
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports

Selection of a stealthy and harmful
attack function in discrete event
systems
Qi Zhang1,2, Carla Seatzu2, Zhiwu Li3* & Alessandro Giua2

In this paper we consider the problem of joint state estimation under attack in partially-observed
discrete event systems. An operator observes the evolution of the plant to evaluate its current states.
The attacker may tamper with the sensor readings received by the operator inserting dummy events
or erasing real events that have occurred in the plant with the goal of preventing the operator from
computing the correct state estimation. An attack function is said to be harmful if the state estimation
consistent with the correct observation and the state estimation consistent with the corrupted
observation satisfy a given misleading relation. On the basis of an automaton called joint estimator,
we show how to compute a supremal stealthy joint subestimator that allows the attacker to remain
stealthy, no matter what the future evolution of the plant is. Finally, we show how to select a stealthy
and harmful attack function based on such a subestimator.

The problem of cyber attacks in discrete event systems (DESs) has been addressed by several authors1–3. An
attacker may insert (erase) sensor readings received by the supervisor (sensor attacks)4,5, and may corrupt the
control actions of the supervisor (actuator attacks)6–8. In such a case, the specification imposed by the supervisor
may be violated. Typical examples on cyber attacks of discrete event systems are as follows.

Carvalho et al.9 use a diagnoser-based approach to detect the attacker. Once it is detected, the supervisor will
disable all the controllable events to keep the system safe. Lin and Su10 investigate the problem of synthesizing
the covert attackers considering sensor replacement attacks, actuator enablement attacks, and actuator disable-
ment attacks. They transform such a problem into the Ramadge-Wonham supervisor synthesis problem so that
existing techniques can be used.

Meira-Góes et al.11 study the problem of stealthy sensor attacks at the supervisory control layer. They define a
structure called insertion-deletion attack structure that characterizes the interaction between the supervisor and
the environment (includes the plant and the attacker). Such a structure can be used to synthesize three different
kinds of attack policies: unbounded deterministic attack, bounded deterministic attack, and interruptible attack.
Meira-Góes et al.12 develop a structure called solution-arena A sup that contains all the robust supervisors against
sensor deception attacks. Lima et al.13 introduce the notion of network attack security. If the plant is network
attack secure, then they present an algorithm to compute a security supervisor that can prevent the plant from
reaching the unsafe state.

Alves et al.14 consider the problem of sensor attacks in DESs, where an attacker can corrupt the supervisor
observation by inserting or erasing symbols from a specific set, but we do not know which symbol will be tam-
pered during an attack. They present a new method to verify if a given language is P-observable in terms of a
new observability condition. The problem of stealthy attacker synthesis has been addressed by Lin et al.15, where
the considered attacks include the sensor replacement attack and the actuator disablement attack. The authors
assume that the attacker does not know the model of the supervisor, but can record a finite observation of the
closed-loop system. Meira-Góes and Lafortune16 introduce a new defense strategy against sensor attacks called
moving target defense paradigm, i.e., a plant is controlled by a set of supervisors, and only one supervisor is
active at a certain time. They provide a necessary and sufficient condition for the existence of supervisors and a
switching mechanism between them such that the specifications of safety, liveness, and maximal permissiveness
can be enforced.

There are also many other works that consider the problem of cyber attacks in different settings. Li et al.17
propose the problem of actuator enablement attacks in networked control systems, where control delays of the
supervisor may occur. The problems of optimal multi-objective attack policies and mitigation of attacks are

OPEN

1School of Electro‑Mechanical Engineering, Xidian University, Xi’an 710071, China. 2Department of Electrical
and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy. 3Institute of Systems Engineering, Macau
University of Science and Technology, Macau 999078, China. *email: zhwli@xidian.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19737-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

discussed in the context of probabilistic discrete event systems18,19. The problem of sensor attacks for distributed
control systems has been investigated20,21. The issue of attack-resilient supervisory control is studied by Wang
et al.22,23, where the attacker is modeled as finite state transducers. You et al.24,25 consider the problem of supervi-
sory control under sensor attacks using Petri nets. Wang et al.26 consider the issue of supervisory control under
attack including sensor attacks and actuator attacks, where the adopted model is labeled Petri nets. Finally, the
problem of performance safety enforcement is proposed in the context of timed Petri nets and stochastic Petri
nets, respectively27,28.

In this paper we study the problem of joint state estimation under attack in partially-observed discrete event
systems. Assume that the plant and the operator are connected via a network that transmits the sensor readings
of the events that have occurred in the plant. The operator observes the evolution of the plant with the objective
of identifying its current state. An attacker, which has a full knowledge of the plant, may corrupt the operator’s
observation by inserting fake events and erasing real events that have occurred in the plant so that the correct
state estimation of the operator is compromised. In addition, we assume that the attacker needs to be stealthy,
i.e., the operator should not be able to detect that the plant is under attack.

