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Lossy compression of matrices 
by black box optimisation of mixed 
integer nonlinear programming
Tadashi Kadowaki1,2* & Mitsuru Ambai3

In edge computing, suppressing data size is a challenge for machine learning models that perform 
complex tasks such as autonomous driving, in which computational resources (speed, memory 
size and power) are limited. Efficient lossy compression of matrix data has been introduced by 
decomposing it into the product of an integer and real matrices. However, its optimisation is difficult 
as it requires simultaneous optimisation of an integer and real variables. In this paper, we improve this 
optimisation by utilising recently developed black-box optimisation (BBO) algorithms with an Ising 
solver for binary variables. In addition, the algorithm can be used to solve mixed-integer programming 
problems that are linear and non-linear in terms of real and integer variables, respectively. The 
differences between the choice of Ising solvers (simulated annealing, quantum annealing and 
simulated quenching) and the strategies of the BBO algorithms (BOCS, FMQA and their variations) are 
discussed for further development of the BBO techniques.

In the last decade, there have grown a number of applications of neural networks and machine learning. Based 
on the success of the neural network and machine learning applications in the real-world setting, there has also 
been an increase in the complexity level of the mathematical models. These models are represented by parameters 
in large matrices, such as weight matrices in the neural network. Suppressing the memory size of the model is a 
rising issue for implementing those applications in the real-world, especially in edge computing.

One of the authors proposed a lossy decomposition scheme of such matrices into a product of an integer 
matrix and a real matrix (hereinafter referred to as integer decomposition)1. The concept of this matrix decompo-
sition is that the integer matrix has a smaller memory footprint compared with the real matrix in floating-point 
representation. The integer variable uses only one or two bits for binary or ternary representation, whereas the 
floating-point variable uses 32 or 64 bits. Thus, the compression rate is approximated by the ratio of the sizes of 
the original matrix and the real matrix. For a specific machine learning task, the memory footprint is reduced 
to 1/3, and the performance is 36.9 times faster than the original one with 1.5% increase in loss of accuracy.

This process of matrix compression optimises the integer and the real matrices simultaneously. The problem 
is a mixed-integer non-linear programming (MINLP) problem, an NP-hard problem. In addition, the original 
proposal includes a strategy in a greedy manner to reduce optimisation complexity; however, the greedy method 
does not reach the best solution in general.

In this paper, we improve the procedure of the integer decomposition through a recently developed black-box 
optimisation (BBO) technique for binary variables2–4. These methods use a data set of binary input and real-
value output to produce a surrogate model, i.e. a pseudo-Boolean function, and optimise the model using Ising 
solvers. The tentative optimal solution from the Ising solver can be evaluated by the black-box function, e.g. 
conducting experiments, simulations or other methods depending on the problem. In the matrix decomposition, 
we transform our MINLP problem into a non-linear integer programming (NLIP) problem. Although we still 
have an explicit form of the cost function with integer variables, we can consider this function as a black-box 
function. Although this paper demonstrates a binary variable problem, it is straightforward to handle an integer 
variable with binary variables.

Data acquisition is not a hard task thanks to the explicit form of the function. Thus, the number of iterations 
and evaluations of the cost function is not a big deal in this case. We will conduct O(n2) iterations for BBO, which 
is a unique feature of this study from a typical case with an expensive-to-evaluate function.
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Several tasks on lossy data compression have been commonly used in image and audio data processing, such 
as JPEG and MP3. Their algorithms are based on human limitations of frequency and time domains. General-
purpose algorithms, such as low-rank approximation, non-negative matrix factorisation and non-negative/
binary matrix factorisation algorithms, have been proposed5–7. These methods are not applicable for the integer 
decomposition because they target the decomposition by real or non-negative matrix.

Recently, a general matrix decomposition method has been proposed8. The proposed method optimises 
integer matrix and real matrix separately, while our algorithm does simultaneously. In addition, Thompson 
sampling of the MINLP surrogate model is studied with commercial mixed-integer programming (MIP) solvers9. 
Our algorithm provides solutions to MIP problems using Ising solvers, whereas such commercial solvers do not 
disclose details of algorithms.

