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Modeling and solving the parallel 
mixed‑flow remanufacturing 
disassembly line balancing problem 
for multi‑variety products
Gang Yu1, Xiufen Zhang2* & Wei Meng3

The types and numbers of components in end‑of‑life (EOL) products are often uncertain during 
remanufacturing, leading to low disassembly efficiencies for traditional remanufacturing disassembly 
lines. To address this problem, a parallel mixed‑flow workstation layout was designed, and a novel 
parallel mixed remanufacturing disassembly line balancing optimization method for multi‑variety 
products was proposed. A mixed‑flow product disassembly task hierarchical assignment matrix was 
constructed to perform disassembly task allocations for similar components. Furthermore, a parallel 
mixed‑flow remanufacturing disassembly line balancing (PMRDLB) optimization model was developed 
with the optimization objectives of minimizing the number of workstations, the disassembly line 
balancing rate, and the remanufacturing value indexes of the components. Furthermore, the 
multi‑objective non‑dominated genetic optimization method (NSGA‑III) was improved, in which a 
chromosome construction method, based on the parallel mixed‑flow disassembly task allocation 
matrix, was proposed to conduct mapping between the chromosomes and the PMRDLB model. 
In addition, non‑dominated solution sorting was performed based on a Pareto hierarchy, which 
increased the searching rate of the algorithm during optimization. Finally, a case study verified the 
effectiveness and feasibility of the proposed method.

Remanufacturing is a profitable means of recovering end-of-life (EOL) products. Disassembly is the key step in 
obtaining the remanufacturing cores. The remanufacturing disassembly line balancing problem (RDLBP) focuses 
on obtaining an optimal disassembly line configuration scheme with reasonable task allocations, balanced work-
station operations, a high disassembly efficiency, and a low cost, thereby reducing the remanufacturing  costs1,2.

Three classical disassembly line layouts exist: straight line, U-type, and parallel-type layouts. Therefore, 
the classical disassembly line balancing problem (DLBP) includes single-type linear bilateral disassembly line 
 balancing3, incomplete single-type linear disassembly line  balancing4, U-type disassembly line  balancing5,6, and 
single-type parallel disassembly line  balancing7–10.For example, to increase the disassembly efficiency for large 
products, a two-sided layout was introduced, and a mathematical model for a stochastic two-sided partial DLBP 
with multiple objectives, multiple constraints, and uncertainty was constructed and resolved based on the multi-
objective discrete flower pollination  algorithm3. Li et al.4 developed an incomplete single-type linear disassembly 
line balancing model and proposed the variable neighborhood particle swarm optimization algorithm. A profit-
oriented U-shaped partial DLBP was proposed and solved using a discrete cuckoo search  algorithm5. To improve 
the disassembly line production efficiency and reduce the production cost, the parallel disassembly line balancing 
problem was  studied7,8. Zhu et al.10 developed a mathematical model for a multi-objective locally parallel disas-
sembly line balancing problem and solved the problem using the hybrid group neighborhood search algorithm.

Unfortunately, the types and numbers of components are often uncertain for EOL products during remanu-
facturing disassembly, which causes significant challenges for batch disassembly. The same types of products 
must be identified and rearranged for the existing disassembly lines, which is a complicated and low-efficiency 
process. Thus, much attention has been paid to parallel mixed-flow disassembly lines since they can significantly 
improve disassembly  efficiency2,8.Therefore, Agrawal and  Tiwari11 introduced the mixed product disassembly 
line concept and constructed a random mixed U-shaped disassembly line model. Model resolution was difficult 
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using traditional methods. Later, Xia et al.12 selected multiple products as the mixed products based on their 
structural similarities, developed a mixed disassembly line model under a random working environment, and 
solved the problem by adopting the adaptive simulated annealing genetic algorithm. Fang et al.13 constructed 
a multi-robot hybrid disassembly line model and applied the evolutionary simulated annealing algorithm to 
obtain the optimal solution. Zeng et al.14 constructed a multi-objective bucket-chain disassembly line model and 
proposed a multi-objective discrete flower pollination algorithm to solve the problem.

