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Explainable machine learning 
analysis reveals sex and gender 
differences in the phenotypic 
and neurobiological markers 
of Cannabis Use Disorder
Gregory R. Niklason1,6, Eric Rawls 1,6, Sisi Ma2, Erich Kummerfeld2, Andrea M. Maxwell3,4, 
Leyla R. Brucar1, Gunner Drossel 4 & Anna Zilverstand 1,5*

Cannabis Use Disorder (CUD) has been linked to a complex set of neuro-behavioral risk factors. While 
many studies have revealed sex and gender differences, the relative importance of these risk factors 
by sex and gender has not been described. We used an “explainable” machine learning approach 
that combined decision trees [gradient tree boosting, XGBoost] with factor ranking tools [SHapley’s 
Additive exPlanations (SHAP)] to investigate sex and gender differences in CUD. We confirmed that 
previously identified environmental, personality, mental health, neurocognitive, and brain factors 
highly contributed to the classification of cannabis use levels and diagnostic status. Risk factors with 
larger effect sizes in men included personality (high openness), mental health (high externalizing, high 
childhood conduct disorder, high fear somaticism), neurocognitive (impulsive delay discounting, slow 
working memory performance) and brain (low hippocampal volume) factors. Conversely, risk factors 
with larger effect sizes in women included environmental (low education level, low instrumental 
support) factors. In summary, environmental factors contributed more strongly to CUD in women, 
whereas individual factors had a larger importance in men.

Cannabis is the most commonly used illicit drug in the United States, with an estimated 8.2% of the population 
reporting cannabis use in the past  month1. Of those who endorsed past-year use, an estimated 30.6% met criteria 
for Cannabis Use Disorder (CUD)2. Although men have historically reported a greater prevalence of cannabis use 
relative to women, this gender gap is  narrowing3–6. Moreover, research shows that women progress to CUD more 
quickly than  men7,8. While the observed broad differences in use patterns thus suggest that different factors may 
be underlying CUD in women versus men, little is known about which factors drive these  differences9,10. Here 
we examine both neurobiological (e.g., sex-specific) risk factors as well as environmental (e.g., gender-specific) 
risk factors that are difficult to parse in  humans11. We will refer to the differences between men and women in 
this study as sex/gender differences to more accurately reflect this complexity.

The factors underlying cannabis use and dependence are complex and likely include neurobiological, individ-
ual-level (e.g., personality, cognitive), and environmental risk factors. These factors have, until now, often only 
been investigated in a fragmented way, with researchers focusing on a small number of factors in each study or 
focusing on a single domain of interest. However, the recent availability of large public datasets with broad phe-
notyping, such as the Human Connectome Project (HCP), and the emergence of machine learning approaches 
and ranking tools for evaluating the importance of a large number of factors and their relative  contributions12, 
make it possible to shift toward an analysis of the patterns of factors underlying CUD.

Prominent neurobiological theories of addiction have traditionally focused on the importance of reward- 
and approach-related behavior, with newer theories integrating cognitive and affective factors as important 
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additional functional  domains13–16. However, even “multi-mechanistic” addiction models are limited, such as 
the Koob–Volkow  model13 that discusses three main mechanisms involved in addiction: incentive salience/habit 
formation (reward/approach-related behavior), negative affect, and executive function. Only very few addiction 
theories have moved beyond this triadic-mechanism framework [e.g. see “vulnerabilities in decision making”17 
as an example], and even less empirical work has been done using a multi-domain data-driven approach [e.g., 
see “An Integrated Multimodal Model of Alcohol Use Disorder”18 as an example]. However, separate empirical 
investigations strongly suggest the involvement of a myriad of different factors.

Individual risk factors that have been shown to predict high likelihood of cannabis abuse and dependence 
include sex/gender19, general cognitive ability [IQ/working  memory20–22], childhood mental health disorders 
[(depression, externalizing/conduct disorder)19,23–28], trauma  history26,29,30 and stressful life events/low socio-
economic  status23. Cannabis users have further been characterized to have personality traits of high open-
ness/extraversion and low agreeableness/conscientiousness, while neuroticism has not been linked to cannabis 
 abuse31–33. Increased openness in particular appears to discriminate cannabis users from other drug  users33. The 
triadic neurobiological models of cannabis addiction are supported by evidence on increased reward/approach-
related behavior [e.g., increased sensation  seeking34 & delay  discounting35,36], a role of increased negative affect 
[e.g. increased prevalence of  depression2,19,23] and deficits in executive function, specifically deficits in memory/
working memory performance and processing speed deficits that predict risk for chronic cannabis  use20–22,37,38. 
Neuroimaging studies corroborate these theories by demonstrating an upregulation of brain regions involved 
in reward/approach-related behavior [e.g., salience/reward  network16,39] and structural changes in valuation 
networks [e.g., orbitofrontal  cortex40,41], as well as changes in brain structures supporting memory function [e.g., 
reduced hippocampal  volume40; altered memory network  function39]. Finally, reduced educational attainment 
and lower socioeconomic status have been shown to co-occur with chronic cannabis  use42–44. Specifically, longitu-
dinal studies have concluded that common risk factors [e.g., lack of support in family/peer/school  environment45 
and mental health  issues43] cause both substance use and lower educational attainment/socioeconomic status.