A number of studies on the applications of the BBO of binary variables with Ising solvers are carried out, 
including aero-structural problem2, nanomaterials4, spin glass10, commonality optimisation11 and chemical struc-
ture optimisation12,13. This paper not only introduces another application but also proposes a novel algorithm 
for solving MINLP problems by the BBO using the Ising solver.

This paper is organised as follows. The “Integer decomposition” section defines the integer decomposition 
and derives a black-box formulation of the problem. Variations of BBO algorithms and Ising solvers tested in 
this study are described in the “Black-box optimisation” section. The “Results” section dedicates to the results of 
these algorithms and solvers. The final section summarises and discusses the results.

Integer decomposition
Original formulation of the integer decomposition.  The integer decomposition approximates a tar-
get matrix W by a product of binary (or ternary) matrix M and real matrix C,

The matrix sizes of W , M and C are N × D , N × K and K × D , respectively. This decomposition is param-
eterised by K, which controls the approximation accuracy.

If K = N (no compression), M and C can be I and W,

In the matrix compression, K is smaller than N. Thus, we cannot reproduce W by M and C . Then, the optimal 
binary and real matrices can be obtained through minimisation of the cost function expressed by L2 matrix norm,

This is an MINLP problem; therefore, there is no general algorithm to efficiently find the exact solution.
The original algorithm finds the decomposition as a series of products,

where mi and ci are N and D dimensional vectors and calculated step by step from i = 1 to i = K . The i-th vectors 
mi and ci are optimised by using pre-optimised vectors mj and cj (j = 1, . . . , i − 1),

The search space is drastically reduced from NK- to N-dimension, although convergence to the exact solution 
is not guaranteed. In each step, this algorithm finds the best rank-one approximation of the residual from the 
previous approximation. Therefore, updating the variables that are fixed previously is not possible, i.e. it cannot 
escape from local minima.

As shown in Eq. (4), the matrix decomposition has two types of arbitrariness. The first one is the order of 
columns (or rows) in the binary matrix M (the real matrix C ) indexed by i, that is, the order of sum in Eq. (4). The 
second one is the sign of each column in M (i.e. mi , ci → −mi ,−ci ). Consequently, the total number of equivalent 
matrices is K ! × 2K . In the case of K = 3 , there are 48 exact solutions of Eq. (3). Figure 5 in the appendix shows 
examples of the 48 solutions for a specific instance.

Black‑box formulation of the integer decomposition.  As shown in the previous subsection, the inte-
ger decomposition is an MINLP problem. To solve this problem by BBO algorithms, we convert it to an NLIP 
problem. If given M has linearly independent columns, we can calculate C using the least-squares method in 
matrix form,

where 
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Substituting this equation to Eq. (3), we have

where

Now, we remove real-value parameters and have an NLIP problem. Note that the Taylor series of this cost 
function has infinite terms, and thus Ising solvers, including quantum annealer, cannot solve this optimisation 
problem directly. On the other hand, BBO can solve this problem if we deal with the input-output relationship 
of the cost function 

∥

∥f (M)
∥

∥

2

2
 as a black-box function. The optimisation algorithm employs not the explicit form 

of the function but a specific data set of the input-output relationship calculated from the function.

Black‑box optimisation
BBO algorithms.  Ising solvers find a solution of a quadratic function so we can approximate the data set 
(x, y) by the quadratic function ŷ(x) = x

T
Ax + b

T
x + c , where x ∈ {−1, 1}NK and A , b and c are model param-

eters. Note that we use x in this surrogate model instead of M , y as the cost associated with a given x and ŷ as 
the approximated cost by the surrogate model. This function can be expressed in a simplified quadratic form 
x
T
Ax if we include an additional dimension in the vector x as (x1, . . . , xNK , 1) . The different algorithm handles 

the surrogate model differently.
Bayesian optimisation of combinatorial structures (BOCS)2 treats the parameter A in Bayesian linear regres-

sion. The authors proposed to use the horseshoe prior14,

where αk stands for the coefficient of the k-th variable in the linear regression and C+(0, 1) is a half-Cauchy 
distribution. Note that as the surrogate model is linear, second-order terms xixj are treated as independent 
explanatory variables, i.e. (x1, . . . , xn, x1x2, x1x3, . . . , xn−1xn) , where n = NK . Thus, the index k runs from 1 to 
n+ n(n− 1)/2 . As the parameter A of the surrogate model is a distribution in BOCS, a specific value of A is 
chosen based on the distribution inspired by Thompson sampling15. In addition to the horseshoe prior, normal 
prior αk ∼ N(0, σ 2) and normal-gamma prior αk , σ−2 ∼ NormalGamma(0, 1, 1,β) are tested.