All of these researchers solved the mixed-flow disassembly line balancing problem by assuming multi-variety 
products as the mixed products. However, it becomes more difficult to construct a mixed product model as the 
products’ types and complexities increase. To address this problem, a hierarchical parallel workstation layout is 
designed for the first time in this paper, furthermore, a parallel mixed-flow remanufacturing disassembly line 
balancing (PMRDLB) optimization model was constructed for multi-variety products. The main features of the 
proposed model are outlined as follows:

1. It not only made reasonable use of space but also improved the efficiency of parallel mixed-flow disassembly 
for multi-variety products with uncertain characteristics in remanufacturing disassembly lines.

2. It overcame the difficulties of model construction and low computational efficiency caused by the traditional 
mixed disassembly line in which multiple products were regarded as a single imaginary mixed product.

The DLBP can be solved primarily by mathematical programming, heuristic optimization, or meta-heuristic 
optimization. Mathematical programming produces high solution precision, but it is only suitable for solv-
ing small-scale disassembly line balancing  tasks15–18. Heuristic methods can solve large-scale disassembly line 
problems, but their solutions will be limited to local  optima19,20. Meta-heuristic methods are the mainstream 
algorithms used to solve the DLBP; they include the multi-objective genetic algorithm (GA), the multi-objective 
genetic annealing algorithm, and the artificial fish swarm algorithm, among  others21–24. These methods are often 
combined with multi-criteria decision technology when solving the  problem25. Among them, the GA is robust 
and suitable for parallel computing and has been widely used for solving the  DLBP26,27. Therefore, in this paper, 
which focuses on the layout characteristics of a multi-variety parallel mixed-flow remanufacturing disassembly 
line, an improved multi-objective non-dominated sorting genetic optimization method (Improved NSGA-III) 
is proposed to solve the PMRDLB problem.

Methods
Problem description. There are different types of EOL products for remanufacturing with uncertain quan-
tities. To achieve a reasonable allocation of disassembly tasks for different types of products, this paper proposes 
a parallel mixed-flow disassembly line layout, as shown in Fig. 1.

If there were two kinds of EOL products to be disassembled and the number of components was uncertain, 
two disassembly lines were required. Parallel stations were arranged on each disassembly line, such as stations 
S1 and S3 in Fig. 1. The two adjacent disassembly lines had mixed-flow disassembly stations, such as stations 
S2 and Sm. All disassembly tasks were assigned to N workstations according to the determined beat time, CT.

The parallel mixed-flow remanufacturing disassembly line balancing problem focused on attaining a reason-
able allocation of disassembly tasks in the layout shown in Fig. 1 to minimize the number of disassembly stations, 
prioritize the disassembly of components with high remanufacturing values and hazardous material properties, 
and rationally utilize the factory space of the enterprise.

To simplify the problem, three assumptions were made:

(1) The disassembly time and remanufacturing value of each component were known, and all disassembly 
tasks were independent.

(2) A disassembly task could not be interrupted.
(3) The same disassembly task could not be assigned to multiple stations at the same time.

Judgment conditions for the mixed‑flow disassembly of multi‑variety products. Similarities 
and differences exist in the physical, material, and geometrical structures of various types of EOL products. Only 
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Figure 1.  Parallel mixed-flow remanufacturing disassembly line layout diagram.
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products with certain similarities can be disassembled using a parallel mixed-flow disassembly  line12. Therefore, 
it was necessary to determine the degree of product similarity.

It was assumed that the two disassembly task sets for the EOL products were
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 . Thus, the similarity degree between the two products could 
be defined as follows:

where m1 and m2 are the numbers of components in the two EOL products to be disassembled. The larger 
the similarity degree was, the greater was the similarity between the components in geometrical, physical, and 
material aspects, among others. When �pro = 0 , there is no similarity between the components of the two EOL 
products. Empirically then, when �pro ≥ 0.7 , the mixed-flow disassembly can be  performed12.

Mathematical model for the parallel mixed‑flow remanufacturing disassembly line balancing 
(PMRDLB) problem. A mathematical model for the PMRDLB problem was developed based on the paral-
lel mixed-flow remanufacturing disassembly line layout shown in Fig. 1. For clarification, the symbols utilized in 
the mathematical model are defined in Table 1, and the acronyms in this paper are listed in Table 2.

One clear difference between the PMRDLB problem and the traditional DLBP is the constraint conditions. 
All of the products in the parallel disassembly lines should not only meet the component disassembly priority 
relationship requirements but should also prioritize the disassembly of toxic and harmful components to reduce 
secondary pollution. This type of disassembly is more complex than single-product disassembly.