Given a plant G = (X,E, δ, x0) , assume that a word σ ∈ E∗ is generated. If there is no attack, the operator
observes the word P(σ) = s ∈ E∗o , where P is the natural projection on the set of observable events Eo , and com-
putes the state estimate C (s) ⊆ X , namely the set of states consistent with the observation s. Nevertheless, if an
attacker gets involved changing the word s into a corrupted observation s′ ∈ E∗o , then the operator will construct
a wrong state estimate C (s′) ⊆ X . To formalize such a problem, we introduce the notion of misleading relation
R ⊆ 2X × 2X , and an attack is said to be harmful if (C (s),C (s′)) ∈ R.

The motivation of introducing the misleading relation R can be explained as follows. Assume that a plant
G = (X,E, δ, x0) contains a set of critical states Xcr ⊆ X . An operator observes the plant evolution with the goal
of establishing if a critical state x ∈ Xcr is reached so that it should activate protective actions that are essential
for the safety of the plant. However, when a critical state is reached, if the attacker corrupts the operator’s obser-
vation making it believe that a non-critical state is reached, then no protective action is activated, and damages
are caused to the system.

In Zhang et al.29, an automaton called joint estimator, which allows one to establish for each attack word, the
joint state estimation of the attacker and of the operator, is constructed. This paper extends the work of Zhang
et al.29. First, we show how to trim the joint estimator obtaining the supremal stealthy joint subestimator Â that
contains all the stealthy attacks. Then, we give a procedure to compute a stealthy attack function f s from Â .
Finally, we discuss the existence of a stealthy and harmful attack function w.r.t. a misleading relation R.

We point out that, in the framework of discrete event systems, most of the existing works on cyber attacks
consider such a problem at the supervisory control layer. However, in this paper the problem of joint state esti-
mation under attack is proposed at the observation layer. Among the previous mentioned literature, Meira-Góes
et al.11 inspired us most. However, there are three fundamental differences between the two works.

(1)	 In terms of problem setting, we do not address a problem of supervisory control under attack, as in Meira-
Góes et al.11, but a problem of state estimation under attack. In the framework of supervisory control, one
assumes that a supervisor has been designed to enforce a given specification. When the plant is under
attack, the goal is that of understanding if the action of the attacker may mislead the supervisor so that
the controlled system violates the specification and a supervisor which is robust under attack is eventu-
ally constructed. In the framework of state estimation, one assumes that an observer has been designed to
allow an operator to reconstruct the state of a monitored plant from its observed outputs. When the plant
is under attack, the goal is that of understanding how the action of the attacker may mislead the operator
to make a wrong estimation.

(2)	 In terms of the structures that provide the solution, in Meira-Góes et al.11 a bipartite structure called
insertion-deletion attack structure is used to solve the problem of supervisory control under attack. In our
approach, an automaton, called joint estimator is adopted to solve the problem of state estimation under
attack. The two structures are rather different.

(3)	 In terms of the synthesis of attack functions, in Meira-Góes et al.11 an attack function that has the shortest
path to reach an unsafe state is synthesized. While in this work, a harmful attack function w.r.t. a misleading
relation R that does not stop at a preempting state to remain stealthy is selected.

The remainder of the paper is organized as follows. “Preliminaries” section presents the basic concepts of discrete
event systems (e.g. automata and observer). “Attack model” section introduces the definition of an attack function,
and the attack model. “Attacker observer, operator observer, and joint estimator” section recalls the definitions of
attacker observer, operator observer, and joint estimator from Zhang et al.29. “Problem statement” section provides
the problem statement in terms of the harmfulness and stealthiness of an attack function. “Supremal stealthy
joint subestimator” section details how to extract the supremal stealthy joint subestimator from a joint estimator.
“Computing stealthy and harmful attack function” section discusses how to select a stealthy and harmful attack
function on the basis of the supremal stealthy joint subestimator. “Conclusions and future work” section reports
the conclusions and our possible future works in this topic.

Preliminaries
An alphabet E is a finite and non empty set of symbols and a word defined over E is a string composed by its
symbols. Given an alphabet E, we denote as E∗ the set of all finite words defined over E, including the empty
word ε that contains no symbol. As an example, let E = {a, b, c, d} . Then

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

Note that the set E∗ is countably infinite.
Let D be a set. The power set of D, denoted as 2D , is the set of all the subsets of D, i.e., 2D = {d | d ⊆ D}.
A deterministic finite-state automaton (DFA) is a four-tuple, denoted by G = (X,E, δ, x0) , where X is the set

of states, E is an alphabet, δ : X × E → X is the transition function, i.e., δ(x, e) = x′ means that at state x, there
exists a transition labeled e yielding state x′ , and x0 is the initial state. The transition function can be extended
to the domain X × E∗ , denoted by δ∗ : X × E∗ → X such that δ∗(x, σ e) = δ(δ∗(x, σ), e) , where σ ∈ E∗ . The
language generated by G is defined by L(G) = {σ ∈ E∗ | δ∗(x0, σ) is defined}.

