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Iterative image segmentation 
of plant roots for high‑throughput 
phenotyping
Kyle Seidenthal1, Karim Panjvani2, Rahul Chandnani2, Leon Kochian2 & Mark Eramian1*

Accurate segmentation of root system architecture (RSA) from 2D images is an important step in 
studying phenotypic traits of root systems. Various approaches to image segmentation exist but 
many of them are not well suited to the thin and reticulated structures characteristic of root systems. 
The findings presented here describe an approach to RSA segmentation that takes advantage of 
the inherent structural properties of the root system, a segmentation network architecture we call 
ITErRoot. We have also generated a novel 2D root image dataset which utilizes an annotation tool 
developed for producing high quality ground truth segmentation of root systems. Our approach makes 
use of an iterative neural network architecture to leverage the thin and highly branched properties 
of root systems for accurate segmentation. Rigorous analysis of model properties was carried out to 
obtain a high‑quality model for 2D root segmentation. Results show a significant improvement over 
other recent approaches to root segmentation. Validation results show that the model generalizes to 
plant species with fine and highly branched RSA’s, and performs particularly well in the presence of 
non‑root objects.

Background. We are in the post-genomic era of biological investigation where tremendous advances in 
DNA sequencing are enabling researchers to identify differences in genome sequence that allow us to associate 
genotypes with phenotypes. This involves identifying significant associations between changes in DNA sequence 
of individuals in a species with specific biological traits, and then identifying the genes underlying variation in 
those traits or phenotypes. This is certainly the case in agricultural research where computationally-based geno-
type × phenotype analysis is allowing for more rapid and targeted identification of the genes underlying crop 
traits, and that knowledge is then being used to improve those traits via molecular and digital breeding. One 
major area of crop phenotyping that has expanded tremendously in recent years is the phenotyping and study 
of root system architecture (RSA), which is how a plant distributes its root system in three dimensions in the 
growth  environment1. Roots are often considered the “hidden half ” of plant breeding and plant research as their 
growth in opaque soil environments make them difficult to study and especially hard for plant breeders to see 
and quantify root traits of  interest2.

The ability to phenotype root systems on large numbers of plants (hundred to thousands of plants) in genetic 
mapping populations for a particular crop species has enabled researchers to show that RSA is a key genetic trait 
controlling efficient acquisition of water and essential mineral  nutrients3–5. Thus, much of the RSA phenotyping 
component of plant breeding has been moved from the field to the lab, with the roots of intact plants grown in 
transparent media (hydroponics, transparant gels, or, as in this paper, the surface of filter paper pouches) for 
either 2- or 3-dimensional analysis of RSA (for examples  see1,6,7). This has been done because there are no com-
parable techniques for imaging roots in soil without damaging the roots or with the throughput necessary to 
conduct genetic analysis of root architecture traits which requires phenotyping of roots on thousands of plants.

Although the soil is natural medium to grow plant roots, due to covering of some part of the root system by 
soil and higher background noise between roots and background, can results in failure to detect the parts of the 
root system leading to inaccurate root phenotyping. Whereas transparent growing mediums such as hydroponic 
solution, gel and agar medium can provide higher contrast and reduced background noise and better accuracy 
to capture the whole root system architecture. Despite the availability of 3D root system phenotyping platform 
in transparent medium like  gel1, 2D root phenotyping systems setup in transparent growing medium (8,9) is 
currently preferred due to higher throughput and reduced amount of growth medium  required10. There are 
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mainly two techniques reported for 2D RSA phenotyping in transparent growing medium. A 2D pouch system 
techniques is used by growing the plant roots on germination paper inside a plastic pouch that can provide the 
support for 2D RSA  growth9,11. Images captured by this technique can be analyzed with various 2D root image 
analysis software for different sets of root RSA traits such as  RootNAV12, WhinRhizo (Regent Instrument Inc., 
Ville de Québec, QC Canada) and  DIRT13. Another 2D RSA phenotyping system is agar plates or gel plates that 
are use primarily for Arabidopsis root  phenotyping14 and images can be analyzed with various software such as 
EZ  Rhizo15,  myRoot16. These image analysis platforms often require image cropping and pre processing before 
the analysis or all the images from batch are acquired in a restricted frame. Our deep-learning-based method 
eliminates these steps and segments the root system architecture successfully.

In the current study, plant roots were grown in a “pouch system” which is a Plexiglas box that has a number 
of layers of germination paper with the top layer consisting of black filter paper on which the root grows, which 
greatly enhances the contrast between the root and background and improves root image resolution. The germi-
nation paper enables the hydroponic nutrient solution in which the bottom portion of the layers of germination 
paper are placed to be drawn by capillary action into the germination paper, providing water and nutrients for 
root absorption. The root systems are then digitally photographed using a 2D imaging system for capturing 
high-resolution images at certain time intervals.

These types of lab-based root phenotyping approaches combined with genome-wide genetic analyses of the 
root traits have enabled researchers to identify genes, for example, that condition deep rooting in rice (DRO1;5). 
The DRO1 gene was then used via transgenic and marker-assisted breeding approaches to increase rice yields 
in the field under drought, as the deeper rooting allowed the plants to acquire water deeper in the soil profile. 
Another example has involved modifying the root system to better acquire the most limiting of the major fer-
tilizer nutrients, phosphorous (P), which tends to be fixed to soil particles and accumulates in the top soil in 
low P soils. Using the 2D root phenotyping tools employed in this study enabled the phenotyping of a 270 line 
sorghum association panel which led to the identification of Pstol1 genes (phosphorus tolerance 1) that altered 
the root architecture to place more and longer lateral roots in the topsoil and significantly increased sorghum 
yields on low P  soils17.

There are tremendous opportunities to improve the speed and accuracy of these types of root imaging plat-
forms using deep learning techniques. Once the root images are acquired, they must be processed in ways to 
enable accurate quantification of both root growth and RSA traits that accurately describe the shape and distri-
bution of the individual roots. This must be done rapidly, to enable the throughput to image hundreds of root 
systems per day, as a typical mapping population can consist of 200–400 different varieties for a particular crop 
species, and with 5-10 replicates per plant with 2 or 3 different time points, requires the imaging of root systems 
on thousands of plants per experiment. Manual and semi-automatic approaches  exist15,18, but such approaches are 
time consuming and can require differing levels of subjective judgement depending on the level of automation. 
Automated approaches stand to improve the speed and accuracy with which RSA can be studied by making use 
of deep learning  techniques19,20. Deep learning utilizes artificial neural networks with a large number of hidden 
layers and complex internal connections to both learn distinguishing features of images and how those features 
map to decisions such as labeling an image with an object class identity, or classifying individual image pixels as 
belonging to a foreground object or background, the latter being an example of image segmentation. The exact 
nature of the neuron layers and the connections between them within a deep neural network is referred to as 
the network architecture.

Deep learning networks are applicable to certain phases of the RSA analysis pipeline. Briefly, the major steps 
in the pipeline are: 

Preprocessing/Cropping:  The images are prepared for more efficient processing using opera-
tions such as de-noising, or cropping away large areas of the image 
that do not contain roots to reduce image size and processing time 
for subsequent steps.

Segmentation of Roots from Background:  The preprocessed images are analyzed and converted to binary images 
where the state (on/off) of a pixel indicates whether it is background 
or root (foreground). This can be challenging due to complexity of 
root structures, uneven lighting, and air bubbles within the root’s 
growth medium. There are many types of deep network architectures 
for segmentation that could be applied in this step.

Abstract Representation:  The segmented image is transformed into an abstract representation 
of the root system typically consisting of root segments (possibly 
annotated with thickness), branching points, and tips. At this step, 
there is potential for deep learning to be used to construct abstract 
representations of root systems from the segmented images.

Phenotypic Trait Extraction:  Mathematical traits are computed from the abstract representation 
that are used as either direct or proxy root system phenotypes.