The disassembly priority relationship mapping matrix for the EOL product k is given by
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Table 1.  Symbol definitions.

Symbol Illustration

mk Number of the kth EOL product’s disassembly tasks

N Number of disassembly stations

CT Disassembly line beat time

til The disassembly time of the task i on the lth disassembly line

xilr
Station task allocation coefficient, when the disassembly task i on the lth disassembly line is assigned to the rth station, it equals 
1, and otherwise, it equals 0

Pil
Remanufacturing value of the components disassembled in the disassembly task i of the lth disassembly line, if the component 
has no remanufacturing value, it equals 0, and otherwise, it equals 1

Sr Disassemble task set in station r

Lil The position of component in the disassembly sequence in the ith disassembly task of the lth disassembly line

Sij Task i takes precedence over task j

P
k

mk
Disassembly priority mapping matrix of the EOL product k

B
k

mk
Disassembly task hazard mapping matrix of the EOL product k

k Number of the disassembly lines

S
k

mk
The comprehensive priority relation matrix of the EOL product k

G
k The disassembly task hierarchical matrix of the kth EOL product

G The comprehensive disassembly tasks hierarchical matrix of EOL products

Table 2.  Acronyms definitions.

Acronyms Definitions

EOL End-of-life

PMRDLB Parallel mixed-flow remanufacturing disassembly line balancing

DLBP Disassembly line balancing problem

RDLBP Remanufacturing disassembly line balancing problem

NSGA-III The multi-objective non-dominated genetic optimization method

GA Genetic algorithm

MOP Multi-objective optimization problem
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In Eq. (2), if task i is performed before task j, then pij = 1; otherwise, pij = 0.
The component hazard mapping matrix for the EOL product k is defined as follows:

In Eq. (3), if disassembly task i is more hazardous than task j, then bij = 1; otherwise, bij = 0.
The disassembly priority relationship for the EOL product k was deduced from Pkmk ,B

k
mk , and the compre-

hensive matrix Skmk , asfollows:

In Eq. (4), Skij indicates that if disassembly task i has priority over task j, then Sij = 1 ; otherwise, Sij = 0.
According to Eq. (4), when the disassembly task j has the highest disassembly priority, it can be performed. 

Therefore, the feasibility conditions for disassembly task j were defined as follows:

The products’ disassembly tasks could be obtained from Eq. (5), and then, Skmk could be updated after disas-
sembly. When Skmk = [0]mk×mk , all the disassembly tasks were finished, and the disassembly task hierarchical 
matrix, Gk , for the EOL product k could be obtained.

The parallel mixed-flow disassembly task allocation matrix, G =
{

G
1,G2,G3, · · · ,Gk

}

 , shown in Fig. 2, 
could then be obtained from Eqs. (2)–(5).

Considering the uncertainty in the number of parts, during the construction of the disassembly sequence 
matrix for mixed-flow products, the largest number of parts among k products should be taken as the matrix 
column standard, and the elements of the matrix with insufficient parts among the other products should be 
filled with 0.

The mathematical model for the PMRDLB problem was formulated utilizing Eqs. (6)–(13).
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Figure 2.  Parallel mixed-flow disassembly task allocation matrix.
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Equations (6)–(9) represent the optimization objects. In these equations, f1 is the number of parallel mixed-
flow disassembly line stations, f2 is the station equalization rate, and f3 is the remanufacturing value index, which 
ensures disassembly of the higher value remanufacturing components as early as possible to avoid secondary-
operation damage to the remanufacturing cores. Equation (10) ensures that each disassembly line and disas-
sembly task are assigned only to one station. Equation (11) guarantees that the maximum total disassembly time 
in each disassembly station does not exceed the beat time, CT. Equation (12) represents the workstation number 
range in the parallel disassembly line. Equation (13) ensures that the priority relationship constraint is met for 
all of the disassembly tasks during an EOL product’s disassembly.

PMRDLB problem solution based on the improved NSGA‑III. Remanufacturing disassembly line 
balancing is a multi-objective optimization problem (MOP). The fast, non-dominated genetic algorithm NSGA-
III with an elite strategy is characterized by fast operation and a high-precision solution. However, when it is 
used to solve the PMRDLB problem, its low sorting efficiency and unmatched hierarchical structure for disas-
sembly tasks present significant challenges. Therefore, the NSGA-III algorithm was improved: the chromosome 
was coded based on the parallel mixed-flow disassembly task assignment matrix, and a non-dominant solution 
sorting method based on the Pareto rank was developed.