When automata are used to describe discrete event systems, the alphabet E represents the set of events that
the system can generate. A word represents a particular evolution of the system and the generated language of
the automaton represents the behavior of the system, i.e., the set of all its evolutions. The set of active events at
state x is denoted as Ŵ(x) = {e ∈ E | δ(x, e) is defined} . Given two words σ1, σ2 ∈ L(G) , we denote their concat-
enation σ1σ2.

Due to the absence of sensors to record the occurrence of some events, not all the events are observable.
As a result, the event set E is partitioned into two disjoint subsets: the set of observable events Eo and the set of
unobservable events Euo.

Given two alphabets E and E′ such that E′ ⊆ E . The natural projection30 on E′ , PE′ : E∗ → (E′)∗ is defined
as follows:

In plain words, given a word σ ∈ E∗ , the natural projection PE′ removes from σ events that do not belong to E′.
Given two DFA G1 = (X1,E1, δ1, x01) , G2 = (X2,E2, δ2, x02) , and set E = E1 ∪ E2 . The concurrent composition

of L(G1) and L(G2) is defined by L(G1) � L(G2) = {σ ∈ E∗ | PE1(σ) ∈ L(G1),PE2(σ) ∈ L(G2)}.
For the sake of simplicity, we use P : E∗ → E∗o to denote the natural projection from E∗ to E∗o . Correspond-

ingly, the inverse projection P−1 : E∗o → 2E
∗ is defined by P−1(s) = {σ ∈ E∗ : P(σ) = s} . In words, the inverse

projection P−1(s) returns the set of all words σ ∈ E∗ that produce the observation s.
Consider a partially-observed DFA G = (X,E, δ, x0) , and let s ∈ P[L(G)] be an observation. In general there

may exist more than one generated word σ ∈ L(G) that produces observation s. The set of words consistent with
observation s is defined as:

and denotes the set of all words σ ∈ L(G) that produce observation s.
The set of states consistent with observation s is defined as:

and denotes the set of all states where the DFA may be when observation s is produced.
We also call C (s) ⊆ X the state estimate that corresponds to the observation s ∈ E∗o . One may use the notion

of observer31 to solve the problem of state estimation for a partially-observed DFA. In order to construct the
observer, the definition of unobservable reach is first introduced.

The unobservable reach UR(x) of state x ∈ X is defined by UR(x) = {x′ | ∃σ ∈ E∗uo, δ
∗(x, σ) = x′} . In words,

UR(x) is the set of states x′ ∈ X reached from state x executing an unobservable word σ . Such a definition is
extended to a set of states B ⊆ X as:

Let G = (X,E, δ, x0) be a partially-observed DFA with Eo ⊆ E , its observer Obs(G) is still a DFA:

where B ⊆ 2X is the set of states, Eo is the set of observable events, δobs : B× Eo → B is the transition function
defined by:

and b0 := UR(x0) is the initial state.
Let G be a partially-observed DFA with the observer Obs(G) = (B,Eo, δobs , b0) . Given an observation

s ∈ P[L(G)] , it holds that the set of states consistent with the observation s is C (s) = δ∗obs(b0, s).

Attack model
In this paper we adopt the attack model in Zhang et al.29, namely we assume that the attacker can insert dummy
events and erase real events to interfere in the operator observation. To make the paper self-contained, in the
following we recall some key definitions from Zhang et al.29.

As shown in Fig. 1, we assume that σ ∈ E∗ is a word generated by the plant G producing the observed word
s = P(σ) . The attacker may tamper with such an observation inserting fake signals or erasing real signals. There-
fore, the operator receives the corrupted observation s′ ∈ Eo , and computes its state estimation according to it

E∗ = {ε, a, b, c, d, aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd, aaa, ...}.

(1)PE′(ε) := ε , PE′(σ e) :=

{
PE′(σ)e if e ∈ E′,
PE′(σ) if e ∈ E \ E′.

(2)S (s) = P−1(s) ∩ L(G) = {σ ∈ L(G) | P(σ) = s},

(3)C (s) = {x ∈ X | (∃σ ∈ S (s)) δ∗(x0, σ) = x},

(4)UR(B) =
⋃

x∈B

UR(x).

(5)Obs(G) = (B,Eo, δobs , b0),

(6)δobs(b, eo) :=
⋃

x∈b

UR({x′ | δ(x, eo) = x′}),

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

(neglect the internal structure of an attacker within the dotted lines for the moment). The goal of the attacker is
to mislead the operator to construct the wrong state estimation.