 In this paper we present a new deep network architecture for performing the segmentation step in the canoni-
cal RSA analysis pipeline that compares favourably with comparator deep learning approaches. We begin by 
reviewing some relevant literature.

Literature review. Douarre et al. made use of a convolutional neural network (CNN) to extract localized 
features from patches of an input X-Ray tomography image of roots in  soil21. Once extracted, these features were 
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passed into a support vector machine (SVM) to classify each pixel as either root or soil. Their model was trained 
on a dataset of synthetic images which they generated based on the properties of a dataset of X-Ray images, and 
evaluated on the original X-Ray images. For evaluation, they defined a metric of quality which is the sensitivity 
and specificity scores of the model multiplied together, where a higher score represents a better segmentation. 
Due to the unconventional metric which they used for evaluation it is difficult to say how this may compare to 
other approaches.

RootNav 2.0 was implemented by Yasrab et al. to perform both the task of classifying root tips and the task of 
producing a segmentation of the root structure  automatically22. This was done using an encoder-decoder deep 
network on which the last layers of output are split into a tip detection path and a segmentation path, such that 
two different outputs are produced representing the tips and segmented structure of the root system. The benefit 
of this approach is that any features learned by the network to aid in the detection of root tips can be leveraged 
to improve segmentation, and vice versa. The output segmentation and root tip points are then used to perform 
an A ∗ search  algorithm23 to determine root paths from tip to source. Once the paths have been determined they 
can be encoded in the root system markup language (RSML) format for later computations.

Another use of deep learning in root segmentation was conducted by Wang et al.24 who developed SegRoot 
which makes use of the SegNet deep learning architecture developed by Badrinarayanan et al.25. Before training 
the network, they applied a dilation to binary segmentations of the root images to enhance small features of the 
root system. Once trained, the network produces a probability matrix for each pixel being a root pixel, which is 
thresholded such that pixels with a probability 0.99 or higher are considered to be root, to produce a binary mask. 
The mask is then eroded to undo the implicit dilation learned by the network during training. One issue with 
this approach is that applying a dilation filter could unintentionally fill small holes in the mask, thus removing 
important details in the root system. Their model was trained and tested on soybean roots.

The U-Net deep learning  architecture26 has been applied by Smith et al.27 to segment chicory roots from soil 
in 2D images. The Dice loss function was combined with cross-entropy loss and used for training the network on 
image patches (sub-images of a main image) containing roots. Comparison with a Frangi filter approach shows 
significant improvement in segmentation quality.

One general characteristic of RSA is that it is comprised of thin branching segments, which shares properties 
with structures of interest in other fields. One example of this is segmentation of guidewires, which are used 
by physicians to treat stenosis in patients and are difficult to see during operation. Guo et al. have modified the 
U-Net architecture to improve real-time viewing of guidewire tips during operation via segmentation of X-Ray 
fluoroscopy  images28. They introduced a new layer block which performs summation rather than concatenation 
to propagate features between layers of the network.

Kassim et al. combined the U-Net architecture with a random forest tree bagger classifier to optimize segmen-
tation of blood vessels (another example of thin, branching structures) from epifluorescent  images29. The U-Net 
is trained on contrast equalized images to produce a regression likelihood map based on the green channel of 
the input image, which is then filtered by hand-crafted feature filters to train the random forest tree bagger clas-
sifier for segmentation. The resulting segmentation then undergoes blob removal as a post-processing step. They 
achieved relatively small improvements with small increases in Dice score (increase of 0.011), accuracy (increase 
of 0.013), and sensitivity (increase of 0.046) over an optimized U-Net architecture. This approach makes use of 
hand crafted features to facilitate the use of the random forests classifier, which will likely need to be updated or 
changed to be generalized to other applications and may hinder the ability of a single trained model to be used 
on different datasets within a domain.

Finally, Li et al. have proposed an approach they named IterNet, which is a structure made of multiple U-Net 
 structures30. The U-Net structures each have their own segmentation outputs and loss function, but they feed 
the learned features of their last hidden layer to the input of the next U-Net, resulting in a refining process 
which makes small improvements on the output segmentation of the previous network. This model is used to 
segment retinal vessels, which have similar structure to root systems. This architecture is particularly well-suited 
to segmentation of thin structures as the refinement process can help to preserve small details of the structure 
in the segmentation.

Many of the current approaches to RSA analysis make use of generalized segmentation network approaches 
to extract RSA from images. Such approaches can produce good segmentations but are not specifically designed 
for the challenges of segmenting the thin branching structure of root systems. It is important that automated 
RSA software be able to preserve as much of this structure as possible in order to extract the most accurate 
phenotyping data possible.

Our proposed solution, based on ITErRoot, is a method for high-quality segmentation of root structure from 
2D images which builds upon the approach by Li et al.30 which they used for segmentation of blood vessels in 
retinal scans which are thin branching structures branching structures similar to roots. The fully automated 
nature of our ITErRoot model can be scaled to systems with multiple GPUs for increased throughput. The itera-
tive network architecture that ITErRoot uses allows for refinement of structures identified by each iteration in 
the network, making it ideal for retaining details of thin structures and preserving their connectivity. These 
details are constantly learned during training and are modified at each iteration through the network, which 
gives a better representation of a general root object rather than a root object specific to one image or species. 
In addition, we have also developed a novel 2D root image dataset and a tool for consistent annotation of RSA.
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Materials and methods
In this section we outline our approach to the problem of segmenting thin and highly branched root structures. 
We designed a tool for fast and consistent annotation of root images to produce ground truth binary masks for 
use in training and evaluation of segmentation algorithms. We also designed a neural network architecture which 
is particularly suited to segmenting images of roots.

Image annotation. In order to train and evaluate our segmentation algorithm we require ground truth 
segmentation masks with enough detail such that roots in close proximity to each other can be distinguished. To 
accomplish this task, we designed Friendly Ground Truth, an annotation tool which provides a focused view of 
local root structure for consistent annotation. The tool allows the user to open a large image which is split into 
smaller non-overlapping patches in a grid formation. The user can then focus on a single patch of the image at 
a time, making local annotations in greater detail without the distraction of managing the entire image at once. 
The immediately surrounding patches are visible but greyed out to provide contextual information to the user. 
The tool provides easy keyboard shortcuts for navigating within and between patches. See Fig. 1 for an example 
of the tool in use.

Annotation on each patch is carried out using a number of tools: brush tools, localized fill (magic wand) 
tools, and threshold tools. Brush tools allow the user to use the mouse cursor to draw on the current patch to 
mark pixels as the foreground class. The radius of the brush can be easily adjusted using the mouse wheel to 
match the width of a given root, and the brush can be switched to an erase mode to indicate background pixels. 
Localized fill tools allow the user to select a region to fill with either foreground or background pixels using a 
threshold. This allows for rapid annotation in regions of similar colour properties to outline foreground and 
background pixels. The threshold can be easily adjusted using the mouse wheel to grow or shrink the selected 
region. A global threshold tool is available for quickly applying a threshold to the image, which can be used to 
annotate large portions of the patch. Once a threshold has been selected, the user can use the tools previously 
mentioned to make small adjustments where the global threshold does not provide a correct or detailed annota-
tion. Finally, the user has access to a ‘no root tool’ which marks an entire patch as background pixels for cases 
where a patch does not contain any root. Marking an entire patch this way significantly decreases the amount 
of time to process an image, as the images contain large areas without foreground; hence, this tool significantly 
speeds up image processing by allowing a single click method for annotating such patches. When finished, the 
user has the opportunity to review the image as a whole to see how the individual patch annotations fit together 
and to make any necessary corrections. The resulting annotation is then exported as a binary mask.