The sampling from the horseshoe distribution is performed using the Monte Carlo sampling14, which requires 
a longer execution time compared to the normal and normal-gamma distributions. Samplings of the variables 
from these distribution functions are accelerated using fast Gaussian samplers16,17.

Factorisation machine with quantum annealing (FMQA)4 utilises the factorisation machine (FM)18 as the 
surrogate model. The surrogate model of degree d = 2 is defined as

where �·, ·� represents the dot product of two vectors of size kFM,

The horseshoe prior and FM introduce sparsity in the surrogate model, whereas normal and normal-gamma 
priors do not. The results section shows the effects of this sparsity on the performances of algorithms. Each algo-
rithm has its hyperparameter(s) to be fixed before conducting the BBO, i.e. the variance σ 2 in the normal prior, 
the shape parameter α(= 1) and the inverse scale parameter β in the normal-gamma prior and the size parameter 
kFM in the FM, while the horseshoe prior has no hyperparameters. Hyperparameters σ 2 and β are optimised for a 
specific instance. Then, the optimal values are applied to other instances. We do not optimise the size parameter 
kFM but choose eight from FMQA’s proposal as well as 12 to have enough degree of freedom to represent αk.

We refer to the vanilla BOCS as vBOCS, the normal prior BOCS as nBOCS and the normal-gamma BOCS as 
gBOCS. The differences in kFM are identified by FMQA08 and FMQA12. In addition, a random search algorithm 
is referred to as RS, in which each vector x is randomly sampled without utilising the pre-obtained data set.

Ising solvers.  BOCS and FMQA use an Ising solver to find the solution of the surrogate model represented 
in a quadratic form. We evaluate three Ising solvers: simulated annealing, QA and simulated quenching. Simu-
lated annealing (SA) introduces a thermal fluctuation in the exploring process of the cost function19. It is imple-
mented on the Monte Carlo simulation. The temperature in the simulation is a parameter that controls the prob-
ability of variable reversal such that the cost function increases. Initially, the temperature is high to help global 
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search in the solution space and find the candidate basin harbouring the global minimum. Later, the temperature 
becomes low to find the lowest solution in the basin. If the cooling schedule is slow enough, i.e. ∝ 1/ log(t) , SA 
finds the global minimum20.

Quantum annealing (QA) takes place in the thermal fluctuation in SA by quantum fluctuation through a 
scheduled transverse field. The quantum system starts from a trivial state (superposition of all solutions) and 
finds the ground state of the cost function at the end of the annealing21. If the transverse field is scheduled as 
∝ t−1/(2N−1) , the system converges to the ground state at the end22.

We refer to simulated quenching (SQ) as a variation of SA with extremely rapid quenching of the temperature 
from high to zero. Although this algorithm simplifies and accelerates the Monte Carlo calculation, it eliminates 
the ability to search solution space globally at the early stage of annealing. Thus, this algorithm tends to be trapped 
in local minima more frequently than SA and QA.

We utilise SA and QA solvers in D-Wave Ocean SDK with default parameters. The default initial and final 
temperatures for SA are determined from approximately estimated maximum and minimum effective fields 
with scaling factors 2.9 and 0.4, respectively. The default annealing time for QA is 20 microseconds. In SQ, the 
temperature is not annealed but kept constant at 0.1. We optimise the surrogate model 10 times in each iteration 
step for all solvers to find a better solution.

Results
Integer decomposition was conducted for ( N × D = ) 8× 100 matrix W  , which is constructed by shrinking 
from the final fully connected layer of VGG16 convolutional neural network23. We choose the decomposition 
parameter K = 3 , and thus the matrix W is decomposed into a 8× 3 binary matrix M and a 3× 100 real matrix 
C . As discussed in the “Original formulation of the integer decomposition” subsection, the size n of the prob-
lem is determined by the size of the binary matrix. In this case, n = 8× 3 = 24 . The dimension of the model 
parameter αk is O(n2) so that we start from the initial data set of size n and then add 2n2 data points iteratively 
to reach enough size for estimating the model parameter. In the current analysis ( n = 24 ), we generate initial 24 
data points followed by 1152 iterations (1176 in total). This number is remarkably small compared to the solu-
tion space 224 ∼ 1.7× 107 . All the algorithms we test in this paper are randomised algorithms and/or starting 
from a randomly selected data set, and thus we conduct 25 runs (or 100 runs for RS) to estimate the average 
performance. The performance also depends on the matrix W . Therefore, we generate ten individual problem 
matrices (instances) to evaluate the performance over instances.