Although sex/gender differences in use patterns in CUD are increasingly well established, it is unclear which 
neurobiological, individual-level (e.g., personality, cognitive) and environmental mechanisms drive these differ-
ences. Preclinical models of cannabis use and dependence suggest that neurobiological factors may contribute 
to these sex/gender differences. Female rodents metabolize ∆9-tetrahydrocannabinol (THC) at a faster rate 
than  males46,47. Behaviorally, female rodents also demonstrate more cannabis withdrawal  symptoms48, higher 
rates of cannabinoid reinstatement after  abstinence49, and higher rates of self-administration relative to  males50. 
Further, while sex/gender differences have not been studied comprehensively in adults to  date9, a machine-
learning analysis of the predictors of initiation of cannabis use in adolescence found distinct neurobiological, 
individual-level and environmental risk factor profiles in boys versus  girls10. Specifically, individual level factors 
such as sensation/novelty seeking were predictive of cannabis use onset in boys, whereas factors that are more 
closely linked to the environment, such as verbal IQ, sexual relationships and parent personality, were predic-
tive in  girls10. Finally, gendered environmental experiences may also influence CUD. For example, women with 
substance use disorders are more likely to experience a lack of social support and increased isolation relative to 
 men9,11. The endocannabinoid system is essential in regulating  stress51,52. Stressful environmental factors (e.g., 
lack of social support) may contribute to cannabis use and dependence in a sex/gender-specific way through 
altered endocannabinoid signaling. Therefore, in this study, we comprehensively examine sex/gender differences 
in the relative contribution of neurobiological, individual, and environmental risk factors to high cannabis use 
levels and CUD to fill this gap in the literature.

To evaluate the relative importance of a wide variety of factors associated with high cannabis use levels and 
cannabis dependence as well as potential sex/gender differences in a well-described community sample  (HCP39; 
N = 1204), we employed state-of-the-art machine learning methods [XGBoost (eXtreme Gradient Boosting)53, 
a tree-based ensemble machine learning algorithm] in combination with a ranking tool [SHapley’s Additive 
exPlanations (SHAP)12] to assign relative importance (i.e., SHAP values) to each of the associated factors. Deci-
sion and boosted tree-based machine learning methods are powerful tools for identifying associated factors in 
psychiatric research due to their non-parametric nature (resilience to non-normal data distributions) and their 
tolerance for multicollinear and missing  data54. However, when used on their own, it is difficult to interpret the 
relative importance of each of the factors involved. We therefore employed SHAP, an extension of methodology 
originally developed for consistent credit attribution in cooperative game  theory55, to provide a reliable and 
consistent ranking of the unique relative importance of each  factor12. In addition to providing a ranking for 
the unique and additive importance of all identified factors, SHAP allows for examining interactions between 
factors in a  model56, such as sex/gender-related interactions. In summary, the current study is an exploratory, 
data-driven analysis that leverages state-of-the-art machine learning algorithms to model the complex factors 
underlying chronic cannabis use and their relative importance by sex/gender.

Methods
Participants. We analyzed data from the final HCP data release [N = 1204, aged 22–35, 54% female; https:// 
db. human conne ctome. org/ data/ proje cts/ HCP_ 1200; HCP preprocessing pipeline (4.1)]. The data was collected 
in 2012–2015 at Washington University in St. Louis, Missouri, United States. All subject recruitment procedures 
and informed consent forms, including consent to share de-identified data, were approved by the Washington 
University Institutional Review Board (IRB) in accordance with the Declaration of Helsinki. For the present 
study, after permission was obtained from the HCP to use the Open Access and Restricted Access data for the 
present study (see Data Availability Statement below), a protocol filed with the University of Minnesota Insti-
tutional Review Board (IRB) met criteria for exemption. In this community sample, 9% of participants met the 
DSM-IV criteria for cannabis dependence (n = 109, 26% female; note that cannabis abuse was not assessed). The 

https://db.humanconnectome.org/data/projects/HCP_1200
https://db.humanconnectome.org/data/projects/HCP_1200
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HCP study sample had a similar racial and socioeconomic status distribution as reported in the 2010 United 
States Census (Census United States 2010: 72% White, 13% Black/African–American, 6% Asian/Nat. Hawaiian/ 
Other Pacific Islander, 9% other; median income (25–34 year olds) = $49,445; mean education years (25–34 year 
olds) = 13.8 years). See Table 1 for detailed demographic information. See Supplementary Fig. 1 for an overview 
of the analysis flow.

Outcome variables. Our primary outcome measures of interest were (1) lifetime level of cannabis use and 
(2) lifetime diagnosis of cannabis dependence, which were assessed using a structured interview (the Semi-
Structured Assessment for the Genetics of Alcoholism  [SSAGA]57). Level of cannabis use was assessed by the 
reported number of lifetime uses (categories: 0, 1–5, 6–10, 11–100, 101–999, 1000 + lifetime uses). For our analy-
sis, we merged two categories, such that we had five different levels of cannabis use on a logarithmic scale (0, 1 + , 
10 + . 100 + , 1000 + lifetime uses). Classification analyses were conducted for each outcome respectively, i.e., we 
classified escalation of cannabis use and dependence (1 + uses, 10 + uses, 100 + uses, 1000 + uses, and DSM-IV 
dependence). Each analysis classified a binary outcome using the entire sample; that is, we classified individuals 
who used cannabis 1 + times from those who did not, classified individuals who used cannabis 10 + times from 
those who used cannabis < 10 times, and so on. The smallest number of cases for considering sex/gender inter-
action effects were hence found in the 1000 + model (cases: N = 31 women, N = 77 men), and in the model with 
cannabis dependence diagnosis as an outcome (cases: N = 28 women, N = 81 men).