This tool was designed and tested alongside user feedback and suggestions to ensure usability and efficiency 
in creating annotations. Testing was done by volunteer Computer Science students with experience with other 
annotation tools. Friendly Ground Truth was successfully employed to generate a dataset of root images that 
were used to train and evaluate the segmentation network structure proposed in this work. The annotation tool 
has been made publicly available on GitHub (https:// github. com/ p2irc/ frien dly_ ground_ truth) for use by the 
community to generate root segmentation datasets.

Iterative neural network architecture. The architecture used in this work is an improvement on the 
iterative network (IterNET) architecture proposed by Li et al.30 called ITErRoot. IterNET consists of a number of 
refinement networks to iteratively improve the segmentation of the input image. However, the hidden layers of 
our ITErRoot network are comprised of the residual units introduced by He et al.31 which are known to reduce 
the effects of degrading features as the depth of the network increases. This is different from the architecture used 
in IterNET which instead used the standard convolutional layers in the U-Net architecture.

Figure 2 displays a high level view of the architecture used. The architecture is a series of U-Net26 struc-
tures linked together by hidden and skip connections, where each network is considered to be a new iteration, 
though in reality it is simply a new network with its own set of learned features. Each iteration has multiple 
inputs; the output of all previous iterations and the output of the first layer of the main input network, which 

Figure 1.  A screenshot of an in-progress annotation on a patch in the Friendly Ground Truth tool. Pixels 
marked as root are indicated to the user in red. Surrounding patches of the current patch are greyed out and not 
editable, but provide necessary context for the roots which need to be annotated.

https://github.com/p2irc/friendly_ground_truth
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are concatenated together into a single input tensor. In contrast to the IterNet architecture, we place the concat-
enation operation before input to each secondary network, rather than after the first input of each secondary 
network. This allows the secondary networks to incorporate high level details using the entire network while still 
performing the downsampling operation on the concatenated input. Each U-Net has its own output mask and 
is evaluated with its own copy of the loss function, but the output of the last hidden layer is used as the input to 
the next U-Net, in addition to a skip connection from the input layers of the previous two networks. The first 
network is considered to be the input network, and is made up of four hidden layers. All secondary networks, 
which come after the input network, are made up of three hidden layers. Each subsequent network after the first 
is fed a new learned representation of the input image at each epoch as the previous network learns to better 
represent the desired features for segmentation. This has the effect of refining the segmentation at each iteration 
to improve small details which are necessary in the segmentation of thin roots in a root system. Another benefit 
of this architecture is the internal augmentation of training data, as each subsequent network receives a new 
representation of the input image each epoch, helping to generalize the resulting segmentation for small training 
datasets. Skip connections from the input layer of previous networks to the input of the current network allow 
for transmission of high level features from the original input image much in the same way as skip connections 
in a U-Net architecture preserve high level feature information at each level of the network. The residual units 
provide skip connections within the hidden layers to preserve high level features as they are propagated through 
the network, which becomes deeper as the number of iterations increases. Figure 3 details the composition of 
the blocks used to create the larger network structure.

Rather than using sigmoid cross entropy loss as used by Li et al.30, the loss function used for training the 
architecture is a weighted binary cross entropy combined with Dice loss as defined in Eq. (1). Due to the high 
imbalance of background and foreground pixels in our images, sigmoid cross entropy loss on its own does not 
prevent the model from overemphasizing background pixel classification. In Eq. (1a), α and β represent the 
weight of the binary cross entropy and Dice loss functions, respectively. H(y, ŷ) , shown in Eq. (1b), represents 
the binary cross entropy function for some predicted matrix y and ground truth matrix ŷ , and D(y, ŷ) , shown in 
Eq. (1c), represents the Dice loss function for the same prediction and ground truth matrices. By allowing each 
term of the loss function to be weighted as a hyper-parameter, we give greater control over the network during 
training. This function is applied to each of the networks inside the overall network structure, and the loss for 
the last iteration is used as the overall loss of the network. The binary cross entropy portion of the loss function 
pushes the network toward a better per-pixel classification for the image, while the Dice portion characterizes 
the overall segmentation quality with a standard measure. Early stopping is used to prevent the model from 
over-fitting and is determined by the tracking the Dice score on the testing set for degradation in performance, 
and multiplicative learning rate decay is used to help the model converge in later epochs. 

Input
Block

256× 256× 32

Down
128× 128× 64

Down
64 × 64 × 128

Down
32 × 32 × 256

Down
16 × 16 × 512

32 × 32 × 256

Up

64 × 64 × 128

Up

128× 128× 64

Up

256× 256× 32

Up

256 × 256 × 1

Output
Block256 × 256 × 3

+
Input
Block

256× 256× 32

Down
128× 128× 64

Down
64 × 64 × 128

Down
32 × 32 × 256

64 × 64 × 128

Up

128× 128× 64

Up

256× 256× 32

Up

256 × 256 × 1

Output
Block

+
Input
Block

256× 256× 32

Down
128× 128× 64

Down
64 × 64 × 128

Down
32 × 32 × 256

64 × 64 × 128

Up

128× 128× 64

Up

256× 256× 32

Up

256 × 256 × 1

Output
Block

+
Input
Block

256× 256× 32

Down
128× 128× 64

Down
64 × 64 × 128

Down
32 × 32 × 256

64 × 64 × 128

Up

128× 128× 64

Up

256× 256× 32

Up

256 × 256 × 1

Output
Block

Figure 2.  Network architecture diagram showing a high level view of the blocks making up the network. One 
main U-Net structure acts as input to the subsequent smaller U-Net structure. High- level image features are 
concatenated to the inputs of all networks via skip connections (solid line), and learned high-level features at the 
output of each iteration are concatenated together with the inputs of each subsequent iteration (dotted lines). 
Each network iteration has its own segmentation output, and the last network’s output is considered to be the 
final segmentation.
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The network is designed to be used on 256× 256-pixel sized image patches to provide enough local informa-
tion to accurately detect important features, while providing enough context to ensure that features are learned 
with respect to the overall image. To reduce the probability of over-fitting and increase generalizability of the 
resulting network we used data augmentation during training. Data augmentation allows us to modify the train-
ing images at each epoch, such that for each epoch the network sees a slightly different representation of the data. 
By using data augmentation, we show the network more possible inputs than are actually present in the static 
training set of images, forcing the model to learn different representations of the input images and reducing the 
chances of overfitting the model. We used on-the-fly data augmentation where training images are randomly 
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2
∑N

i yiŷi∑N
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Figure 3.  The blocks that make up the network structure. (a) The input block based on the residual unit. 
A 3× 3 convolution is applied, followed by batch normalization, and a ReLU function. The same process 
is repeated again, but the original input features are added together before the last ReLU operation. (b)The 
downward residual block is similar to the input block (a) except we apply a 2D max pooling operation to 
downsample the input features. (c) The upward residual block is similar to the input block (a) except a transpose 
is applied to upsample the input features. Features from the corresponding down layer are concatenated before 
being input to the transpose. (d) The output block is a simple 3× 3 convolution followed by a sigmoid function 
to produce a final probability map.
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rotated up to 90 degrees, and/or horizontally and/or vertically flipped. During evaluation, the root images are 
split into 256× 256-pixel overlapping patches with an overlap of 128 pixels (50% of the patch) which ensures that 
each pixel in the image is examined in four patches. Segmented patches are combined using a majority voting 
system where a pixel is finally labeled as foreground if it is labeled as foreground in the majority of patches in 
which it appears. In the case of a tie, the pixel is labelled as background. This helps to improve small errors that 
may occur due to the way the patches are placed within the full sized input image.