Note that, in this paper, we assume that the attacker has a full knowledge of the plant, namely the attacker
knows the model of the plant, and observes the plant with the same projection mask used by the operator, i.e.,
if the operator can (cannot) observe a certain event of the plant, then the attacker can (cannot) observe it. The
above assumption is common to many works2,9,11,13 on cyber attacks in the framework of DES. We will consider
the case in which the attacker only has a partial knowledge of the plant model in future work.

We assume that the plant contains a set of compromised events Ecom ⊆ Eo , i.e., the set of events that could be
inserted or erased by the attacker. Note that such a definition was first proposed by Meira-Góes et al.11, however,
it has been slightly generalized in Zhang et al.29 partitioning Ecom into two subsets: the set of events that can be
inserted, denoted as Eins ; the set of events that can be erased, denoted as Eera . Namely Ecom = Eins ∪ Eera . We
point out that, Eins and Eera are not necessarily disjoint.

In order to distinguish the original events of the plant from those produced by the action of the attacker,
we introduce two new alphabets E+ and E− . We denote as E+ = {e+ | e ∈ Eins} the set of inserted events11,
and E− = {e− | e ∈ Eera} the set of erased events11. The occurrence of an event e+ ∈ E+ means that e does not
occur but the attacker inserts a fake signal e to the operator observation. The occurrence of an event e− ∈ E−
implies that e has occurred in the plant but the attacker erases it. Finally, the attack alphabet is defined by
Ea = Eo ∪ E+ ∪ E− . Note that by definition sets Eo , E+ , and E− are disjoint.

Definition 1  Let G be a plant with set of compromised events Ecom = Eins ∪ Eera , and Ea = Eo ∪ E+ ∪ E− be
the attack alphabet. An attacker can be defined as an attack function f : P[L(G)] → E∗a :

(1)	 f (ε) ∈ E∗+,

(2)	 ∀se ∈ P(L(G)) such that s ∈ E∗o :
{
f (se) ∈ f (s){e−, e}E

∗
+ if e ∈ Eera,

f (se) ∈ f (s){e}E∗+ if e ∈ Eo \ Eera.

	� �

In plain words, condition (1) indicates that the attacker may insert any word in E∗+ when no observable event
is produced by the plant. Condition (2) means that if an event e ∈ Eera happens, the attacker can either erase
it or not, and then insert any word in E∗+ . Furthermore, the attacker may also insert any word in E∗+ after the
occurrence of an event in Eo \ Eera , which cannot be erased.

Due to the presence of an attack function, the augmented language of the plant is called attack language,
defined as L(f ,G) = f (P[L(G)]) . We use w to denote a word in L(f, G), and call it attack word.

In order to characterize how the operator treats events in the attack alphabet Ea , we define the operator mask
P̂ : E∗a → E∗o as follows:

Given an attack word w ∈ E∗a , the operator mask reduces w into a word in E∗o . In fact, the operator cannot
distinguish event e ∈ Eo from the corresponding event e+ , and it cannot observe events in E−.

The internal structure of an attacker is depicted in Fig. 1 within the dotted lines. First, the attack function
changes an observed word s ∈ E∗o into an attack word w ∈ E∗a . Then, the operator mask reduces w to a corrupted
observation s′ ∈ E∗o.

Attacker observer, operator observer, and joint estimator
In this section, we review the notions of attacker observer, operator observer, and joint estimator, which were
first proposed by Zhang et al.29.

Attacker observer.  Given a plant G = (X,E, δ, x0) , the attacker observer is constructed based on the
observer of the plant Obs(G) = (B,Eo, δobs , b0) . The attacker observer generates all the attack words on the attack
alphabet Ea resulting from the attack function, and provides the state estimation of the attacker according to the
attack words. One can use Algorithm 1 in Zhang et al.29 to compute the attacker observer.

Definition 2  Consider a plant G = (X,E, δ, x0) with the observer Obs(G) = (B,Eo, δobs , b0) . Let Eins ⊆ Eo be the
set of events that can be inserted by the attacker, Eera ⊆ Eo be the set of events that can be erased by the attacker,
and Ea = Eo ∪ E+ ∪ E− be the attack alphabet. The attacker observer is defined as Obsatt(G) = (B,Ea, δatt , b0) ,
where the transition function δatt is defined as follows:

(7)P̂(ε) = ε, P̂(we′) =

{
P̂(w)e if e′ = e ∈ Eo ∨ e′ = e+ ∈ E+,

P̂(w) if e′ = e− ∈ E−.