Phenotypic models. The HCP dataset contains a wide array of self-report, diagnostic and behavioral 
measures assessing domains of cognition, emotion, social function, psychiatric dysfunction, and  personality58. 
To examine as broad a phenotypic space as possible, this study used all available behavioral, self-report, and 
interview-based measures in the HCP database (including all in-scanner task behavior variables). We generally 
included both summary scores and subscale/item-level scores, because the machine learning method we used 
(detailed below) explicitly allows for correlated factors during model  fitting53. This allows for a direct compari-
son of the contribution of summary scores versus subscale/item-level scores to the classification. For a complete 
list of all included phenotypic variables (273 in total), see Supplementary Table 1.

Freesurfer (structural MRI) models. For our structural Magnetic Resonance Imaging (MRI) or “Free-
surfer” model, we used the Freesurfer data provided by  HCP59,60. These summary data included Freesurfer-
generated volume estimates for 44 regions and surface area and cortical thickness estimates for 68 regions. We 
did not correct these measures for total brain volume, to avoid introducing artificial sex/gender differences due 
to  overcorrection61, but did include 19 summary measures including total gray matter volume, white matter 
volume, and brain segmentation volume as additional factors in the model (199 factors total).

Resting-state global and local efficiency models. We used the resting-state functional MRI (rsfMRI) 
data as preprocessed by  HCP59 in the volumetric data format. Using the Brain Connectivity  Toolbox48, we con-
ducted a graph theory analysis to extract measures of nodal global and local efficiency [connectivity of a brain 
region with the rest of the network (global) or with the network within a small neighborhood (local)] from 638 
similarly sized brain regions [whole-brain, excluding cerebellum;62,63 sub-parcellation of the Automated Ana-
tomical Labeling atlas (AAL)64]. For each participant, a 638-by-638 matrix of Fisher’s z-transformed Pearson 
correlations was computed, representing the normalized bivariate correlation of each brain region with each 
other region. This correlation matrix was binarized at a proportional cost (to improve stability of measures 

Table 1.  Demographic characteristics of the full sample who completed the SSAGA interview (n = 1204). 
*Significant CUD-Control Difference or Men-Women Difference. a Income was binned (1 =  < 10 k, 2 = 1.1–
19.999 k, 3 = 20–29.999 k, 4 = 30–39.999 k, 5 = 40–49.999 k, 6 = 50–74.999 k, 7 = 75–99.999 k, 8 =  ≥ 100 k). Five 
control participants did not report income.

Full sample CUD (n = 109) Control (n = 1095) CUD − control difference

Sex/gender (M/W) 549/655 81/28 468/627 χ2 = 39.84, p < .001*

Race (White, Black/African–American, Asian/Nat. Hawaiian/ Other Pacific Islander, 
Other) 885/193/69/57 83/15/1/10 802/178/68/47 χ2 = 11.14, p = .053

Age of first cannabis use (< = 14, 15–17, 18–20, >  = 21, never) 81/240/207/126/550 35/55/16/3/0 46/185/191/123/550 χ2 = 232.80, p < .001*

THC urine status (positive/negative) 1062/142 66/43 996/99 χ2 = 88.11, p < .001*

Lifetime cannabis use (0, 1–9, 10–99, 100–999, 1000 +) 550/324/144/78/108 0/0/19/29/61 550/324/125/49/47 χ2 = 460.01, p < .001*

Age (mean ± SD) 28.84 ± 3.69 28.58 ± 3.53 28.86 ± 3.71 t(1202) = 0.76, p = .45

Education years (mean ± SD) 14.86 ± 1.82 14.22 ± 4.39 14.93 ± 1.80 t(1202) = 3.90, p < .001*

Income (mean ± SD)a 5.00 ± 2.17 4.39 ± 2.37 5.06 ± 2.14 t(1197) = 3.08, p = .002*

Full sample CUD (n = 109) Control (n = 1095) Men − women difference

Men: age of first cannabis use (≤ 14, 15–17, 18–20, ≥ 21, never) 49/127/96/59/218 25/43/11/2/0 24/84/85/57/218 χ2 = 5.88, p = .12

Women: age of first cannabis use (≤ 14, 15–17, 18–20, ≥ 21, never) 32/113/111/67/332 10/12/5/1/0 22/101/106/66/332 χ2 = 5.88, p = .12

Men: lifetime cannabis use (0, 1–9, 10–99, 100–999, 1000 +) 218/130/78/46/77 0/0/12/23/46 218/130/66/23/31 χ2 = 50.67, p < .001*

Women: lifetime cannabis use (0, 1–9, 10–99, 100–999, 1000 +) 332/194/66/32/31 0/0/7/6/15 332/194/59/26/16 χ2 = 50.67, p < .001*
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over absolute thresholds)65 of 0.15 (which is in the middle of the optimal range of 0.01–0.30)66, to represent the 
strongest 15% of positive connections. We characterized the intrinsic properties of the obtained connectivity 
graphs by computing nodal global and local efficiency for all 638 brain  regions67, and then averaging both graph 
theory measures within each larger AAL region (90 factors).

