its potential applications such as its 
inclusion in a mass testing strategy in order to save costs. Our predictive model could be useful to quickly rule 
out non-infected patients and for selecting the population that could benefit from a more expensive diagnostic 
test such as antigen testing or RT-PCR helping to reduce the costs for the health system or for companies with a 

Table 2.   Patient reported COVID-19 symptoms and olfactory test results. OD Olfactory dysfunction, GD 
Gustatory dysfunction, Values are n (%).

SARS-COV2 positive SARS-COV2 negative

P-valueN = 117 N = 402 Odds ratio (95% CI)

Symptoms

Fever 59 (50.4) 101 (25.1) 3.03 (1.98–4.65) 0.00

Dry cough 45 (38.5) 73 (18.2) 2.82 (1.8–4.42) 0.00

Asthenia 34 (29.1) 60 (14.9) 2.33 (1.44–3.79) 0.00

Myalgias 30 (25.6) 61 (15.2) 1.93 (1.17–3.17) 0.01

Cephalea 39 (33.3) 83 (20.6) 1.92 (1.22–3.03) 0.01

Diarrhoea 35 (29.9) 82 (20.4) 1.67 (1.05–2.65) 0.04

OD 19 (16.2) 13 (3.2) 5.79 (2.76–12.12) 0.00

GD 25 (21.4) 18 (4.5) 5.78 (3.03–11.04) 0.00

Dyspnoea 23 (19.7) 54 (13.4) 1.58 (0.92–2.7) 0.13

Productive cough 15 (12.8) 40 (10) 1.33 (0.7–2.5) 0.48

Sore throat 31 (26.5) 96 (23.9) 1.15 (0.72–1.84) 0.65

Rhinorrhoea 6 (5.1) 9 (2.2) 2.36 (0.82–6.77) 0.18

Anorexia 10 (8.5) 30 (7.5) 1.16 (0.55–2.45) 0.85

Asymptomatic 13 (11.1) 120 (29.9) 0.29 (0.16–0.54) 0.00

Symptoms combination

GD and OD 31 (26.5) 24 (6) 5.66 (3.16–10.13) 0.00

Fever and dry cough 75 (64.1) 146 (36.3) 3.13 (2.04–4.81) 0.00

Fever, dry cough and OD 82 (70.1) 152 (37.9) 3.84 (2.46–5.98) 0.00

Olfactory test results

Test 1 positive 74 (63.2) 193 (48) 1.86 (1.22–2.85) 0.01

No smell at all 13 (11.1) 12 (3) 4.06 (1.8–9.17) 0.00

Test 1 and 2 positive 62 (52.9) 156 (38.8) 1.78 (1.17–2.69) 0.01

Table 3.   Results of machine learning model. AUC​ Area under the curve, BA Balanced Accuracy, MCC 
Matthews correlation coefficient. The italic rows show the total population study and the bold rows show 
symptomatic patients.

Sensitivity (95% 
CI)

Specificity (95% 
CI) PPV (95%CI) NPV (95%CI) BA F1 MCC AUC (95% CI)

Sensitive tree

Relevant symp-
toms

0.86 (0.79–0.92) 0.37 (0.33–0.42) 0.29 (0.24–0.34) 0.9 (0.85–0.94) 0.62 0.43 0.21 0.86 (0.81–0.9)

0.97 (0.92–0.99) 0.11 (0.07–0.15) 0.29 (0.24–0.34) 0.91 (0.76–0.98) 0.54 0.44 0.12 0.89 (0.84–0.93)

Relevant 
symptoms and 
olfactory test

0.94 (0.88–0.98) 0.32 (0.28–0.37) 0.29 (0.24–0.34) 0.95 (0.9–0.98) 0.63 0.44 0.25 0.87 (0.83–0.92)

0.96 (0.9–0.99) 0.23 (0.18–0.28) 0.32 (0.26–0.37) 0.94 (0.86–0.98) 0.60 0.48 0.22 0.89 (0.84–0.93)

Relevant symp-
toms. olfactory 
test. sex and age

0.97 (0.91–0.99) 0.39 (0.34–0.44) 0.31 (0.27–0.36) 0.97 (0.94–0.99) 0.68 0.47 0.32 0.87 (0.83–0.92)

0.98 (0.93–1) 0.31 (0.26–0.37) 0.34 (0.29–0.4) 0.98 (0.92–1) 0.64 0.51 0.30 0.89 (0.84–0.93)

Specific tree

Relevant symp-
toms and age

0.29 (0.21–0.38) 0.95 (0.92–0.97) 0.62 (0.48–0.75) 0.82 (0.78–0.85) 0.62 0.40 0.32 0.85 (0.8–0.89)

0.33 (0.24–0.43) 0.93 (0.89–0.95) 0.62 (0.48–0.75) 0.79 (0.74–0.83) 0.63 0.43 0.32 0.82 (0.77–0.87)
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rigorous occupational risk policy such as hospitals, nursing homes or large companies. It could also be especially 
useful for controlling transmission in those regions where testing resources are limited due to scarce economic 
resources or logistical difficulties.