Datasets. Our overall dataset consists of six separate sets of images of plant roots named: Cucumber-Pouch, 
Cucumber-Wetmouse, Canola, Wheat, Soybean, and Soybean-assoc. Example images from each set can be seen 
in Fig. 4. In all of the image sets except Cucumber-Wetmouse, plants were grown in a Plexiglas chamber or 
“pouch” (first described in "Introduction" section) growing on top of a sheet of black filter paper (to enhance 
contrast between background and roots), that sits on top of 4 sheets of germination paper that wicks nutrient 
solution up from the plastic tub in which the bottoms of the pouches are placed during plant growth. The root 
system on black filter paper is covered with a pliable plastic sheet, which holds the 2D RSA in place and prevents 
drying of the root system. The root systems are allowed to grow freely in two dimensions, which allows a 2D 
image to capture the entire root system without requiring a 3D viewpoint. For the Cucumber-Wetmouse image 
set, the cucumber plants were grown with the roots freely growing in aerated nutrient solution. For imaging, the 
plant was carefully removed from the hydroponic tub and placed in a shallow glass tray filled with water prior 
to root system imaging.

Both cucumber sets, the wheat set, and both soybean sets were provided by Dr. Kochian’s research group 
at the Global Institute for Food Security (GIFS). All five of the image sets were imaged using a Nikon D7200 
camera. The Cucumber-Pouch data set consists of forty 4016× 6016 images of Cucumber (Cucumis sativus) 
roots taken at 7, 9, and 11 days after transplantation (DAT), the Cucumber-Wetmouse data set consists of thirty 

(a) Cucumber Pouch

(b) Cucumber Wetmouse

(c) Wheat

(d) Soybean (e) Canola

Figure 4.  Example images from the Cucumber-Pouch (a), Cucumber-Wetmouse (b), Wheat (c), Soybean (d), 
and Canola (e) data sets.
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nine 4016× 6016 images of Cucumber (Cucumis sativus) roots imaged at 7, 9, and 11 DAT, the Wheat data set 
consists of three hundred and one 6016× 4016 images of Wheat (Triticum aestivum) roots imaged at 7, 9, and 
11 DAT, the Soybean data set consists of seventy 6016× 4016 images of Soybean (Glycine max) roots imaged at 
8, 10, and 12 DAT, and the Soybean-assoc data set consists of three hundred thirty three 6016× 4016 images of 
Soybean roots imaged at 5 and 8 DAT.

The Canola image set was provided by Agriculture and Agri-Food Canada (AAFC) and consist of four hun-
dred ninety five 2180× 2980 images of Canola (Brassica napus), imaged using a Nikon D7200 camera in two 
different sessions, 4 days apart. All images are RGB colour TIFF images. Table 1 gives a summary of the entire 
data set.

Ground truth data was produced using the Friendly Ground Truth annotation tool mentioned previously. 
Annotation was carried out by seven annotators who had little to no previous experience with plant roots, but 
were experienced with software tools. The annotators were trained to use the tool and were provided with a 
series of guidelines for annotation to improve consistency among annotators. Due to time constraints only 142 
images were able to be annotated. Images were chosen for annotation such that an approximately equal number 
of images of each species were included. Images from each species were chosen to include different sizes of root 
systems, as well as varying degrees of overlapping roots to increase the generalizability of the network to a varia-
tion of root system sizes and root configurations. Figure 5 gives an example of an image with its annotated mask.

Full‑image sets. The ground-truthed images were split into a training, testing, and two validation sets. Images 
containing cucumber root systems were excluded from the training, testing, and first validation set and were 
placed in their own hold-out second validation set for analyzing the generalizability of the network. The rest of 
the images were grouped together and placed in training, testing, or validation at random with a 70%-15%-15% 
split. This generated a final usable dataset consisting of 90 training images, 16 testing images, 18 full validation 
images, and 18 hold-out cucumber validation images. These sets of images will be referred to as full‑image sets 
for the remainder of this paper because they consist of the full-sized images of the entire root systems. These 
datasets are used in Trial 3 (described below).

Derivative datasets. To facilitate thorough analysis of the proposed architecture, we created four additional 
datasets derived from the full-image set for use with the different trials of the segmentation network architecture 
we have conducted.

Hyper-parameter patch training set. The images in the full-image training set were cropped around the entire 
root system to reduce the amount of background and then 256× 256 size patches were extracted randomly from 
the cropped images to create a patch training set. This process resulted in 3,282 patches. This hyper-parameter 
patch training set dataset was used in Trial 1 (described below) to search for training hyperparameters that result 
in a high-quality trained model.

Table 1.  Data set summay. In the “Repetitions” column, DAT indicates the number of days after 
transplantation that the imaging took place, while in the case of the canola dataset, each session was taken four 
days apart, but the number of days afer transplantation is not known.

Data set Species Image size Repetitions Number of images Total images
Number of ground 
truthed images

Cucumber-Pouch Cucumis sativus 4016× 6016

7 DAT 13 40 3

9 DAT 14 3

11 DAT 13 5

Cucumber-Wetmouse Cucumis sativus 4016× 6016

7 DAT 14 39 3

9 DAT 12 3

11 DAT 13 1

Wheat Triticum aestivum 6016× 4016

7 DAT 101 301 10

9 DAT 100 13

11 DAT 100 11

Soybean Glycine max 6016× 4016

8 DAT 24 70 0

10 DAT 23 3

12 DAT 23 0

Soybean-assoc Glycine max 6016× 4016
5 DAT 181 333 20

8 DAT 152 28

Canola Brassica napus 2180× 2980

Session 1 249 495 24

Session 2 243 15

Session 3 3 0

1278 142
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Validation patch set. The validation patch set was created from the un-cropped full-image validation set by 
extracting non-overlapping patches of 256× 256 pixels from the full-sized images (not including the hold-out 
cucumber image set). The full-sized images were not cropped to allow patches containing non-root artifacts so 
that the ability of the model to correctly label non-root objects could be assessed. This process resulted in 1,864 
patches. This was the validation set used for final validation of the model.

Testing patch set. The testing patch set was created from the full-image testing set using the same process as 
for the validation patch set, above. This set has 1,077 patches. This was the test set used in Trial 1 and Trial 2 
(described below).

Expanded patch training set. The second trial we conducted seeks to improve on the results of the first trial 
(hyper-parameter search) by including additional patches containing only non-root elements that appear in the 
images. This expanded patch training set was created by adding 1,069 256× 256 patches containing no roots to 
the hyper‑parameter patch training set. These patches were hand-chosen by a single individual to include image 
features that the network had difficulty classifying in the first trial, such as the plant stem, water droplets, and 
dust particles. This dataset was used in Trial 2 (described below).

Cropped image set. Finally, it is noted that the full-sized images contain a large amount of area which contains 
no root system at all. For our fourth trial, we created this cropped image dataset which was manually created to 
ensure that root tips do not appear on the edge of the image. The manual nature of this cropping makes it difficult 
to specify an amount of pixels used for padding, though a post-cropping analysis shows that a mean number of 
153 pixels was allowed for padding. Additionally, the stem of the plant shoot was cropped out of the images so 
that only roots were visible. This trial aimed to reduce the number of patches that contain non-root objects while 
also reducing the number of patches that need to be processed to segment a full image. Identically to the full 
image set, this set is subdivided into testing, validation and hold-out cucumber validation sets.

Table 2 gives a summary of all datasets used for evaluating the network.

(a) Original Image

(b) Image Mask

Figure 5.  Example image (a) with its human annotated ground truth mask (b).
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Segmentation quality metrics. In order to compare and evaluate the quality of one segmentation result 
to another, a common set of metrics must be used. Herein is used a set of the most common and reliable metrics, 
namely Dice similarity coefficient (DSC), Intersection over Union (IoU), sensitivity, and specificity.

Segmentation quality metrics are defined in terms of the number of true positives (TP, correctly labeled fore-
ground pixels), true negatives (TN, correctly labeled background pixels), false positives (FP, background pixels 
incorrectly labeled as foreground), and false negatives (FN, foreground pixels incorrectly labeled as background).