Chromosome construction method based on the parallel mixed‑flow disassembly task assignment matrix. The 
multi-variety parallel mixed-flow remanufacturing disassembly line included many different kinds and quanti-
ties of EOL products. Therefore, a stratified two-segment chromosome coding method was proposed, as shown 
in Eq. (14).

In Eq. (14), the first segment, MixedS, represents the disassembly task sequences, and FV denotes the multi-
objective fitness function values. The number of workstations, f1, the equalization rate, f2, and the remanufactur-
ing value index, f3, could be decoded according to Eqs. (7)–(9).

To improve the convergence speed and solution precision of the algorithm, a chromosome construction 
method, which was based on the parallel mixed-flow disassembly task allocation matrix, was proposed to ensure 
that all chromosomes were feasible solutions under the constraints of the parallel mixed-flow remanufacturing 
disassembly line. The method contained four primary steps:

Step 1: According to the disassembly process scheme for EOL products, k kinds of disassembly task priority 
matrices, Pkm , and hazard mapping matrices, Bk

m , were constructed. The comprehensive priority matrix, Skm , was 
deduced according to Eq. (4). The initial population matrix was defined as Q, and the layered matrix, Gk , of 
disassemblable parts of EOL products was defined as a zero matrix.

Step 2: The disassemblable parts were put into the disassembly task hierarchy matrix, Gk, and the Skm matrix 
was simultaneously updated. It was determined whether Skm was a zero matrix. If so, i was set to 1 and the method 
moved to Step 3; otherwise, Step 2 was repeated.
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Step 3: The ith line in Gk was removed, pop gene fragments were randomly generated and stored in Q, the ith 
line of Gk was set to 0, and i was incrementally increased.

Step 4: If Gk was determined to be a zero matrix, Q was output; if not, the method returned to Step 3.
A flowchart for the chromosome construction method is shown in Fig. 3.

Chromosome evolutionary rules. The initial population could be determined according to the chromosome 
acquisition method presented in Fig. 3, and the offspring population would be generated by chromosome cross 
and mutation operations. Furthermore, the structural reference points were established based on the Pareto 
rank.

1. Cross and mutation operations Two paternal chromosomes, 1 and 2, were randomly selected from the initial 
population, and two cross sites, 1 and 2, on the paternal chromosomes were randomly determined. The gene 
fragments between the two cross sites were called fragments 1 and 2, and the gene containing fragment 2 on 
paternal chromosome 1 was deleted. The gene containing fragment 1 on paternal chromosome 2 was also 
deleted, and fragment 2 was inserted into paternal chromosome 1 according to the cross positions 1 and 2 
to form a new chromosome 1. Fragment 1 was inserted into paternal chromosome 2 according to the cross 
positions 1 and 2 to form a new chromosome 2. Two mutation sites, 1 and 2, were determined randomly, 
and genes were exchanged at these sites on the new chromosomes to form offspring chromosomes, 1 and 2. 
The schematic chromosome crossover and variation diagram is shown in Fig. 4a. The selected chromosome 
genes mutated to produce new chromosomes, as shown in Fig. 4b.

2. Non‑dominated ranking During the comparison process, if R1 and R2 fulfilled fi(R1) ≤ fi(R2)(∀i ∈ (1, 2, 3)) , 
then R1 dominated R2. If R1 was not dominated by other vectors, then R1 was the Pareto solution.The 
dominant relationship was determined by a Pareto comparison of the objective function values of R1 and 
R2. When R1 dominated R2, the Pareto level of R1 was 1 and was denoted as Pareto 1. Similarly, the chro-
mosomes’ Pareto levels could also be obtained.The (s + 1)th generation was a combination of the parent 
population and the progeny population and was sorted according to the chromosomes’ Pareto ranks.
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Gk=[0]m×m (Step 1)

Put the disassemblied
component into the

disassembly task hierarchy
matrixGk

Update matrix Sk
m

Sk
m is empty ?

No

Yes Get the matrix Gk ,let
i=1.

Gk = 0?