This predictive model has been patented (EP 21 382 524.3) and is available upon request. The effectiveness 
of its implementation in different epidemiological settings should be tested by performing external validations; 
therefore, the collaboration of the scientific community is encouraged.

Conclusion
A machine learning predictive model for COVID-19 using symptoms and a simple olfactory test based on an 
aromatized hydroalcoholic gel showed high sensitivity for diagnosing COVID-19. The capacity of this predic-
tive model to detect infected SARS-COV-2 patients among asymptomatic patients makes it a promising tool for 
the fight against COVID-19. This predictive model could be especially useful for mass screening when testing 
resources are limited.

Methods
Study design and setting.  This is a population-based prospective cohort study conducted following the 
TRIPOD Statement for multivariable diagnosis prediction model30. The study was carried out in the Emergency 
Department of Sant Joan University Hospital of Reus, which is the reference hospital of the region, and in all five 
primary care centres of Reus (Catalonia, Spain) public health network.

The municipality of Reus is located in the Mediterranean area, has a surface area of 52.82 km2 and at the 
beginning of 2020 it had a population of 106,168 inhabitants and a density of 2010.0 inhabitants/km231. This 
study was approved by the Ethics Committee of the Pere i Virgili Health Research Institute (Ref: 120/2020) and 
the IDIAP Jordi Gol Clinical Research Ethics Committee (Codi: 20/114-PCV). The study was conducted in 
accordance with de Declaration of Helsinki and Good Clinical Practices. All study participants were required 
to sign an informed consent form.

Participants.  The study included consecutive patients undergoing RT-PCR for the first time to rule out 
COVID-19 infection who consulted the hospital emergency department or their primary care centre between 15 
June and 11 September, 2020. Patients were tested for presenting symptoms suggestive of COVID-19 or for being 
close contacts of a confirmed COVID-19 case. Close contacts were considered those persons who had shared an 
area with a positive case at a distance of less than 2 m, for more than 15 min, without protection and from 48 h 
prior to the onset of symptoms.

The study did not include patients under 18 years of age, patients who did not sign the informed consent form, 
and patients with pathologies or conditions that may interfere with the olfactory function, such as any degree of 
cognitive impairment, Parkinson’s disease, chronic rhinosinusopathy, head trauma, nasal obstruction, treatment 
with high concentrations of oxygen, acute respiratory failure, patients with an altered state of consciousness, or 
who use inhaled corticosteroids.

Olfactory test development.  A multidisciplinary cooperation was established for creating a hydro-alco-
holic hand sanitizing gel that meets current requirements in terms of its composition32.

Based on the literature and habits of our Mediterranean study population, it was determined that the most 
suitable odoriferous substance was lemon33. Tests were carried out with different concentrations of lemon essen-
tial oil and lemon fragrances of synthetic origin. The composition of the gel was adapted to attenuate the smell 
of alcohol. A study was carried out to determine the most effective composition with and without thickener. Gas 
chromatography and mass spectrometry were used to obtain semi-quantitative results. A headspace sampling 
technique was used to establish the effectiveness of the volatile odoriferous substance that evaporated from the 
hydroalcoholic gel at 37 ºC. Finally, two hydroalcoholic gels with increasing concentrations of lemon essential 
oil were created as an olfactory test.

Figure 2.   Sensitive and specific classification tree algorithm ROC curve.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15622  | https://doi.org/10.1038/s41598-022-19817-x

www.nature.com/scientificreports/

Description of the olfactory test.  The olfactory test was performed by appropriately trained primary 
care and emergency nurses before the sample for SARS-COV-2 RT-PCR was collected. Therefore, both the 
patient and the healthcare personnel did not know the patient’s infection status. Firstly, the test consisted of 
applying 1 ml of 0.3% gel (olfactory test 1) using a dispenser onto the patient’s palm. Then the patient rubbed 
the gel on their hands and waited for 3 s. The patient was then asked to smell their hands and to “please, identify 
the smell of this gel”. The answer was recorded on the basic data collection sheet regardless of the result. If the 
answer was not lemon or if it was inconclusive, the same test was repeated after 30 s with the 0.5% gel (olfactory 
test 2). The olfactory test was considered negative if the patient recognized a citrus fruit, and the olfactory test 
was considered positive if the patient could not smell the gel or did not recognize a citrus fruit.