The Dice similarity coefficient (DSC) is defined as

A DSC of 0.0 indicates the segmentation is completely disjoint from the ground truth. Higher values of DSC 
indicate greater overlap with the ground truth, with a DSC of 1.0 indicating perfect segmentation.

IoU is defined as

IoU quantifies the size of the intersection of the predicted foreground with the ground truth foreground, 
normalized by the union of their regions. Similarly to Dice coefficient, an IoU score of 0.0 indicates that the 
segmentation is completely disjoint from the ground truth, while higher values indicate greater overlap with 
the ground truth. The IoU metric carries a smaller penalty for missed True Positive identification, though is 
positively correlated with DSC.

Sensitivity is defined as

Sensitivity, also known as recall and true positive rate, characterizes how well a model can identify foreground 
pixels, with 1.0 being a perfect classification of all foreground objects.

Specificity is defined as

Specificity, also known as true negative rate, characterizes how well the model can identify background pixels, 
with 1.0 indicating a perfect classification of all background pixels.

While accuracy is a common metric used for deep learning applications, it is not suitable for this task. Accu-
racy is defined as the percentage of pixels that were correctly identified:

Due to the large number of background pixels in a root image compared to foreground pixels, a model could 
achieve a very high accuracy score while still misclassifying many of the foreground pixels. For example, if 90% 
of an image’s pixels are background, one could achieve a 90% accuracy score by simply classifying all pixels as 
background, which does not make the model any good at identifying roots. For this reason, Dice score is often 
the most general descriptor of segmentation quality, followed by IoU, sensitivity and specificity. With this in 
mind, accuracy score is omitted from this work.

Experimental trials. To evaluate the effectiveness of the proposed model and the effects that inputs have 
on the quality of output segmentation, we have designed a set of four trials. Preliminary experiments indicated 
that the ITErRoot architecture with 3 iterations showed the most performance promise, so the larger more time 
consuming experiments described herein were conducted with a 3-iteration architecture.

(2)DSC =
2 · TP

2 · TP + FP + FN

(3)IoU =
TP

TP + FP + FN

(4)sensitivity =
TP

TP + FN
.

(5)specificity =
TN

TN + FP
.

(6)accuracy =
TP + TN

TP + FP + TN + FN
.

Table 2.  Summary of the datasets used for evaluating the network in different trials. The last column indicates 
which trial each dataset is used in.

textbfDataset name Description Num images Trial

Hyper-parameter patch training set Size 256× 256 patches created from the full image set. 3282 Patches 1

Expanded patch training set Size 256× 256 patches created from the full image set, with an addi-
tional 1,069 “empty” patches. 4351 Patches 2

Testing patch set Size 256× 256 patches created from the full image set. 1077 Patches 1 & 2

Validation patch set Size 256× 256 patches created from the full image set. 1864 Patches Validation

Full image set Full size images including a testing, validation, and hold-out cucumber 
subset. 16 testing, 18 validation, and 18 cucumber hold-out. 3

Cropped image set Images from the full image set cropped to various sizes tightly to the 
root system. 16 testing, 18 validation, and 18 cucumber hold-out. 4
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Trial 1: hyper‑parameter tuning. The purpose of this trial was to determine a good set of hyperparameters for 
training our ITErRoot network architecture. The Google Cloud Platform (cloud.google.com) provides a hyper-
parameter tuning framework which allows concurrent training of models with different hyper-parameter inputs. 
Hyper-parameter inputs are specified as a range of values, and the framework uses Bayesian optimization to 
search through the space of hyper-parameter values for optimal settings. It will also end a trial early if it proves 
to be performing worse than previous and concurrent trials in order to conserve computational resources. For 
this trial we triggered 30 different training jobs within this framework. The input ranges for hyper-parameters 
are outlined in Table 3. The learning rate and learning rate decay parameters are allowed to fluctuate between a 
small range of values in order to find an appropriate setting to promote fast convergence at the beginning with 
slower changes to the network weights as we near the end of training. The binary cross entropy weight in the 
loss function [ α in Eq. (1)] is given a large range to move through in order to allow the search to determine how 
much it should contribute to the overall segmentation. The weight parameter for the Dice coefficient portion of 
the loss function [ β in Eq. (1)] was set to 1.0 to constrain the network to encourage improvement of the Dice 
score of segmentations no matter the weight assigned to the binary cross entropy factor. Stopping patience, toler-
ance, and epochs all relate to the early stopping mechanism, where stopping patience is the minimum number of 
epochs to wait before considering stopping early, stopping epochs is the number of epochs to use to determine 
whether the result is improving or degrading, and stopping tolerance is a threshold which determines the small-
est amount of change in the Dice score in order to stop training: ie. A large stopping tolerance will stop the model 
even if the Dice score improves by a large margin from the last epoch. A smaller stopping tolerance will allow the 
model to continue training until there is little change in the Dice score over epoch. The 30 models with varied 
hyper-parameters were trained on the hyper‑parameter patch training set and evaluated on the testing patch set.

Trial 2: effects of expanded training set. It is noted that our images contain a large number of non-root objects, 
such as water droplets, plant shoot, or dust particles. The methods we used for producing the original training 
set have no way of ensuring that many of these objects appear in the final set of patches. To see if our model 
performance improves when these objects are intentionally added to the training set, we created the Expanded 
Patch Training Set, which explicitly contains 1, 069 extra patches containing non-root objects. For this trial, we 
used the highest performing hyper-parameter input values as determined in Trial 1 to re-train the model from 
scratch on this new data-set. We then directly compare the performance of this new model to the best perform-
ing model from Trial 1 on the Testing Patch Set.

Trial 3: patch‑wise segmentation of full images. Our third trial evaluates the model on full sized images from 
the Full Image Set rather than on individual patches. The full images were split into 256× 256 patches with an 
overlap of 128 pixels for the segmentation process to allow the model to process them, and were stitched back 
together after segmenting the individual patches. The class for each pixel in the overlapping regions was deter-
mined by majority vote based on the decided class of the same pixel in each patch it appears in. In the event of 
a tie, the pixel in question is labelled as background. The model from Trial 2 is directly compared to the best 
performing model in Trial 1 to determine how the different inputs the models were trained with affect segmenta-
tion performance on full sized images.

Trial 4: patch‑wise segmentation of cropped images. Our fourth and final trial seeks to evaluate the performance 
of the model on cropped images, which remove as many of the non-root objects from the image as possible 
without removing parts of the root system. Images from the Cropped Image Set are used for this evaluation, and 
the results of the model from Trial 2 and the best performing model from Trial 1 are compared to determine how 
the absence of these non-root objects affects the performance of each.

Results
To thoroughly assess the performance of the proposed network architecture we conducted four experimental 
trials designed to determine robustness and generalizability, as well as to outline any limitations of our approach. 
These trials consist of variations of hyper-parameters, the training set, and different types of input images. 
Models were trained using Google Cloud Platform in a virtual environment with four NVIDIA-Tesla-T4 GPUs. 
All models were set to train for a maximum of 200 epochs with a batch size of 32. The network was set to use 3 
iterations (3 sub networks after the first input U-Net structure), as described above.

Table 3.  Input values for hyper-parameter tuning.

Parameter Type Min. value Max. value

Learning rate Double 0.001 0.01

Learning rate decay Double 0.85 0.99

Cross entropy weight Double 0.2 1.0

Stopping patience Integer 15 20

Stopping tolerance Double 0.0005 0.01

Stopping epochs Integer 0 10
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Trial 1: hyper‑parameter tuning. The first trial we conducted was designed to determine how hyper-
parameter values effect segmentation quality, and to determine the optimal set of hyper-parameter values for 
the model.