No

Yes

Take row i of the
matrixGk

Gene fragments Pop
were randomly generated

and stored in Q

Start

End

Update matrix Gk

Output matrix
Q (Step 4)

i++

Step 2

Step 3

Figure 3.  Chromosome acquisition flowchart.
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Generation of the structured reference points. The NSGA-III ensures solution diversity by using a predefined set 
of reference points, which can be defined in a structured  manner19. Reference points were uniformly distributed 
points in the PMRDLB model’s solution space, which was in an (M − 1) dimensional hyperplane, where M is the 
dimension of the target space, namely, the number of optimized targets. If each target was divided into H parts, 
there were four primary reference point generation steps:

Step 1: The number of reference points, H, was determined using the following equation:

where the pth coordinate axis was divided into several parts.
Step 2: The extremum point of the objective function was determined. The target value was very large, and 

the target value of the individual corresponded to the small points on other target values. The minimum value 
of the three objective functions in this study was Z =

(

Zmin
1 ,Zmin

2 ,Zmin
3

)

 ; so, the extreme point was solved 
according to Eq. (16).

Step 3: The distances between the target point and the reference points on extract chromosomes were calcu-
lated, and the selected chromosomes were added to the next generation population.

Step 4: Steps 2 and 3 were repeated until the population size was consistent.

PMRDLB model optimization process. Optimizing the PMRDLB model was performed to achieve a reasonable 
allocation of disassembly tasks at the stations. The optimization process included five primary steps: data prepa-
ration, initial population acquisition, non-dominated ranking based on the Pareto level, structured reference 
point generation, and optimal solution output.

Step 1: In the data preparation stage, the disassembly process plan for EOL products was analyzed to obtain 
the comprehensive priority relationship matrix and define and initialize the parameters, such as the population 
size (pop), the beat time (CT), and the number of iterations (Gen).

Step 2: The disassembly task allocation matrix was obtained, the objective function value was calculated, the 
chromosomes were generated, and the initial population was established.

Step 3: The offspring population was generated by cross and mutation operations. The parent and child 
populations were combined, and the chromosomes’ Pareto ranks were determined.

Step 4: Next-generation chromosomes were extracted based on the structured reference points.
Step 5: The optimal non-dominated solution set was obtained.
The solution process for the PMRDLB problem, which was based on the improved NSGA-III algorithm, is 

shown in Fig. 5.

Results and discussion
To verify the feasibility and effectiveness of the proposed method, a 34-component  engine32 and a 37-component 
Passat B5  engine33 were selected for a case study. The remanufacturing values were generated by random numbers 
ranging from 0 to 100, and the component information is presented in Table 3.

Calculations of structural similarity between the two engines. The 34-component engine and the 
37-component Passat B5 engine were two different kinds of engines with different uses. A similarity analysis was 
conducted on the two engines using expert judgment, and the results are presented in Table 4.

According to Eq.  (1), the product similarity, �pro =
⋂
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} = S

P1P2
= 51

71= 0.71 , was 
obtained, which satisfied �pro ≥ 0.7 . Therefore, the mixed-flow disassembly line operation could be 
conducted.

Problem‑solving. The computer used in the case study was an Intel(R) Core I5-6200U CPU with 2.30 GHz 
and 12  GB RAM. The PMRDLB prototype system was developed using a professional edition of MATLAB 
R2016a in Windows 10.

After building the disassembly task allocation matrix according to Eqs. (2)–(6), the number of iterations and 
the population size were set to Gen = 200 and pop = 50, respectively. The disassembly task time, 730 s, was the 
total task time of the maximum disassembly workstation for the 34-component engine. Therefore, the beat time 
was CT ≥ 730 s, and five optimal disassembly line configuration schemes were obtained by 20 experiments, as 
shown in Table 5.

Taking plan 1 as an example, the disassembly task assignment results are shown in Fig. 6.

(15)H = C
p
M+p−1

(16)f
′

i (x) = fi(x)− zmin
i



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15383  | https://doi.org/10.1038/s41598-022-19783-4

www.nature.com/scientificreports/

To verify the effectiveness of the model and method proposed in this paper, the objective function values 
f1, f2, and f3 of the mixed-flow disassembly line for task 1 under different layout forms were compared, and the 
results are shown in Table 6.

Table 6 shows that, compared with other layout forms, the parallel mixed-flow remanufacturing disassembly 
line improved the disassembly efficiency and had obvious advantages for solving the multi-variety EOL product 
disassembly problem. The disassembly line model for parallel mixed-flow remanufacturing proposed in this 
paper overcame the above shortcomings and solved the problem when there were many kinds of recovered waste 
products and the number of parts was uncertain. Experimental results showed that the method was feasible and 
effective.