Resting-state network connectivity models. We used the resting-state grayordinate (CIFTI) 
functional data provided by HCP, to compute within and between functional connectivity for a set of brain 
 networks68–71. We first parcellated the whole brain into 718 parcels using the Cole-Anticevic  parcellation72,73. We 
calculated the pairwise Pearson correlations between each pair of parcels in the brain, normalized the obtained 
correlations using Fisher’s z-transform, and averaged the parcel-to-parcel correlation values both within and 
between networks (78 factors in total).

Task fMRI models. All task fMRI (tfMRI) data were preprocessed by HCP using the same steps as for the 
rsfMRI  data59. We used the provided task fMRI task activation Contrast Of Parameter Estimates (COPE) maps 
(generated by FSL’s FEAT) that were acquired during seven behavioral tasks, described  in58. These tasks included 
(1) an N-Back task, (2) a gambling task, (3) a motor mapping task, (4) a language-math task, (5) a social cogni-
tion task, (6) a relational-processing task, and (7) an emotion-processing task. We selected 12 COPE maps that 
represented the main task effects of interest for each task: (1) N-Back task: 2back-0back contrast, (2) gambling 
task: response to punishments and rewards, (3) motor mapping task: response to left/right foot, left/right hand 
and tongue movements, (4) language-math task: story-math contrast, (5) social cognition task: social-random 
contrast, (6) relational-processing task: relational-match contrast, and (7) emotion-processing task: negative 
faces-shapes contrast. To define activation clusters, we employed the cifti-find-clusters command in Connec-
tome Workbench v1.4.2 (https:// www. human conne ctome. org/ softw are/ get- conne ctome- workb ench) to find 
clusters of significantly activated voxels for each of the selected contrast maps, using the full sample (N = 889 
with task fMRI). We chose a cutoff of Cohen’s d > 0.8 to select only clusters with large effect sizes and reduce 
the number of factors entering our final model. Then, for individual participants, we extracted the mean beta 
weight within each cluster of selected voxels. The task fMRI model contained 448 factors. For a complete list of 
all included fMRI task contrasts (12 in total), see Supplementary Table 2.

Classification analysis using gradient tree boosting. To classify each outcome variable of interest, 
we used a nonparametric classification approach called gradient tree boosting. Gradient tree boosting machines 
are fit to the gradient of the loss function at every iteration, building up a series of simple models using gradient 
descent in function space. Specifically, we used the recently developed  XGBoost53, a fast and scalable state-of-
the-art gradient tree boosting system. We chose gradient tree boosting because this class of methods is stable and 
requires a much smaller sample size to produce reliable effect  estimates74, compared to previous methods such 
as support vector machines (SVM)75. Specifically, simulations demonstrated that XGBoost was able to achieve 
a prediction accuracy of 0.90, detecting the top 27 relevant features out of ~ 2000 features reliably in a biological 
benchmarking dataset (N = 865) with as little as N = 20 for the training  sample74. Comparative simulations using 
the identical benchmarking dataset further demonstrated a ~ 12-fold reduction in the needed training sample 
size with XGBoost as compared to SVM (e.g. with XGBoost N = 20 achieves > 0.90 accuracy, while N = 250 with 
SVM)74,75. Also, while class imbalance has been shown to lower the performance of XGBoost, comparative simu-
lations demonstrated that performance was acceptable up to a 17:1 ratio for class imbalance in the  population76. 
Another advantage of XGBoost is its ability to deal with the presence of missing values in the data through 
sparsity-aware split finding, capturing trends in missing values by the  model53. It is therefore not necessary to 
use an imputation for missing  values53. Finally, the feature ranking tool that we applied (see for details below) 
had been initially applied to XGBoost, which outperformed other machine learning models such as SVM, Lasso 
penalized linear logistic regression, or an unsupervised Parzen window  method77.