Table 4 describes the trained models as evaluated by Dice score on the testing set (see Fig. 6 for the distri-
butions of Dice score for each model). The best-performing trained model resulted in a Dice score of 0.936. A 
parallel coordinate analysis of these data, shown in Fig. 7, shows that the model performs better with a smaller 
learning rate and learning rate decay around 0.89. For examples of patch-level predictions, see Fig. 8. We note that 
the presence of plant stem and water droplets caused misclassification errors. Additionally, Fig. 9 depicts train-
ing and testing loss values over the course of training with an indication of possible under-fitting of the dataset.

Trial 2: effects of expanded training set. To address the non-root objects in the full sized images, we re-
trained the model with the hyper-parameters from the best performing model from the hyper-parameter tuning 
trial (Learning Rate: 0.00332, Learning Rate Decay: 0.89661, Binary Cross Entropy Weight: 0.42715, Stopping 
Tolerance: 0.010, Stopping Epochs: 7, Stopping Patience: 17), this time using the expanded patch training set. The 
expanded patch training set contains 1,069 additional hand-chosen patches containing non-root objects with 
ground truth masks where all pixels are classified as background. The testing set remained as in trial 1. The mean 
Dice score after re-training was 0.937 with standard deviation 0.160. This is only a marginal difference from the 
results using the hyper‑parameter patch training set. A two sample t-test provides no evidence of a statistically 
significant difference in these results ( p = 0.892 , α = 0.05 ). Figure 10 indicates that the model has achieved a 
good fit to the data.

Trial 3: patch‑wise segmentation of full images. In addition to evaluating on the testing patch set, we 
evaluated the best trained model from Trial 1 on the full image testing set. The final segmented images had mean 
Dice score of 0.867 with a standard deviation of 0.065. Figure 11a shows an example of a segmented image from 

Table 4.  Model performance for hyper-parameter sets tested during hyper-parameter tuning in descending 
order of DSC.

DSC
Training 
steps Train time Learning rate

Learning rate 
decay

Cross-entropy 
weight

Stopping 
patience

Stopping 
tolerence

Stopping 
epochs

0.936 149 9 hr 28 min 0.00332 0.89661 0.42715 17 0.01000 7

0.934 49 2 hr 29 min 0.00373 0.90361 0.43432 15 0.00995 7

0.926 199 9 hr 39 min 0.00573 0.92774 0.24987 15 0.00932 5

0.925 21 1 hr 14 min 0.00373 0.89465 0.48001 20 0.00995 7

0.924 64 9 hr 33 min 0.00547 0.91167 0.77971 19 0.00533 6

0.922 69 9 hr 40 min 0.00364 0.89527 0.43544 16 0.00711 8

0.921 34 1 hr 51 min 0.00550 0.92000 0.60000 18 0.00525 5

0.919 22 1 hr 18 min 0.00340 0.88736 0.41711 16 0.00614 8

0.918 22 1 hr 15 min 0.00318 0.89646 0.37651 17 0.01000 8

0.918 22 1 hr 15 min 0.00745 0.95032 0.49987 20 0.00319 2

0.917 21 1 hr 13 min 0.00422 0.89580 0.44161 15 0.00738 10

0.916 22 1 hr 13 min 0.00358 0.89545 0.43265 17 0.00702 7

0.916 19 1 hr 6 min 0.00524 0.89901 0.83991 20 0.00456 7

0.911 56 2 hr 53 min 0.00383 0.89582 0.48209 19 0.00995 5

0.911 26 1 hr 26 min 0.00346 0.89518 0.45709 18 0.01000 7

0.908 25 1 hr 24 min 0.00485 0.89783 0.86183 20 0.00375 7

0.906 26 1 hr 25 min 0.00370 0.88605 0.43497 17 0.00715 7

0.905 27 1 hr 30 min 0.00371 0.89533 0.43649 15 0.00710 9

0.905 22 1 hr 14 min 0.00142 0.86066 0.23803 15 0.00946 8

0.904 50 2 hr 34 min 0.00322 0.89422 0.42500 17 0.00691 7

0.902 65 6 hr 42 min 0.00574 0.86168 0.62611 18 0.00483 10

0.899 37 1 hr 57 min 0.00323 0.89977 0.38399 16 0.01000 9

0.898 25 1 hr 25 min 0.00408 0.89623 0.54761 18 0.00992 5

0.898 25 1 hr 25 min 0.00352 0.88279 0.38143 16 0.00607 10

0.898 12 45 min 57 sec 0.00371 0.89213 0.49687 16 0.00663 10

0.895 21 1 hr 10 min 0.00349 0.89031 0.36946 16 0.00654 9

0.894 38 2 hr 2 sec 0.00298 0.89994 0.28756 17 0.01000 8

0.885 11 47 min 29 sec 0.00599 0.93184 0.64064 17 0.00679 7

0.866 7 33 min 24 sec 0.00443 0.91120 0.44106 15 0.00690 2

0.808 4 22 min 43 sec 0.00357 0.88582 0.38293 15 0.00671 8
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the full image testing set. We can see that there are a number of misclassified objects in the image that are not 
close to the root system.

Similarly, the model from Trial 2 was evaluated on the full image testing set. The resulting segmentations had 
mean Dice score 0.889 with standard deviation 0.070. A two sample t-test comparing the Trial 2 model to the 
Trial 1 model provides no evidence of a statistically significant difference in these results ( p = 0.377 , α = 0.05 ). 
However, this model has done a much better job of ignoring non-root objects that are not near the root system, 
giving a much cleaner segmentation (See Fig. 11b for an example).

Trial 4: patch‑wise segmentation of cropped images. We evaluated the best model from trial 1 and 
the model from trial 2 on the cropped image dataset, which contains the same images from the full image dataset 
hand-cropped to give a tighter focus in the root system. This reduces the amount of non-root patches within the 
image. The model from Trial 1 gave mean Dice score 0.938 with standard deviation 0.029, while the model from 

Figure 6.  Box plot of the DSC score results for the top ten trained models on the patch testing set in the Hyper-
Parameter tuning trial, where the models x-axis are in decreasing order of their mean Dice score. We can see 
that all models perform quite similarly, with many outliers. These outliers are caused by non-root objects which 
are present in the input patch.

Figure 7.  Parallel Coordinate plot describing the relationship between the hyper-parameters and the resulting 
Dice score for all 30 trials. We can see from this plot that the model prefers a smaller learning rate as well as a 
larger stopping tolerance. Other parameters seem to have a smaller effect on the overall results.
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Trial 2 gave a mean Dice score of 0.936 with standard deviation 0.029. Figure 12 shows the resulting segmenta-
tions from each model. A two sample t-test shows that there is a statistically significant difference between the 
results of the cropped image set and the full image set using the model from trial 1 ( p = 0.001 , α = 0.05 ), and 
the full image set and the cropped image set both run on the model from trial 2 ( p = 0.028 , α = 0.05 ). However, 
there is no evidence of significant difference between the cropped image set run on the model from trial 1 and the 
model from trial 2 ( p = 0.872 , α = 0.05 ). Table 5 gives a summary of the results found in this section.

Validation. After determining that the best model based on the testing data was the model trained on the 
expanded patch training set, it was evaluated on the validation patch set, the full image validation and cucumber 
sets, and the cropped image validation and cucumber sets. Results show a mean Dice score of 0.955 with standard 

(a) A patch with a successful segmentation. (b) A more complex segmentation.

(c) Roots with many gaps and thin areas that are seg-
mented.

(d) A patch with a very complex structure.

(e) A patch containing stem which is misclassified as root. (f) Water droplets cause the root to be missed.

Figure 8.  Input, prediction, and ground truth patches for the testing set on the best model found with hyper-
parameter tuning. We can see that the root structure is retained with high detail, including fine gaps between 
roots which grow closely together (a)–(d). However, when non-root objects, such as plant stem in (e) or water 
droplets in (f), are present in the input, we see a degradation of segmentation quality.