Conclusions
There are many types of EOL products in remanufacturing disassembly lines, and the number of components 
is often uncertain. To solve this problem, a PMRDLB optimization model was proposed in this paper, and the 
NSGA-III algorithm was improved. Two engine cases were studied to verify the validity of the proposed model 
and method.

The method had three primary highlights:

(1) In view of the uncertain characteristics of multi-variety products in remanufacturing disassembly lines, a 
parallel mixed-flow remanufacturing disassembly line layout was designed. It not only made reasonable 
use of space but also improved the efficiency of parallel mixed-flow disassembly for multi-variety products.

(2) A construction method for the mixed-flow product disassembly task allocation matrix was proposed, which 
overcame the difficulties of model construction and low computational efficiency caused by the traditional 
mixed disassembly line in which multiple products were regarded as a single imaginary mixed product.

(3) The NSGA-III algorithm was improved to solve the PMRDLB problem. A stratified two-segment chromo-
some coding method was adopted to ensure that all solutions were feasible. This method also improved 
the optimization efficiency.

Let pop=50 CT=1000 Gen=200

It is a new parent population
No

Yes

Initialize population,let gen=1.

Start

End

gen++

Non-dominated sorting based on Pareto rank

The offspring population is generated by cross and mutation operations

Merge parent and child populations

gen<=Gen?
Yes

Generate structured reference points

Extract chromosomes and add them to the
next generation population

No

Obtain the matrix Pk
m Bk

m Sk
m according to the product disassembly process plan

Figure 5.  Flowchart for the PMRDLB problem solution process.
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Table 3.  Component information for the two engine types.

34 Task Name
Disassembly 
time (s)

Remanufacturing 
value (￥) Harmfulness 37 Task Name

Disassembly 
time (s)

Remanufacturing 
value (￥) Harmfulness

1 Alternator support 
bracket 38 5 No 1 Igniter 164 82 Yes

2 Alternator 23 65 Yes 2 Valve cover 96 91 No

3 Drive belt 30 0 No 3 Camshaft 326 12 No

4 Water pump pulley 56 15 No 4 Valve assembly 251 92 No

5 Special washers 161 35 No 5 Timing belt 0 63 No

6 Crankshaft Pulley 10 40 No 6 Camshaft drive 
wheel 49 9 No

7 Pulley 12 45 No 7 Timing belt ten-
sioning wheel 56 28 No

8 Oil level indicator 12 65 No 8 Timing belt 
toothed belt wheel 40 55 No

9 Synchronous band 
cover 70 8 No 9 Crankshaft gear 156 96 No

10 Synchronous belt 
lower cover 140 8 No 10 Intake manifold 163 97 Yes

11 Timing belt 45 0 No 11 Exhaust manifold 145 15 No

12 Belt tension spring 34 60 No 12 Air cleaner 93 98 Yes

13 Tensioner 34 70 No 13 Intake pipe 54 96 No

14 Crankshaft 
sprocket flange 70 30 No 14 Turbocharger 56 49 No

15 Crankshaft 
sprocket 10 45 No 15 Supercharger 

flywheel 86 80 No

16 Water pump 56 95 Yes 16 Supercharger belt 0 14 No

17 Rocker cover and 
gasket 11 50 No 17 Supercharger belt 

tensioning wheel 72 42 No

18 Intake pipe 180 40 No 18 Supercharger 
pump wheel 94 92 No

19 Exhaust pipe 144 40 No 19 Engine support 
frame 76 80 No

20 Cylinder distribu-
tor camshaft valve 730 95 No 20 Cylinder block 240 96 No

21 Oil filter 60 65 No 21 Connecting Rod 162 66 No

22 Oil receiver 126 40 No 22 Large tile 76 3 No

23 Oil screen 38 40 No 23 Small tile 74 85 No

24 Oil cap 10 25 No 24 connecting rod 
cover 153 94 No

25 Front case 84 15 No 25 Crankshaft main 
bearing cap 72 68 No

26 Oil pump 54 95 No 26 Crankshaft 312 76 No

27 Pistons, connect-
ing rod 24 30 No 27 Oil pump 50 75 No

28 The connecting 
rod cup 24 30 No 28 Oil pump chain 175 39 No

29 Flywheel 675 45 No 29 Intake camshaft 
lock block 115 66 No

30 Thick steel plate 44 50 No 30 Vent camshaft lock 
block 115 17 No

31 Engine bell hous-
ing 36 65 No 31 Oil pan 123 71 No

32 Oil seal cover 63 30 No 32 Transmission 
assembly 183 3 No

33 Rear oil seal 30 25 No 33 Clutch flywheel 72 27 No

34 Crankshaft 530 55 No 34 Clutch pressure 
plate 65 4 No

– – – – – 35 Clutch cover 82 9 No

– – – – – 36 air cylinder 265 83 No

– – – – – 37 Clutch disc 12 70 No
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Table 4.  Results of a similarity analysis of the two engines.