Figure 1 shows the results from different algorithms for the first instance. In the BBO process, SA is used 
as an Ising solver. The x and y axes represent the iteration step, the size of acquired data (including initial data) 
in linear scale and the residual error from the exact solution in log scale, respectively. Due to the limitation of 
the problem size n we tested, the compression quality is insufficient for typical applications. In this situation, 
the absolute error is not an appropriate measure to compare algorithms. Thus, we employ the residual error 
(∥

∥f (M)
∥

∥

2
−

∥

∥f (M∗)
∥

∥

2

)

/�W�2 , where M∗ is the exact solution of Eq. (8). With this measure, we can evalu-
ate how the solutions are close to the exact solution. The exact and the second-best solutions were separately 
obtained from brute-force search. The absolute error of the exact solution 

∥

∥f (M∗)
∥

∥

2
/�W�2 , subtracted in the 

plot, is 0.461. All algorithms outperform the original approximated solution in the red-dotted line. The FMQA 
algorithm improves its solution faster than other algorithms at the early stage. However, the improvement does 
not continue at the later stage. vBOCS and nBOCS improve slowly, but the improvement continues during the 
process. They go under the line of the second-best solution (in grey-dotted line), suggesting that some individual 
runs find the exact solution.

Figure 1.   The residual error of lossy compression of a matrix (instance) as a function of iteration step among 
various algorithms with 95% confidence intervals. The red- and grey-dotted lines indicate the residual error of 
the original algorithm and the second-best solution by brute-force search.
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Figure 2 shows the differences between Ising solvers (SA, QA and QS) applied to nBOCS, labelled as nBOCS, 
nBOCSqa and nBOCSsq, respectively. Although SQ generally has a poor performance in finding a global mini-
mum in a complex landscape of the cost function, there are no clear differences among Ising solvers. This finding 
suggests that the landscape of the surrogate model is simple. Thus, such a simple Ising solver is enough for the 
current BBO task.

As discussed in “Original formulation of the integer decomposition” subsection, there are K ! × 2K exact 
solutions in the optimisation problem. In other words, any x has K ! × 2K − 1 equivalent vectors, which give the 
same value of the cost function. These equivalent vectors can be added to the data set and may accelerate the 
BBO process. Figure 3 shows the results of this data augmentation. The data augmentation (nBOCSa) does not 
require the additional calculation of the cost function; thus, we do not change the scale of the x-axis. The results 
clearly show that the data augmentation negatively affects the performance in the later stage, while there is a 
little advantage in the early stage.

Table 1 shows the total count of finding exact solutions among all ten instances for all algorithms and their 
variations. Algorithms of nBOCS with SA, QA and SQ perform better than others. RS and nBOCSa cannot find 
the exact solution in most instances.

To investigate the behaviour of the algorithms, we perform a cluster analysis of the candidate solution for each 
step. If an algorithm gradually focuses on subspace harbouring a specific exact solution, sampling of candidate 
solutions will also be biased gradually. We divide the solution space into four domains based on the hierarchical 
clustering of the exact solutions. Other solutions in the solution space are assigned to the closest exact solution 
measured using the Hamming distance and then grouped into the four domains. The population of the four 
domains reflects the sampling bias. Figure 4 shows the population of the candidate solutions among four domains 

Figure 2.   The residual error of lossy compression of a matrix as a function of iteration step among the Ising 
solvers (SA, QA and SQ).

Figure 3.   The residual error of lossy compression of a matrix for RS and nBOCS variants with and without data 
augmentation (nBOCSa and nBOCS).
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for individual five runs. The plots are convolved for smoothing (window size, 100). RS and nBOCSa show no 
trend, while FMQAs start focusing on a domain from an early stage. Other BOCS variants select a domain in 
the middle of the analysis but continue to explore other domains.