Figure 9.  Training and Testing loss of the Hyper-Parameter Tuning model over the course of training. The 
visible gap between training and testing loss in later epochs may indicate some amount of under-fitting.
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deviation 0.149 on the validation patch set, mean Dice score of 0.838 with standard deviation 0.235 on the full 
image validation set, and mean Dice score of 0.910 with standard deviation 0.047 on the cropped validation set. 
These results are consistent with what we expect from the results on the testing set. A break down by plant spe-
cies for the full image validation set show a mean Dice score of 0.542 with standard deviation 0.369 on images of 
canola roots, mean Dice score 0.932 with standard deviation 0.025 on images of soybean roots, and Dice score 
0.916 with standard deviation 0.015 on images of wheat roots. A similar breakdown for the cropped validation 
set show mean Dice score of 0.830 with a standard deviation 0.033 on images of canola roots, mean Dice score 
of 0.953 with a standard deviation 0.012 on images of soybean roots, and a mean Dice score of 0.923 with a 
standard deviation 0.012 on images of wheat roots. Results from the per-species breakdown are summarized 
in Table 6. For the hold-out set of cucumber root images the model achieved a mean Dice score of 0.834 with 
standard deviation 0.123 on the full image set, and mean Dice 0.844 with standard deviation 0.131 on the cropped 
image set. 

For comparison, we obtained implementations of the SegRoot model proposed by Wang et al.24 and the IterNet 
model proposed by Li et al.30. Both of these models were re-trained from scratch on the expanded patch training 
set and evaluated on each of the testing patch, validation patch, full image testing, full image validation, full image 
cucumber, cropped image testing, cropped image validation, and cropped image cucumber sets. For the Full Image 
Cucumber and Cropped Image cucumber hold-out datasets, we also compare the iterRoot results to thresholding 
results from winRhizo 2019 (Regent Instruments Inc. Quebec City, Quebec, Canada). Table 7 shows detailed 
results of our model on each dataset along with results from these comparators.

Comparison to segmentation with winRhizo. winRhizo (Regent Instruments Inc., Quebec City, Quebec, Can-
ada) is a widely used commercial software package for segmenting root images and calculating root traits.

Figure 10.  Training and Testing loss of the Expanded Patch model over the course of training. We can see 
that these curves have a similar trend, with the testing loss being more volatile, while remaining on target with 
training loss, indicating a good fit of the model.

(a) The output on a full image using the model from
trial 1.

(b) The output on a full image using the model from
trial 2.

Figure 11.  Full image output examples from (a) the model trained in trial 1 and (b) the model trained in trial 
2. The model from trial 1 has many errors around the root system where non-root objects were incorrectly 
identified as root. The model in trial 2 is more robust to non-root objects in the image giving a much cleaner 
segmentation, though more of the above-ground plant matter is incorrectly identified as part of the root system.
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For the Full Image Cucumber Dataset, we compared segmentation with winRhizo to segmentation with the 
ITErRoot model (row 5 of Table 7). We tested winRhizo (2019 version) both in global thresholding mode with 
an automatically-determined threshold and in local-thresholding mode with automatically-determined thresh-
olds. In global-threholding mode, winRhizo performed worse than all of the deep learning models in terms of 
mean DSC, mean IoU, and mean specificity but performed better than all of the deep learning models in terms 

(a) The output on a cropped full image using the model
from trial 1.

(b) The output on a cropped full image using the model
from trial 2.

Figure 12.  Cropped image output examples from (a) the model trained in trial 1 and (b) the model trained in 
trial 2. We can see that when the non-root objects in the image are cropped away that both models give similar 
segmentations of the root system.

Table 5.  Results for each of the models on different testing sets.

textbfTraining set Testing set Mean DSC Mean IoU Sensitivity Specificity

Hyper-parameter patch training set

Testing patch set 0.936 0.905 0.963 0.995

Full image set 0.867 0.771 0.941 0.997

Cropped image set 0.938 0.884 0.936 0.997

Expanded patch training set

Testing patch set 0.937 0.906 0.950 0.995

Full image set 0.889 0.807 0.930 0.998

Cropped image set 0.936 0.881 0.927 0.997

Table 6.  Per-species breakdown of results on the validation sets.

textbfDataset Species Mean DSC Mean IoU Sensitivity Specificity

Full image set

Canola 0.542 0.465 0.813 0.995

Soybean 0.933 0.875 0.942 0.999

Wheat 0.916 0.846 0.918 0.995

Cropped image set

Canola 0.830 0.710 0.768 0.993

Soybean 0.953 0.910 0.950 0.998

Wheat 0.922 0.855 0.909 0.998
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of sensitivity. In local-thresholding mode, winRhizo performed better than in global-thresholding mode for all 
metrics, and performed worse than the all of the deep learning methods for all metrics except sensitivity, for 
which it was the top performer.

For the Cropped Image Cucumber Dataset, winRhizo in local thresholding mode performed slightly better 
than iterRoot in terms of mean DSC, mean IoU, and sensitivity, but was the worst among all methods in terms 
of specificity. It also outperformed winRhizo in global thresholding mode for all metrics except specificity.

Timing results. Table  8 summarizes the time required for ITErROOT prediction and compares the time 
required to winRhizo. We briefly discuss these results with the understanding that due to licencing of winRhizo, 
we were not able to time ITErROOT and winRhizo on the same computer.

For cropped images, winRhizo is considerably faster than ITErROOT but it is not much faster than ITEr-
ROOT on uncropped images though this lack of difference could be misleading given that the machine we timed 
ITErRoot on had a faster CPU. We also note that the winRhizo timings also include the time required to compute 
phenotypes. However, deep learning approaches offer potential for even higher performance given the limited 
training data that was used in this study, which nonetheless outperformed previous deep-learning approaches.

Discussion
The results from the hyper-parameter tuning trial give a general outline for good choices about input parameters, 
but there is no strong evidence indicating that a specific range of values correlate to higher Dice score results. 
Figure 7 shows us that a smaller learning rate decay value (meaning that the learning rate will decay faster) helps 
to improve convergence on a better Dice score. Additionally, setting the early stopping metrics to be a bit more 
conservative seems to give the model more time to approach better results, while still preventing over-fitting of 
the model. From our experiments, we can see that choice of training data is also an important consideration for 
improving the robustness of the network to non-root objects.

Table 7.  Comparison with other models on each dataset. Bold values indicate the best result obtained for each 
combination of dataset and setmentation quality metric. All models trained on the training set used in trial 2. 
∗For the Full Image Cucumber Set and the Cropped Cucumber Set, we include threshold-based segmentation 
with winRhizo. Results are shown for both global and local thresholding (see in "Comparison to segmentation 
withwinRhizo" section).