Nested k-fold cross-validation was used to tune hyperparameters (inner loop) and evaluate classification 
performance (outer loop), generating an unbiased estimate of the model  performance78. We used k = 5, there-
fore evaluating 5 models using an 80–20 train-test split in both inner and outer loops. Bentéjac and  colleagues79 
performed a comprehensive evaluation of parametrization tuning for XGBoost. They compared the XGBoost 
default parameter values with different tuning approaches and concluded that tuned models performed signifi-
cantly  better79. They then proposed new (optimized) default values for (a) learning rate [suggested values: 0.05, 
0.1], (b) maximum tree depth [suggested value: 100 (unlimited)], and (c) subsampling [suggested value: 0.75]79. 
These proposed values are conservative (reducing the risk of model overfitting) for learning rate and subsam-
pling, but non-conservative for maximum tree depth. We therefore chose to center our grid search around their 
proposed values for learning rate and subsampling, but used more conservative (smaller) values for maximum 
tree depth than proposed. Overall, we hence chose a conservative approach, aimed at preventing model overfit-
ting. We considered the Cartesian product of the following hyperparameters: learning rate = {0.01, 0.02, 0.05, 0.1, 
0.2}, max tree depth = {4, 6, 8, 10, 12}, and subsampling size = {0.6, 0.8, 1}. During the inner loop of the nested 
cross-validation, we conducted a grid search to determine the best combination of the above hyperparameters. 
The performance of the best model selected from the inner loop was evaluated in the outer loop, resulting in 
5 performance estimates. The overall best performing set of hyperparameters for each outcome is reported in 
the Supplementary Table 3. We additionally used an early stopping parameter of 30 rounds, thus preventing 
overfitting when the model loss function fails to improve (therefore number of trees was not included in the 
hyperparameter grid). Since the HCP dataset contains many related participants, our cross-validation scheme 
always assigned family members to the same group (train or test) for every fold, therefore ensuring that test 
performance was not inflated by allowing the model to be trained and then tested on a related subject.

https://www.humanconnectome.org/software/get-connectome-workbench
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We quantified the performance of each model by using the Area Under the Curve of the Receiver Operating 
Characteristic Curve (AUC-ROCC), which describes how well the model can distinguish between classes. The 
AUC-ROCC ranges from 0 to 1; higher AUC-ROCCs indicate better predictive performance. An AUC-ROCC 
of 0.5 indicates random prediction for a binary outcome.

Factor importance ranking using SHapley Additive exPlanations. Advanced machine learning 
methods such as gradient boosting machines are capable of making highly accurate predictions, but often these 
predictions come at the expense of interpretability. That is, traditional classification approaches do not allow 
for an interpretation of the relative importance of the factors involved, as they only evaluate the predictive per-
formance of the entire model. To evaluate the unique relative importance of each model factor (referred to as 
“features” in machine learning research), we used SHAP (SHapley Additive exPlanations), proposed  by12, as a 
feature ranking tool. SHAP provides an explanation model that computes the unique and additive importance of 
each model feature (predictive factor) in determining the final classification result. SHAP is based on the concept 
of Shapley Values, originally described  in55 as a consistent method to allocate credit to a set of team members for 
a cooperative outcome. In this case, rather than the consortium consisting of a team of players working toward 
a common goal, the consortium consists of the set of features (factors) which work toward the common goal of 
producing the classification output of the model. The impact of each feature on the output of the model is defined 
as the change in model output when the feature is known, as opposed to unknown. Shapley values are the only 
currently available feature ranking tool that obeys a specific set of properties [local accuracy, consistency, and 
 missingness12], which are considered desirable in explaining the output of a machine learning classification 
model. In combination with gradient-boosting machines such as XGBoost, this method is both robust to outliers 
and  flexible77. An in-depth explanation of the properties of SHAP is beyond the scope of the current paper; for a 
full explanation of the properties of SHAP, the reasons these properties are desirable, and the equations used to 
derive the feature importance rankings, please  see12  and56.

Using SHAP to investigate sex/gender effects in cannabis use and dependence. Critical to our 
current investigation, SHAP is also able to leverage the assumption of feature additivity to compute interaction 
effects between sets of two factors in the  model56. SHAP values can provide a rich alternative to traditional par-
tial dependence  plots80. While partial dependence plots only allow for an interpretation of how the output of a 
model depends on the interaction between two factors, SHAP dependence plots allow for interpreting interac-
tion effects while accounting for both lower- and higher-order interaction effects of all factors in the model. In 
this study, we leveraged this to investigate sex/gender differences in model factors, as sex/gender was a strong 
predictor of cannabis outcomes in all models.

Results
Classification performance. Cross-validated AUC-ROCCs of the six unimodal models we considered 
returned a wide range of performance indices (Fig. 1a). The phenotypic model had an average AUC-ROCC 
of 0.70 over all five outcome measures, and produced the best performance in classifying 1000 + cannabis uses 
(AUC-ROCC = 0.74). Of the brain models, the best performance was obtained by the Freesurfer (structural 
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Figure 1.  Area under the Curve of the Receiver Operating Characteristic Curve (AUC-ROCC) was used 
to quantify the classification performance of (a): Six unimodal models, and (b): Two additional multimodal 
models that combined the factors of the phenotypic model with the factors of the two best performing brain 
models. The phenotypic model performed better than any of the other unimodal models, and the inclusion of 
the two best sets of brain factors (Freesurfer & global efficiency) did not appreciably improve the performance of 
the phenotypic model. Error bars correspond to ± 1 Standard Error.
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MRI) model (average AUC-ROCC = 0.58) and the global efficiency model (average AUC-ROCC = 0.57). The 
other brain models all performed similarly to each other, and were not considered further (AUC-ROCC range 
0.52–0.53).