Figure 1.   A plant G under attack.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

	� �

According to Definition 2, first, for all the states b ∈ B , and for all the observable events e ∈ Eo , we impose
δatt(b, e) = δobs(b, e) , i.e., the transition function of the attacker observer is initialized at the transition function
of the observer of the plant. Then, for each observable event e ∈ Eera , namely for each event whose observation
can be erased, we add the transition δatt(b, e−) = δatt(b, e) . In fact, the attacker knows that e− ∈ E− is an erased
event that has occurred in the plant, and thus the attacker updates its state in the same way it does when event
e ∈ Eera occurs. Finally, for all the events e ∈ Eins , we add self-loops labeled e+ at all the states of Obsatt(G) . In
fact, the attacker knows that an event in E+ is a dummy event inserted by itself, thus the attacker does not update
its state when e+ occurs.

In the following, given a plant G, we denote as F the set of attack functions, and define
L(F ,G) =

⋃
f ∈F

f (P[L(G)]) the union of all the attack languages, where P is the natural projection. The following

proposition sketches the language and the transition function of an attacker observer.

Proposition 3  29 Consider a plant G with its observer Obs(G) = (B,Eo, δobs , b0) . Let F be the set of attack func-
tions, and Obsatt(G) = (B,Ea, δatt , b0) be the attacker observer constructed using Algorithm 1 in Zhang et al.29.
The following statements hold:

(a)	 L[Obsatt(G)] = L(F ,G);
(b)	 ∀s ∈ P[L(G)] , ∀f ∈ F with w = f (s) ∈ E∗a : δ∗att(b0,w) = δ∗obs(b0, s). � �

The formal proof of this proposition can be found in Zhang et al.29 (Proposition 1 therein). The language of
an attacker observer L[Obsatt(G)] is equal to the union of all the attack languages L(F ,G) . According to the
construction of the attacker observer, L[Obsatt(G)] contains all the words that correspond to the original behavior
of the plant G, the insertion of events in E+ , and the erasure of events in E−.

From the initial state b0 , the state reached in Obsatt(G) by executing w = f (s) is equal to the state reached
in Obs(G) by executing s. This follows from the fact that events in E+ are self-loops in Obsatt(G) , and Obsatt(G)
updates its states the same way in case of event e ∈ Eera and the corresponding event e−.

Operator observer.  Given a plant G = (X,E, δ, x0) , the operator observer is built based on the observer
of the plant Obs(G) = (B,Eo, δobs , b0) . The operator observer characterizes the state estimation of an operator
according to the attack words w ∈ E∗a . Such a structure generates two sets of words. The first set contains all the
words that keep the attacker stealthy, and the second set includes all the words that reveal the presence of an
attacker. In the operator observer, the second set of words lead to a fake state, denoted as b∅ . When such a state
is reached, the operator realizes that the plant is under attack. The operator observer can be computed using
Algorithm 2 in Zhang et al.29.

Definition 4  Consider a plant G = (X,E, δ, x0) with observer Obs(G) = (B,Eo, δobs , b0) . Let Eins ⊆ Eo be the set
of events that can be inserted by the attacker, Eera ⊆ Eo be the set of events that can be erased by the attacker, and
Ea = Eo ∪ E+ ∪ E− be the attack alphabet. The operator observer is defined by Obsopr(G) = (Bopr ,Ea, δopr , b0) ,
where Bopr = B ∪ b∅ , and the transition function δopr is defined as:

	� �

In accordance with Definition 4, first, for all the states b ∈ B , and for all the observable events e ∈ Eo , we
impose δopr(b, e) = δobs(b, e) , i.e., the transition function of Obsopr(G) is initialized at the transition function of
Obs(G). Then, for each observable event e ∈ Eins , namely for each event whose observation can be inserted, we
add the transition δopr(b, e+) = δopr(b, e) . This occurs because the operator cannot distinguish an event in Eins
from the corresponding event in E+ . Furthermore, for all the events e ∈ Eera , we add self-loops labeled e− at all
the states of Obsopr(G) . This happens because the operator cannot observe events in E− . Finally, for all the states
b ∈ B and for all the events e ∈ Ea , if δopr(b, e) is not defined, then we impose δopr(b, e) = b∅ . In this way, for
all the states b ∈ B and for all the events e ∈ Ea , δopr(b, e) is defined. On the contrary, for state b∅ , no transition
function is defined.

In the following, given a plant G, we use Ws = {w ∈ E∗a | P̂(w) ∈ P(L(G))} to denote the set of stealthy words,
and We = {we ∈ E∗a | w ∈ Ws, e ∈ Ea,we �∈ Ws} to denote the set of exposing words, where P is the natural pro-
jection, and P̂ is the operator mask.

(8)

{
∀b ∈ B, ∀e ∈ Eo, δatt(b, e) = δobs(b, e),
∀b ∈ B, ∀e ∈ Eera, δatt(b, e−) = δatt(b, e),
∀b ∈ B, ∀e ∈ Eins, δatt(b, e+) = b.