Data collection.  A data collection sheet was completed by the attending nurse before taking the sample for 
the RT-PCR test. It included the results of the two olfactory tests when both were performed. It also included 
age, gender, duration of symptoms (in days), and a yes/no questionnaire to check for symptoms such as fever, dry 
cough, dyspnoea, anorexia, myalgia, headache, diarrhoea, asthenia, productive cough, sore throat, OD or gusta-
tory dysfunction (GD), others or no symptoms. The RT-PCR test for detecting SARS-COV-2 was considered 
the gold standard for diagnosis. During our study, the RT-PCR was performed by trained personnel according 
to the technical considerations of the manufacturer using a double sampling of the pharynx and the nose. The 
conservation of the sample and the transfer to the laboratory followed the channels of the usual clinical practice 
of the centre. RT-PCR tests were carried out with the VIASURE SARS-COV-2 Real Time PCR Detection Kit 
(CerTest Biotec, Zaragoza, Spain), or with the Procleix1 method in a Panther automated extractor and amplifier 
(Grifols Laboratories, Barcelona, Spain). Once all the data collection sheets were completed, the medical digital 
records were consulted and the RT-PCR test results were recorded, as well as the patient’s background, evolution 
and discharge diagnosis. Regarding the severity of the disease, the patients attended and discharged immediately 
were considered as mild, those admitted to the hospital as moderate and those requiring ICU during hospitaliza-
tion as severe.

This study was conducted at the beginning of the second wave of COVID-19 in our region34. The 14-day 
cumulative incidence of COVID-19 cases in the city of Reus increased gradually from 0.9 cases/100,000 inhabit-
ants on 15 June to 376.09 cases/100,000 inhabitants on 24 August35.

Model development and internal validation.  First, an analysis was conducted to explore the inde-
pendent variables associated with COVID-19. The symptoms that proved to be statistically significant in a logis-
tic regression predictive model, were fever, dry cough, myalgia, headache, diarrhoea, asthenia, altered sense of 
smell, and altered sense of taste. These 8 symptoms were defined as relevant and presented as well as their combi-
nations the strongest associations with the predicted event. Diagnostic values were calculated for each symptom 
separately and their combinations for the total population and the symptomatic population. The productive 
cough variable was also included as a relevant symptom.

In order to facilitate the search for the best combination of variables to predict the diagnosis of COVID-19, 
we decided to build a model based on a decision tree constructed by machine learning that could also facilitate 
its clinical use following guidelines36. Other modelling methodologies such as random forests or artificial neural 
networks were discarded because they need larger training datasets and also because their interpretability is not 
as straightforward as that of decision trees. Priority was given to the construction of a parsimonious model using 
as few variables as possible, robust by minimising missing data, transparent and simple. Moreover, minimising 
false negatives was also a priority in the predictive model construction to allow its use as a population screening.

The 8 relevant symptoms and the result of the olfactory test were variables significantly associated with 
COVID-19. Sex and age were as well sequentially introduced into the model as these variables were considered 
clinically relevant10. The final model had 11 independent variables therefore the study sample complied with the 
standard rule of ten clinical events per predictive variable37.

The number of relevant symptoms was counted for each patient and this new variable was used to develop 
the model based on classification trees using a recursive partitioning algorithm38. The growth of the trees was 
controlled to avoid overfitting the data. Trees were pruned to the size that minimized the cross-validated error. 
In addition, these classification trees were built using the following parameters: the splitting index was the Gini 
coefficient; the minimum number of patients in any node of a tree for a split to be attempted was set at 30; the 
minimum number of patients in any terminal node of a tree was set at 10; node splits were only attempted if 
they improved the fit by a factor of 0.01; and the number of cross-validations to be run was set at 10. The sizes 
of the trees obtained using this strategy range between six and seven leaves (terminal nodes), which proves that 
overfitting has been successfully avoided.

In order to obtain different values of sensitivity and specificity in the resulting classification trees, distinct 
costs of false positives and false negatives were used in the loss matrix parameter that drives the splitting func-
tion of the classification tree algorithm. In particular, the specific classification tree was grown using equal cost 
values for false positives and false negatives, while the sensitive classification tree was grown using a cost value 
for false negatives that was eight times the cost value for false positives.

The internal model validation was carried out using the R package cross validation techniques in machine 
learning.

Statistical analysis.  The quantitative variables used in this study were described using the mean, the stand-
ard deviation (SD), the median and the first and third quartiles. The differences between means and their cor-
responding 95% confidence interval (CI) were also used to compare groups of patients. Categorical variables 
were described using the number of cases, percentages and 95% CI. Comparisons between groups of patients 
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were performed using Student’s T test for quantitative variables, while the chi-squared test was used for categori-
cal variables. Groups of patients were also compared in terms of the risk difference and odds ratio (OR) of the 
binary variables, and their corresponding 95% CI. All tests were two-tailed and P-values lower than 0.05 were 
considered statistically significant. Diagnostic values in terms of sensitivity, specificity, positive predictive value, 
negative predictive value, positive likelihood ratio and negative likelihood ratio, as well as their corresponding 
95% CI, were calculated for the binary variables and smell tests. Several predictive models were analysed to han-
dle missing data in the study protocol. A data-complete analysis was adopted over other strategies due to the low 
relevance of the missing data in the final results of the predictive machine learning model. All statistical analyses 
were performed using R software version 4.0.

Data availability
The datasets generated and/or analysed during the current study are not publicly available but are available from 
the corresponding author on reasonable request.
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