Execution times for all algorithms are shown in Table 2. nBOCSqa takes a longer time than nBOCS due to the 
overhead to prepare the data matrix to be uploaded to the quantum annealer. The communication time between 
CPU and QPU is not taken into account. nBOCS is 129 and 67 times faster than vBOCS and FMQA08. The 
original algorithm and the brute-force search execution times are 0.00096 and 5553.51 s, respectively.

Table 1.   Counts of finding exact soulution per 25 runs. The highest values are in bold.

Instance No. RS vBOCS nBOCS gBOCS FMQA08 FMQA12 nBOCSqa nBOCSsq nBOCSa

1 0 7 7 2 1 3 9 11 0

2 1 6 11 5 6 9 12 15 1

3 0 0 13 5 6 9 10 2 4

4 1 16 20 10 10 13 14 17 0

5 0 0 1 0 3 4 2 1 0

6 0 14 12 4 6 4 18 20 0

7 0 1 4 6 7 8 7 6 0

8 1 4 2 2 4 1 4 1 0

9 1 5 1 3 3 4 6 4 0

10 5 21 20 15 20 21 22 25 6

Total 9 74 91 52 66 76 104 102 11

Figure 4.   The population of the four domains for five individual runs for various algorithms. The x-axis 
represents the iteration step.

Table 2.   Average execution time (s) per run.

RS vBOCS nBOCS gBOCS FMQA08 FMQA12 nBOCSqa nBOCSsq nBOCSa

CPU 0.72 7165.06 55.39 112.39 3711.31 3625.92 241.46 55.94 319.98

QPU – – – – – – 11.60 – –
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Discussion
We conducted BBO of the integer decomposition, a lossy compression of a matrix. Here, we demonstrated that 
this MINLP problem is transformed into an NLIP problem. The cost function is pseudo-Boolean because the 
exploratory variables are binary. We employed BBO algorithms such as BOCS and FMQA to the cost function. 
These algorithms optimise a surrogate model constructed from the input-output data of the cost function to 
obtain the next candidate for data acquisition and update the model. This transformation can be generalised to 
solve MIP problems if the cost function is linear in terms of the real variables.

Among the variations of BOCS and FMQA algorithms, BOCS with normal prior showed the best perfor-
mance, with an execution time that is one or two digits faster than FMQA or BOCS with horseshoe prior. FMQA 
improves the solution rapidly at the initial stage, while BOCS slowly but continuously improves and obtains 
a superior solution. The differences in finding the solution space for these algorithms were analysed through 
clustering. FMQA tends to focus on a subspace earlier than BOCS. However, once the algorithm is trapped in 
a local minimum, the algorithm cannot escape from the local minimum because FMQA is deterministic. As 
BOCS is a randomised algorithm, it takes steps but explores larger space and finds a better solution. In the integer 
decomposition, the cost function is not an expensive-to-evaluate function; thus, we can conduct enough itera-
tions. The strength of BOCS in the late stage of the iteration is favourable compared to FMQA. A randomised 
version of FMQA24 should be studied in the future.

In the current formulation, the solution space is divided into equivalent K ! × 2K subspaces due to the nature 
of the problem, where each subspace has the exact solution. We confirmed that the data augmentation for the 
subspaces did not improve the performance. BOCS and FMQA approximate the cost function in the quadratic 
function, which means the surrogate model fits well locally, and not globally. Therefore, these algorithms try 
to focus their sampling on a subspace that harbours one of the exact solutions to the problem. However, data 
augmentation deals with all the subspaces equally. Thus, it is impossible to sample from biased solution space to 
improve the model locally around the exact solution. Bias is introduced randomly from the selection of initial 
data and the following biased candidate selections.

With regard to the choice of Ising solvers as a back-end of a black-box optimiser, there is no significant dif-
ference between SA, QA and SQ. This finding is non-trivial because SQ has a poor performance in general. SQ 
does not explore the solution space globally because the algorithm only accepts the next solution that lowers the 
cost. This fact leads to the following hypothesis. In the early stage of exploration, the low-quality solutions from 
the Ising solver are enough to construct a more accurate surrogate model. Then, in the late stage, the surrogate 
model approximates the cost function around one of the exact solutions as the sampling is biased. Optimisation 
of the surrogate model by the Ising solver might be relatively easy compared to the explicit form of the original 
cost function. Therefore, the advantage of QA in BBO is an open question. Further studies are needed to reveal 
how the approximated landscape of the cost function learned from the acquired data set changes according to 
the increase of the data.