Dataset Model Mean DSC Mean IoU Sensitivity Specificity

Testing patch set

ITErRoot 0.937 0.906 0.950 0.995

SegRoot 0.774 0.697 0.789 0.990

IterNet 0.809 0.760 0.867 0.991

Validation patch set

ITErRoot 0.955 0.936 0.963 0.997

SegRoot 0.836 0.792 0.869 0.992

IterNet 0.846 0.814 0.903 0.996

Full image testing set

ITErRoot 0.889 0.807 0.930 0.998

SegRoot 0.313 0.194 0.637 0.972

IterNet 0.399 0.256 0.703 0.972

Full image validation set

ITErRoot 0.838 0.769 0.901 0.998

SegRoot 0.234 0.137 0.640 0.969

IterNet 0.350 0.222 0.688 0.975

Full image cucumber set

ITErRoot 0.834 0.731 0.779 0.998

SegRoot 0.426 0.274 0.582 0.970

IterNet 0.618 0.463 0.703 0.986

winRhizo-global∗ 0.368 0.228 0.818 0.932

winRhizo-local∗ 0.453 0.296 0.937 0.944

Cropped testing set

ITErRoot 0.936 0.881 0.927 0.997

SegRoot 0.703 0.563 0.647 0.986

IterNet 0.791 0.687 0.705 0.999

Cropped validation set

ITErRoot 0.910 0.838 0.889 0.997

SegRoot 0.716 0.572 0.639 0.992

IterNet 0.791 0.674 0.684 0.999

Cropped cucumber set

ITErRoot 0.844 0.748 0.779 0.998

SegRoot 0.720 0.564 0.583 0.998

IterNet 0.814 0.693 0.708 0.999

winRhizo-global∗ 0.871 0.782 0.845 0.994

winRhizo-local∗ 0.881 0.794 0.958 0. 989
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Table 7 outlines results from ITErRoot, IterNet, and SegRoot each trained on the training set containing 1,069 
extra empty patches from trial 2. We can see that our model excels on each dataset, except in a few cases where the 
specificity score from IterNet is slightly higher (but for those cases the Mean Dice, accuracy and sensitivity scores 
are still higher for ITErRoot). It is important to note that the majority of the pixels in the ground truth masks are 
background, and so specificity is expected to be high in most cases. Both IterNet and SegRoot had Dice scores 
that were similar or better on the cucumber images compared to the validation and test images, while ITErRoot 
saw a small reduction in segmentation quality on the cucumber set. This shows that, while they may not be as 
good at segmenting roots specifically, these other models are better at more general segmentation of an image. 
Figure 13 shows an example input image and the resulting segmentations of each of the approaches compared 
here. The extremely high specificity of ITErRoot relative to comparators likely arises from the IterNET-like 

Table 8.  Timing results for ITErRoot and winRhizo segementation of the hold-out cucumber datasest. Results 
are shown for both the Full Image and Cropped sets. Each set was segmented with ITErRoot, and winRhizo 
in both global and local thresholding modes. For ITErRoot, times are shown for the patch generation (Patch 
Gen.), Segmentation (Segment.) and patch reassembling and voting steps. All times per-image averages in 
seconds.

Dataset Method Patch Gen. (s) Segment. (s) Reassembling (s) Total (s)

Full image

ITErRoot

18 69 1.8

89

winRhizo (global) 70

winRhizo (local) 46

Cropped Image

ITErRoot

7.7 32 1.1

41

winRhizo (global) 6.6

winRhizo (local) 8.4

(a) An input validation image. (b) The predicted validation image from ITErRoot.

(c) The predicted validation image from IterNet. (d) The predicted validation image from SegRoot.

Figure 13.  Output segmentations for an input image (a) from (b) ITErRoot (c) IterNet and (d) SegRoot. 
ITErRoot correctly identifies the ruler and surrounding imaging apparatus details as background, while IterNet 
and SegRoot incorrectly identify these as part of the root system.
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structure of our architecture which, as shown by LI et al.30, tends to under-segment thin branching structures in 
the first iteration, and learns how to repair and restore connectivity of those structures in subsequent iterations. 
This bias towards high specificity is a positive trait for root segmentation since extraneous non-root structures 
present in the segmentation are likely to be more damaging to the accuracy of subsequent phenotype calculation 
than missing some actual root structures.

Our experiments show that the network architecture proposed is particularly well suited to segmenting thin 
root structures, though issues arise in cases where there are no roots present in the input image. It makes sense 
that the model in trial 2 performed a cleaner segmentation on the full-sized images as it had many specific exam-
ples of non-root objects in its training set. We can see that the model in Trial 1 does a good job distinguishing root 
from other objects, but has trouble identifying non-root objects correctly in the absence of root. We see a slight 
improvement in the results when annotations of non-root objects are added to the training set. The training set 
used for the trial 1 model contained patches that did not contain roots, but they were extracted from a cropped 
region that contained the root system, and so it did not contain a large number of non-root objects. The trial 2 
dataset contained patches that specifically focused on non-root objects such as water droplets and dust particles, 
or edges caused by the imaging apparatus. It is apparent that a better segmentation result can be obtained by 
removing such objects from the image. Simply cropping the images to reduce the number of these objects can 
greatly increase segmentation quality. It may also be possible to design image filters which are suited to remov-
ing or damping the effect of these non-root objects in the input image, without compromising the information 
detailing the root system architecture.

With mean Dice score 0.844 on the cropped cucumber set we can see that our model has the potential to gen-
eralize to other species of root, with a small drop in segmentation quality. See Fig. 14 for examples of predicted 
segmentations on the hold-out set of cucumber images. These examples show a segmentation of a cucumber 
root with many small roots which overlap in several places, and another segmentation where some of the older 
and longer lateral roots become bundled close together and appear to be one thick root. We can see that in the 
second image the regions where 2 or more roots are stuck together yield large gaps of misclassified background 
pixels, resulting in discontinuities in the root system. This suggests that our model could generalize well to root 
systems with thin roots but begins to degrade when two or more long and thin roots are closely grouped together 
in the image. This is further backed up by the relatively poor performance on images of canola roots in the valida-
tion set, where a number of the lateral roots are clumped together into what are scored as single thicker objects. 
Images of soybean roots and wheat roots gave better segmentation performance due in part to their more diffusely 
spread out root systems. Considering our training set, most of the images contained small roots. Many of these 
images contained plant stems just above the top of the root system, which was annotated as non-root, and so it 
is possible that the model learned to ignore these large structures, resulting in misclassification of these closely 
grouped regions of several lateral roots. Fortunately, for roots grown in the pouch system, close grouping of longer 
lateral roots is a relatively rare occurrence, making our approach ideal for this particular phenotyping setup.

Conclusion
Segmentation of 2D RSA is an important step in any root phenotyping pipeline. ITErRoot offers a fast and accu-
rate method for segmentation of RSA to improve high-throughput phenotyping of roots. Through a rigorous set 
of trials we have detailed the suitability of ITErRoot for learning and identifying root structure, even in complex 
root systems where traditional methods of image segmentation cannot retain the level of detail necessary for a 
high-quality segmentation. With proper configuration, the iterative neural network architecture proposed here 

(a) (b)

Figure 14.  Output segmentation masks from the hold out cucumber set showing (a) a segmentation with Dice 
score 0.9189 and (b) a segmentation with Dice score 0.909. Note that in image a) there are many fine details of 
the root structure which are retained in the segmentation. In image (b) we can see that roots which have grown 
together and appear to be a single larger root contain gaps in their segmentation.
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performs well in the presence of non-root objects, which provides a significant advantage when implementing 
an automatic high-throughput phenotyping system. Additionally, the Friendly Ground Truth tool provides a 
streamlined process for producing 2D root image datasets for developing and evaluating new approaches to root 
segmentation, and segmentation of thin structures in general. The contributions of this work not only provide 
an improvement over comparator deep-learning methods for root segmentation while being competitive with 
winRhizo, but provides motivation for considering generalizability within the canonical RSA analysis pipeline. 
Given our significant improvement on other deep learning root segmenetation methods with achieved with 
limited training data, it is probable that incorporating further training data will continue to improve the model’s 
accuracy and generalizability to different plant species, eventually unequivocally outperforming local threshold-
ing methods like those used by winRhizo.

As plant breeding trials increase in size and image acquisition systems produce larger datasets of images it 
will become increasingly important to develop tools which can automatically perform the phenotyping processes 
necessary for plant breeders to perform their research. Generalizability to a range of different crop species is 
desirable as it is impractical to develop specific new tools for each new plant species to be studied. This work has 
explored this concept on the segmentation portion of the RSA pipeline but further work is required to ensure 
that all processes within the pipeline are fast, accurate, and generalizable to ensure accurate phenotyping results 
in the face of any plant phenotyping trial.

Data availability
The code used to train the neural networks in this study is available on Github (https:// github. com/ p2irc/ ITErR 
oot). The annotation tool used to create ground truth segmentations for training is available on Github (https:// 
github. com/ p2irc/ frien dly_ ground_ truth).
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