To determine if performance of the phenotypic model could be improved by adding factors from the most 
informative brain modalities, we then tested two bimodal models (phenotypic + Freesurfer, phenotypic + global 
efficiency; Fig. 1b). For both of the combined models, the average AUC-ROCC over all five outcomes was 0.71. 
The best performance of the combined models (phenotypic + Freesurfer, phenotypic + global efficiency) was 
obtained in classifying 1000 + cannabis uses (AUC-ROCC = 0.74 & 0.80, respectively). The results indicate that 
while the inclusion of brain data did not appreciably change the overall classification accuracy, specific brain 
factors (e.g. hippocampus volume, median rank = 4) were among the highest ranked predictors in these bimodal 
models.

SHAP factor importance ranking. To determine which factors drove the performance of the best per-
forming classification models, we used SHAP to estimate the relative importance of all factors (e.g., see the fac-
tors contributing to dependence in Fig. 2; see other models in Supplementary Figs. 2–9). To determine which 
factors consistently classified increased cannabis use levels and dependence, we computed the median rank of 
each factor across all models (see Supplementary Table 4). The consistent highly ranked factors across models 
(median rank ≤ 20, the default cutoff for highly ranked features in SHAP models) included a broad range of 
factors, such as sex/gender, environmental factors (income, education level), personality measures (openness), 
mental health measures (externalizing, childhood conduct disorder, aggression), neurocognitive measures 
(working memory, verbal IQ) and brain measures (hippocampal, brainstem and CSF volume; frontal pole thick-
ness; insula, operculum and occipital resting-state connectivity) (Supplementary Table 4).

SHAP sex/gender interaction analysis. Since sex/gender was a top ranked factor (ranked 4th across 
all phenotypic + Freesurfer and phenotypic + Global models, Supplementary Table 4), we examined interaction 
effects to identify sex/gender-specific factors that contribute to classifying cannabis dependence. We focused on 
the models predicting cannabis dependence and use levels of 1000 + lifetime uses as the most clinically relevant 
outcomes. We report all interaction effects with a SHAP interaction value of at least 0.1 (the sum of all SHAP 
values per model is 1), in order to discuss only interaction effects with meaningful effect sizes. When comparing 
effect sizes, we considered values <|0.1| as small, <|0.3| as moderate, <|0.5| as large and >|0.5| as very large effect 
sizes.

SHAP sex/gender interactions in models predicting cannabis dependence. The bimodal models (pheno-
typic + Freesurfer; phenotypic + global) classifying cannabis dependence indicated sex/gender interaction effects 
for environmental factors (education level), personality measures (openness), mental health factors (childhood 
conduct disorder, fear somaticism), neurocognitive measures (delay discounting, working memory) and brain 
measures (hippocampal volume, postcentral thickness, superior temporal area) (Figs. 3, 4). Men as compared to 
women were more often classified as cannabis-dependent based on personality (high openness), mental health 
(high childhood conduct disorder, high fear somaticism), neurocognitive (impulsive delay discounting, slow 
working memory performance) and brain factors (low hippocampal volume, high postcentral thickness). In 
contrast, women were more often classified as dependent based on environmental (lower education level) and 
brain factors (smaller superior temporal area). Effect sizes for the main effects were often very large ( >|0.5|) for 
behavioral effects, and large ( >|0.3|) for brain effects (see Figs. 3, 4: column “main effects present”), while the sex/
gender interaction effects had small to moderate effect sizes (Figs. 3, 4: column “main effects removed”). Overall, 
the direction of effects was therefore the same in men and women, but the sex/gender interaction effects indi-
cated that the observed effects were much stronger in either men or women.

SHAP sex/gender interactions in models predicting heavy cannabis use. The 1000 + lifetime uses model demon-
strated sex/gender interaction effects for environmental factors (instrumental support), personality measures 
(openness), mental health factors (externalizing) and brain measures (precentral efficiency) (see Fig. 4 for sex/
gender interactions in the phenotypic + global model; the phenotyopic + Freesurfer model showed no sex/gender 
interaction effects > 0.1 ). Men as compared to women were more often classified as heavy cannabis users (+ 1000 
uses) based on personality (high openness), mental health (high externalizing) and brain factors (low global 
efficiency of the precentral cortex). In contrast, women were more often classified as heavy cannabis users based 
on environmental factors (low instrumental support). Similarly as in the Cannabis Dependence models, the sex/
gender interaction effects did not influence the directions of the effects but rather modulated the effect sizes such 
that the observed effects were much stronger in either men or women.

Discussion
The current study used a machine learning approach to describe the complex factors underlying high cannabis 
use levels and dependence and their relative importance by sex/gender in a community sample of young adults 
in the United States. While a number of recent reviews have recognized the potential for machine learning 
methods in psychiatric  research81–86, this is the first study to date to use such an approach in adults with CUD, 
although machine learning methods have been applied to examine adolescent cannabis  use10. Therefore, it is 
also the first study to date to comprehensively study sex/gender differences in CUD in adults. Since conventional 
machine learning methods obtain increased predictive power at the cost of  interpretability77,83,87, we paired our 
classification models [(XGBoost)53] with Shapley Additive eXplanations [(SHAP)12] to generate “explainable” 
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Figure 2.  SHAP ranking for factors contributing to the two bimodal models (a: phenotypic + Freesurfer, b: 
phenotypic + global efficiency) classifying cannabis dependence. Higher positive SHAP values on the x-axis 
indicate that the observed factor pushed the classification closer towards cannabis dependence, whereas more 
negative SHAP values indicate that the factor pushed the classification away from cannabis dependence. Factors 
are ranked in order of the average (absolute) SHAP value, which indicates the importance of a factor. Individual 
data points (dots) represent the model output for each individual in the sample. The position of a dot on the 
x-axis represents the impact of the observed factor on the model output for the individual. The color of the 
individual dots represent the value of the observed measurements, with blue indicating lower and red higher 
values (e.g. red indicates high openness or high education level in these plots). As an example, in both plots high 
(red dots) observed “Openness to Experience” and low (blue dots) education levels pushed the model prediction 
closer towards cannabis dependence. That is, high “Openness to Experience” and lower education levels make it 
more likely that the model would categorize a given individual as cannabis-dependent relative to not dependent.
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machine learning models. This enables the ranking of factors (or “features”) according to their unique and addi-
tive importance in classifying an outcome.