While the original algorithm cannot find the exact solution, the proposed BBO-based algorithm can find 
it with a certain probability in the tested problem size ( n = 24 ). However, the execution time of the proposed 
algorithm takes five digits longer than the original. (Brute-force search needs additional two digits.) As the sur-
rogate model is quadratic, BBO needs O(n2) iterations to estimate the model parameters. If we employ nBOCSsq 
(normal prior BOCS with SQ), the most expensive calculation in each iteration is matrix inversion O(n3) for 
building the surrogate model. Therefore, the algorithm takes O(n5) calculation time. This scaling may worsen if 
we choose other Ising solvers (SA and QA). The proposed algorithm has an advantage in solution quality against 
the original algorithm and calculation time against the brute-force search. However, with the current scaling, the 
typical use of matrix compression, such as weight matrix in a machine learning task, is not applicable. Figure 4 
of the reference4 shows that FMQA finds meaningful solutions for n = 12 ∼ 50 . Although they fixed the itera-
tion at 2000, more iterations seem needed for large problems. Further investigation is required to accelerate the 
calculation for handling the typical size of matrices.

In this paper, the algorithm’s limitation is that the model is approximated by quadratic form. The COMBO 
algorithm considers higher-order terms by diffusion kernel of graph representation25. Kernel-based algorithms 
relaxing the binary variables to the continuous ones are also proposed26,27. They may work better for problems 
where the kernel removes essential difficulties in combinatorial optimisation. Once the gradient can be calculated, 
construction and optimisation of the surrogate model can be accelerated28. Comparison with these algorithms 
will be a future task.

Methods
Shrunk VGG matrix.  To test BBO for lossy matrix compression, we prepare matrices by shrinking the VGG 
matrix, the weight matrix in the convolutional neural network for image recognition. We choose the matrix 
of the final fully connected layer ( 4096× 1000 matrix). As the matrix is too large to conduct BBO, we reduce 
the size by keeping the structural information of the matrix as follows: the weight matrix w0 is decomposed by 
singular value decomposition,

where U  , � and V  are 4, 096× 4, 096 , 4096× 1000 and 1000× 1000 matrices, respectively. Then, we choose 
eight and a hundred rows/columns from U  and V  , respectively, and eight singular values from � to construct 
the shrunk 8× 100 matrix.

(13)W0 = U�V
T,
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Exact solutions.  The exact solutions in Fig. 5a are obtained by solving Eq. (8). For the current problem size, 
we can perform a brute-force search for all candidates in the solution space 224 . Each solution is presented in a 
box of 8× 3 pixels. Black and white pixels represent 1 and −1 , respectively. Figure 5b shows clustering results 
of the 48 exact solutions by the Ward method. Similar solutions are grouped, e.g. the second and fourth boxes 
(labelled 1 and 3 in the cluster) are one of the closest pairs. We can make four groups by choosing an appropriate 
cut-off value (the height of the tree). These four groups are used for colouring in Fig. 4.

Hyperparameter optimisation.  Hyperparameters σ 2 (variance) for nBOCS and β (inverse scale) for 
gBOCS are optimised for the first instance. For each hyperparameter, grid search 0.0001, 0.001, 0.01, 0.1, 1, 10 
and 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 are conducted (Fig. 6). In nBOCS, we select σ 2 = 0.1 , which gives the low-
est cost. On the other hand, in gBOCS, we select not β = 10 but β = 0.001 , as broader prior distribution is pref-
erable for exploring an accurate model, and there is less cost variation among different hyperparameter values.

Results of the other nine instances.  Figure 7 shows the results of the other 9 instances used in Table 1.

(a) (b)

Figure 5.   (a) 48 exact solutions for the first instance. Each box represents a 3× 8 matrix M . Black and white 
pixels represent 1 and −1 , respectively. (b) clustering results of the 48 exact solutions by the Ward method. Each 
solution is labelled from 0 to 47 and assigned left-to-right and top-to-bottom in (a).

Figure 6.   Hyperparameter dependence on the cost.
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Data availability
The program code to reproduce the analyses is in Supplementary Information.
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