(9)






∀b ∈ B, ∀e ∈ Eo, δopr(b, e) = δobs(b, e),
∀b ∈ B, ∀e ∈ Eins, δopr(b, e+) = δopr(b, e),
∀b ∈ B, ∀e ∈ Eera, δopr(b, e−) = b,
∀b ∈ B, ∀e ∈ Ea, if δopr(b, e) is not defined, then δopr(b, e) = b∅.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

In plain words, Ws contains all the attack words w such that the observation s′ = P̂(w) can be observed by
an operator when there is no attack. The set of exposing words We includes all the attack words that are the con-
catenation of a stealthy word w with an event e ∈ Ea such that we is not stealthy. While a stealthy word does not
expose the presence of an attacker, an exposing word reveals an attacker, but only at the last step.

The following proposition describes the language and the transition function of an operator observer.

Proposition 5  29 Consider a plant G with its observer Obs(G) = (B,Eo, δobs , b0) . Let Obsopr(G) = (Bopr ,Ea, δopr , b0)
be the operator observer constructed using Algorithm 2 in Zhang et al.29. The following two statements hold:

(a)	 L[Obsopr(G)] = Ws ∪We;
(b)	 ∀w ∈ L[Obsopr(G)] : if w ∈ Ws , then δ∗opr(b0,w) = δ∗obs[b0, P̂(w)] ; if w ∈ We , then δ∗opr(b0,w) = b∅. � �

The formal proof of the above proposition can be found in Zhang et al.29 (Proposition 2 therein). The lan-
guage of an operator observer L[Obsopr(G)] is equal to the union of the set of stealthy words Ws and the set of
exposing words We.

If w ∈ Ws , from the initial state b0 , the state reached in Obsopr(G) by executing w is equal to the state reached
in Obs(G) by executing P̂(w) . It follows from the fact that in Obsopr(G) events in E− are self-loops, and Obsopr(G)
updates its states the same way in case of event e ∈ Eins and the corresponding event e+ . If w ∈ We , then state b∅
is reached by executing w in Obsopr(G) . This means that the attacker is exposed when the attack word w ∈ We
is generated.
Joint estimator.  In this subsection we recall the notion of joint estimator and present a characterization of
its language and transition function.

Definition 6  Given a plant G with set of compromised events Ecom . Let Obsatt(G) = (B,Ea, δatt , b0) be the
attacker observer, and Obsopr(G) = (Bopr ,Ea, δopr , b0) be the operator observer. A joint estimator is a DFA, defined
as A = (R,Ea, δa, r0) = Obsatt(G) � Obsopr(G) , where

•	 R = {r = (b, ba) | b ∈ B, ba ∈ Bopr} is the set of states,
•	 Ea = Eo ∪ E+ ∪ E− is the alphabet,
•	 the transition function δa[(b, ba), e] = [δatt(b, e), δopr(ba, e)] if e ∈ Ŵatt(b) ∩ Ŵopr(ba) . Note that, we use

Ŵatt(b) (resp., Ŵopr(ba) ) to denote the set of active events at state b (resp., ba ) in Obsatt(G) (resp., Obsopr(G)),
•	 r0 = (b0, b0) is the initial state. 	� �

We point out that, in the joint estimator A, if there exist unreachable states from the initial state r0 , then such
states should be removed.

For a generic state r = (b, ba) of the joint estimator A, its first element characterizes the state estimation of
the attacker according to the correct observation, and its second element characterizes the state estimation of the
operator according to the corrupted observation. Since the attacker observer and the operator observer have the
same alphabet Ea , according to the definition of concurrent composition, at state r = (b, ba) , event e can occur
only if such an event is active at state b of Obsatt(G) , and at state ba of Obsopr(G) simultaneously.

The following theorem characterizes the language and the transition function of the joint estimator A.

Theorem 7  29 Given a plant G with its observer Obs(G) = (B,Eo, δobs , b0) , let Ws and We be the sets of stealthy
words and exposing words, and A = (R,Ea, δa, r0) be the joint estimator. The following statements hold:

(a)	 L(A) = L(F ,G) ∩ (Ws ∪We);
(b)	 ∀s ∈ P[L(G)] , ∀f ∈ F with w = f (s) ∈ E∗a :

	 (i)	 if w ∈ Ws , then δ∗a (r0,w) = (ba, ba) ⇐⇒ δ∗obs(b0, s) = ba , δ∗obs[b0, P̂(w)] = ba;
	 (ii)	 if w ∈ We , then δ∗a (r0,w) = (ba, b∅) ⇐⇒ δ∗obs(b0, s) = ba , δ∗obs[b0, P̂(w)] is not defined. � �

The formal proof of Theorem 7 can be found in Zhang et al.29 (Theorem 1 therein). Since the joint estima-
tor A is obtained as the concurrent composition of the attacker observer Obsatt(G) and the operator observer
Obsopr(G) that have the same alphabet Ea , then the language of the joint estimator L(A) is equal to the intersec-
tion of their languages. The proof of item (b) follows from Proposition 3, Proposition 5, and the definition of
concurrent composition.