Overall, the classification models achieved high accuracy, which in itself was remarkable since the used dataset 
was not designed to assess substance use and dependence [see Rawls and  colleagues18 for a more in-depth dis-
cussion of the assessments and how they relate to addiction]. The current results further confirmed that a small 
number of factors, of the more than one thousand included in the analyses, consistently provided a unique and 
additive contribution to the classification performance, beyond other factors in the model. The identified fac-
tors included environmental, personality, mental health, neurocognitive and brain measures, demonstrating the 
complexity of the factors involved in CUD. Overall, the current results confirm the importance of multi-domain 
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Figure 3.  Several factors in the phenotypic + Freesurfer model classifying cannabis dependence showed sex/
gender interaction effects. As in previous figures, each dot indicates an individual. Dots are colored according 
to sex/gender (red = women, blue = men). The left columns (“Dependence plots”) show individuals colored 
according to sex/gender, with main effects intact; the right columns (“Interaction plots”) again show the same 
individuals, but with main effects removed for improved visualization of the sex/gender interaction effects. The 
x-axis of the plots indicates the observed measurement value of each factor, and the y-axis of each plot indicates 
the SHAP value (where a higher SHAP value pushed the model closer towards dependence, and lower values 
pushed the model away from dependence). The magnitude of the SHAP values are standardized in the model 
and can therefore be interpreted as effect sizes.
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investigations into the factors underlying drug addiction, as in our previous empirical investigation of multi-
domain factors in substance use  disorders18.

Many factors that have been well described in the literature on CUD were replicated in this study, though 
we demonstrated here systematic sex/gender interaction effects for many factors for the first time. The environ-
mental factors that most consistently contributed highly to model classification performance were income and 
education level. Previous longitudinal research further suggests that reduced educational attainment and lower 
socioeconomic status co-occur with (but do not directly cause) chronic cannabis abuse and  dependence42–45. 
These current results further replicate previous work that has linked the personality trait openness to high canna-
bis use levels and dependence, suggesting that high openness is a predictor specifically for cannabis as a primary 
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Figure 4.  Several factors in the phenotypic + Global Efficiency model classifying cannabis dependence (left) 
and classifying heavy cannabis use (1000 + uses; right) showed sex/gender interaction effects. As in previous 
figures, each dot indicates an individual. Dots are colored according to sex/gender (red = women, blue = men). 
The left columns (“Dependence plots”) show individuals colored according to sex/gender, with main effects 
intact; the right columns (“Interaction plots”) again show the same individuals, but with main effects removed 
for improved visualization of sex/gender interaction effects. The x-axis of the plots indicates the observed 
measurement value of each factor, and the y-axis of each plot indicates the SHAP value (where a higher 
SHAP value pushed the model closer towards dependence, and lower values pushed the model away from 
dependence). The magnitude of the SHAP values are standardized in the model and can therefore be interpreted 
as effect sizes.
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drug of  choice31–33. Additionally, the current results also confirm an important role of externalizing mental health 
disorders, aggression, and a history of child conduct disorder, which have all been identified as risk factors for 
cannabis abuse and dependence in longitudinal  research24–28. Notably, while our results provide additional sup-
port for an important role of externalizing disorders [e.g.26–28], we could not confirm a link between cannabis 
abuse or dependence and internalizing disorders, as had been reported by some other studies [e.g.19,23]. Further, 
in the current study, working memory and verbal IQ measures were among the most highly ranked neurocog-
nitive factors, both of which have consistently been associated with CUD and shown to be risk factors for (not 
consequences of) cannabis abuse and  dependence20–22,37,38. Finally, brain measures that were consistently highly 
ranked included hippocampal volume, an important structure of the brain’s memory  system39,88,89, as well as 
brainstem volume, frontal pole thickness, insula, operculum and occipital resting-state connectivity, all of which 
are part of the reward, salience and visual brain networks that are most densely innervated by dopaminergic 
 receptors90. These results converge with previous studies and systematic reviews that have demonstrated that 
CUD is characterized by changes in the brain’s memory  system39,40,91, the reward and salience  networks39,41, and 
the occipital  lobe92,93. These results also demonstrate changes in the brain’s reward/approach-related system, a 
domain that was not captured well by the behavioral assessments or neuroimaging tasks used in this study [see 
Rawls and  colleagues18 for a more in-depth discussion]. Thus, the current evidence supports the triadic models 
of cannabis addiction by indicating changes in the brain’s reward/approach system, deficits in executive function, 
specifically in working memory function and verbal IQ, and a role of negative affect, specifically of externalizing 
symptoms and aggression.