Criteria Task 34 engine parts Task 37 Passat B5 engine parts Similar structure

Structural similarity

Drive belt, water pump pulley, crankshaft pulley, belt pulley, 
synchronous belt cover, synchronous belt cover, synchronous 
belt, belt tension spring, belt tensioner

Timing belt, Timing belt tensioning wheel, Timing belt 
toothed belt wheel, Supercharger belt, Supercharger belt 
tensioning wheel

Belt structure

Piston, rod, rod cup Connecting rod, Large tile, Small tile, Connecting rod cover Connecting rod construction

Crankshaft, camshaft Crankshaft main bearing cover, Crankshaft, Intake Camshaft 
lock block, Outlet camshaft lock block, Camshaft Shafting structure

Air cylinder, intake pipe, exhaust pipe Cylinder, Cylinder block, Intake pipe, Outlet manifold, 
Intake manifold, Valve assembly, Valve cover Cylinder construction

Crankshaft sprocket flange, crankshaft sprocket Oil pump chain Sprocket structure

Back oil seal, sealing oil cap, oil pump, oil cap, oil filter net, 
oil pan, oil filter, oil level indicator Oil pump, oil sump Oil pump structure

Table 5.  Optimal PMRDLB scheme.

Plan Plan 1 Plan 2 Plan 3 Plan 4 Plan 5

Engine name Task 34 Task 37 Task 34 Task 37 Task 34 Task 37 Task 34 Task 37 Task 34 Task 37

Disassembly task number

21 1 22 1 18 13 3 7 3 1

18 7 21 7 21 35 8 19 18 7

8 13 18 19 22 19 9 17 19 17

3 17 3 35 19 7 18 35 8 13

9 19 8 13 9 1 21 13 22 35

19 35 9 17 8 17 22 1 9 19

22 5 19 16 3 5 19 2 21 32

4 12 1 5 4 12 1 12 4 16

1 32 17 12 5 32 5 16 23 5

5 16 4 2 1 2 4 32 1 2

23 2 5 32 17 16 23 5 5 12

17 8 23 10 23 8 17 33 17 30

2 10 2 33 16 30 2 30 16 33

16 30 16 8 2 10 16 29 2 10

6 11 6 30 6 29 6 11 6 11

7 15 7 11 7 15 7 8 7 6

10 29 10 6 10 6 10 10 10 8

12 6 12 9 12 9 12 15 12 9

11 9 13 29 13 33 13 6 11 29

13 33 11 15 11 11 11 9 13 15

14 18 14 18 14 18 14 18 15 18

15 14 15 14 15 14 15 14 14 14

25 34 25 34 24 3 25 3 20 34

24 3 20 3 20 34 24 34 25 3

20 4 24 37 25 4 20 4 24 4

26 37 27 4 26 37 28 37 26 37

27 31 26 31 27 31 26 31 27 31

28 28 28 28 28 28 27 28 28 25

29 25 29 24 29 24 29 25 29 28

34 24 30 25 34 25 34 24 30 24

30 27 34 22 30 27 30 27 34 23

31 23 31 23 31 22 31 23 31 22

32 22 32 27 32 23 32 22 32 27

33 21 33 21 33 21 33 21 33 21

– 36 – 36 – 36 – 36 – 36

– 26 – 26 – 26 – 26 – 26

– 20 – 20 – 20 – 20 – 20

Number of workstations f 1 f1 = 9 f1 = 10 f1 = 10 f1 = 11 f1 = 9

Equilibrium rate f2 f2 = 33.50 f2 = 52.30 f2 = 55.40 f2 = 65.30 f2 = 45.8

Remanufacturing value index f3 f3 = 98.59 f3 = 99.52 f3 = 97.56 f3 = 94.32 f3 = 97.35
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