Problem statement
In this paper we want to provide a tool to establish if an attack function exists, which satisfies two main proper-
ties, namely stealthiness and harmfulness with respect to a given misleading relation. Such properties can be
formalized as follows.

Definition 8  Consider a plant G = (X,E, δ, x0) with its observer Obs(G) = (B,Eo, δobs , b0) . An attack function
f is said to be harmful w.r.t. a misleading relation R ⊆ 2X × 2X if ∃s ∈ P(L(G)) with s′ = P̂(f (s)) such that

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

(C (s),C (s′)) ∈ R , where C (s) = δ∗obs(b0, s) (resp., C (s′) = δ∗obs(b0, s
′) ) is the set of states consistent with

observation s (resp., s′ ). 	� �

In words, an attack function is harmful if there exists an observation s that can be altered into a corrupted
observation s′ such that the pair of the sets of consistent states belongs to the misleading relation R.

Definition 9  Consider a plant G with attack language L(f, G), let P be the natural projection, and P̂ be the opera-
tor mask. An attack function f is said to be stealthy if P̂(L(f ,G)) ⊆ P(L(G)) . 	� �

In simple words, an attack function is stealthy if the set of words that an operator may observe when the
plant is under attack is included in the set of words that the operator may observe when no attack happens. This
guarantees that the operator does not realize that the plant is under attack.

To clarify the motivation of introducing the misleading relation R , we present the following example.

Example 10  An operator monitors the plant G = (X,E, δ, x0) to determine if a state in the set of critical states Xcr
is reached in order to activate protective actions for the plant. An attacker corrupts the operator’s observation
preventing it from realizing when a critical state is reached.

The above problem can be defined by a misleading relation R = {(X1,X2) | X1 ∩ Xcr �= ∅ and X2 ∩ Xcr = ∅} ,
i.e., there exists at least one word s ∈ P(L(G)) such that C (s) ∩ Xcr �= ∅ (indicating that a critical state may have
been reached), which can be corrupted into an observation s′ ∈ E∗o such that C (s′) ∩ Xcr = ∅ (implying that the
operator evaluates that the plant is not in a critical state).

If a critical state has been reached, but the operator does not realize it, then the operator activates no protec-
tive actions, and the system will be seriously damaged. 	� �

Consider a plant G with set of compromised events Ecom , and a misleading relation R ⊆ 2X × 2X . The main
contribution of this work is that of constructing an automaton, called supremal stealthy joint subestimator,
which contains all the possible attacks that an attacker can carry out during the evolution of the system, while
guaranteeing stealthiness. A procedure to compute a stealthy attack function based on the supremal stealthy
joint subestimator is proposed. Then it is shown how such a structure allows one to determine if a harmful and
stealthy attack function exists. This is not only useful to the attacker, but also to the operator. Indeed, it can be
used to evaluate if the system is robust to attacks in the considered setting.

Supremal stealthy joint subestimator
In this section we first construct the attacker observer Obsatt(G) , operator observer Obsopr(G) , and joint estimator
A. Then, we show how a joint estimator A should be appropriately trimmed to ensure that all the actions that an
attacker may implement (erase or insert events) based on it, guarantee stealthiness. The DFA resulting from the
trimming operation is called supremal stealthy joint subestimator.

Example 11  Consider a plant modeled by a partially-observed DFA G = (X,E, δ, x0) in Fig. 2(a). Let
Eo = {a, c, d, e, f , g} and Euo = {b} . The observer of the plant is depicted in Fig. 2(b). We assume that Eins = {d}
and Eera = {a, e, f } . The attacker observer Obsatt(G) is sketched in Fig. 3.

Since a ∈ Eera , and there exists a transition labeled a from state {0} to state {1, 2} in the observer Obs(G), we
add transitions labeled a and a− from state {0} to state {1, 2} in the attacker observer Obsatt(G) . Similar discus-
sions can be used to clarify the other transitions labeled e− and f− . Since d ∈ Eins , we add self-loops labeled d+
at all the states of Obsatt(G) . 	� �

Example 12  Consider again the plant in Fig. 2. Assume that Eins = {d} and Eera = {a, e, f } . The operator observer
Obsopr(G) is shown in Fig. 4.

First, since d ∈ Eins , and there exists a transition labeled d from state {0} to state {4} in the observer Obs(G),
we add transitions labeled d and d+ from state {0} to state {4} in Obsopr(G).