The analysis of sex/gender interaction effects revealed complex sex/gender differences in the multi-domain 
factors underlying cannabis abuse and dependence. Environmental factors such as educational attainment and 
instrumental support (the latter was not among the highest ranked factors overall) were factors that primar-
ily contributed to model prediction accuracy in women. In stark contrast to this finding, ‘classic’ personality, 
mental health, and neurocognitive factors that have often been linked to chronic cannabis use and dependence 
in previous studies were primarily driving effects in men. In particular, the ‘male-dominated’ factors included 
the personality trait openness, a history of conduct disorder, externalizing symptoms, and working memory 
performance. For brain factors, there were both ‘female-dominated’ factors, such as a smaller right superior 
temporal area (which was not among the highest ranked overall factors), and ‘male-dominated’ factors, such as 
low hippocampal volume, higher postcentral thickness and lower global efficiency of the precentral gyrus in the 
somatosensory-motor system. A smaller right superior temporal regions, the ‘female-dominated’ brain factor, has 
been previously observed in adolescent cannabis  users94, and is assumed to underlie social  perception95, consist-
ent with the greater importance of environmental factors such as social support in women. Reduced hippocampal 
volume, a ‘male-dominated’ brain factor, is probably the most commonly reported brain structural abnormality in 
 CUD96, and may be linked to ‘male-dominated’ impaired working memory  performance97. Increased postcentral 
cortical thickness, another ‘male-dominated’ brain factor, has been shown to correlate with earlier age of onset 
of cannabis use in young  adults98, and may be a marker of altered somatosensory processing as a consequence 
of cannabis  use99. Finally, abnormalities in precentral gyrus function, the third ‘male-dominated’ brain factor 
that we identified, has been previously observed in young adults with cannabis  use98,100, and are assumed to play 
a role in response inhibition of motor impulses (e.g. lack of self-regulation as evidenced by increased external-
izing symptoms in men)98. Taken together, these results suggest that environmental factors (educational attain-
ment, instrumental support) and their associated brain correlates play a larger role in women, and the ‘classic’ 
individual factors that have been most often linked to cannabis addiction and their associated brain correlates, 
contribute more strongly to CUD in men.

A limitation of the current study is the relatively small number of women included in some of the models. 
However, the current results provide compelling initial evidence for sex/gender differences in the multifactorial 
factors underlying CUD in adults, which had not been previously investigated using a multi-domain approach. 
Strikingly, these results closely mirror previous findings from a machine learning analysis that investigated pre-
dictors of onset of cannabis use in adolescence. Spechler and colleagues (2019) found that individual level factors 
such as sensation/novelty seeking were predictive of cannabis use onset in boys, whereas factors that are more 
closely linked to the environment, such as verbal IQ, sexual relationships and parent personality, were predic-
tive in  girls10. These findings also fit with our recent review and empirical data demonstrating a much greater 
importance of social support as a protective factor preventing the escalation of alcohol use in adolescence and 
maintenance of alcohol misuse in adulthood particularly in girls and women, as compared to boys and  men101. 
We are only aware of one previous study on sex/gender differences in CUD in  adults102. This study specifically 
investigated sex/gender differences in the role of social support and found a stronger protective relationship of 
social support in women as compared to  men102. Additionally, our results extend previous findings on cannabis 
use in adolescence that suggest a stronger influence of environmental factors in girls as compared to  boys103–106. 
A twin study found that the overall contribution of environmental factors for predicting cannabis use levels, as 
compared to individual predictive factors, was larger in adolescent girls versus  boys103. Similarly, a longitudi-
nal study described that environmental influences such as attending public (versus private) schools, academic 
performance, living in a single-parent family, spending time in bars/discos and drug use among friends had a 
stronger influence on cannabis use levels in adolescent girls as compared to  boys104. The same study found that 
individual factors such as prior history of smoking/alcohol consumption and antisocial behavior were stronger 
predictors in adolescent  boys104. Furthermore, one study demonstrated that a protective family environment 
had a stronger influence on cannabis use onset in adolescent girls as compared to  boys105, and that higher life 
satisfaction was a stronger protective factor against frequent cannabis use among adolescent girls than  boys106. 
Overall, the resemblance of the general pattern of a stronger influence of environmental versus individual factors 
in girls and women is striking and warrants further investigation.
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Conclusion
Our data-driven investigation of the factors linked to CUD in young adults in the United States revealed a small 
number of environmental, personality, mental health, neurocognitive and brain factors that were consistently 
linked to high cannabis use levels and dependence. The importance of these factors in classifying high use levels 
and dependence varied by sex/gender. Environmental factors contributed more strongly to CUD in women, 
whereas individual factors, such as personality, mental health and neurocognitive factors, had a larger importance 
in men. The current findings therefore warrant further investigations into sex/gender differences in young adults 
with CUD, and suggest the importance of understanding how these differences may inform the development of 
sex/gender-specific treatment approaches for addiction medicine.

Data availability
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