Figure 2.   (a) A plant G; (b) its observer Obs(G).

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

Then, since a, e, f ∈ Eera , we add self-loops labeled a− , e− , and f− at all the states of Obsopr(G) . Finally, all the
missing transitions are added to state b∅ that has no output arc. 	� �

Example 13  Review the plant G in Example 11, its attacker observer Obsatt(G) and operator observer Obsopr(G)
are depicted in Figs. 3 and 4, respectively. The joint estimator A = Obsatt(G) � Obsopr(G) is sketched in Fig. 5
(the reasons for highlighting the states in different colours will be discussed later).

At the initial state ({0}, {0}) , event a ∈ Eera may occur in the plant G, corresponding to transition
δa[({0}, {0}), a] = ({1, 2}, {1, 2}) . In such a case, both the first and the second element of the state are updated since
both the attacker and the operator realize the occurrence of such an observable event of G. On the other hand,
if the attacker erases a, this corresponds to transition δa[({0}, {0}), a−] = ({1, 2}, {0}) . In this way, only the first
element is updated because the operator cannot observe events in E− . In addition, the attacker may also insert
d+ before the occurrence of a real event of the plant, corresponding to transition δa[({0}, {0}), d+] = ({0}, {4}) .
In such a case, only the second element is updated since the attacker realizes that d+ is a fake event. Similar
discussions can be used to clarify the other states and transitions. 	� �

Definition 14  Given a joint estimator A = (R,Ea, δa, r0) we define the set of exposing states as
Re := {r = (ba, ba) ∈ R | ba = b∅} and the set of stealthy states as Rs = R \ Re . 	� �

An attack word leading to an exposing state reveals the presence of an attacker to an operator observing the
system’s evolution. Note, however, that there may exist stealthy states from which an exposing state is necessarily
reached following a particular evolution of the plant.

Example 15  Consider the joint estimator A in Fig. 5 already discussed in Example 13. When the stealthy state
({6}, {5}) is reached, the plant is in state {6} . At this point, event g ∈ Eo \ Eera may occur in the plant. Since the
attacker cannot erase event g, then the exposing state ({7}, b∅) is reached. The attacker may try to preempt the
occurrence of event g inserting an event in E+ = {d+} . However, from ({6}, {5}) inserting such an event also
yields exposing state ({6}, b∅) . 	� �

Consider function g : 2Rs → 2Rs defined for all R′ ⊆ Rs as follows:

where

and

In words, the set g(R′) ⊆ R′ is the set of states from which a suitable attacker decision can prevent leaving
R′ and includes states belonging to two different sets: g1(R′) and g2(R′) . Set g1(R′) includes the states of R′ such
that, if there exists an observable event e whose occurrence leads outside R′ , then the attacker may cancel it to
remain in R′ . Set g2(R′) includes the states of R′ that do not belong to g1(R′) , from which it is possible to reach a
state in g1(R′) inserting a word w+ , and all the states visited generating it belong to R′.

A fixed-point of g is a set Rfix ⊆ Rs such that g(Rfix) = Rfix.
The following theorem shows that function g in Eq. (10) has a supremal (i.e., unique maximal) non-empty

fixed point.

Theorem 16  Consider a joint estimator A = (R,Ea, δa, r0) with set of stealthy states Rs . Let g : 2Rs → 2Rs be the
function defined for all R′ ⊆ Rs as in eq. (10). Function g has a non-empty supremal fixed point, denoted in the
following as Rsf .

(10)g(R′) = g1(R
′) ∪ g2(R

′)

(11)g1(R
′) =

{
r ∈ R′ | ife ∈ Eo and δa(r, e) ∈ R \ R′, then e ∈ Eera and δa(r, e−) ∈ R′

}
.

(12)g2(R
′) =

{
r ∈ R′ \ g1(R

′) | (∃w+ ∈ E∗+) [δa(r,w+) ∈ g1(R
′) and (∀w ≺ w+) δa(r,w) ∈ R′]

}
.

Figure 3.   Attacker observer in Example 11 for the plant in Fig. 2.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

Proof  We preliminarily observe that function g is monotone, i.e., by definition for all R′ ⊆ R′′ it holds that
g(R′) ⊆ g(R′′) . Thus according to Tarski’s fixed-point theorem32 function g has a unique maximal fixed-point,
i.e., a supremal fixed-point, that we denote as Rsf and that can be computed as

in at most |Rs| iterations33.
In addition, one can easily verify that, for all joint estimators A, the set of states reachable without any attack

is a fixed-point of g since the occurrence of an event e ∈ Eo does not lead out of this set: this ensures that Rsf ⊇ R0
is not empty. 	� �

In the following, the supremal fixed-point Rsf of function g is called strongly stealthy region, and it can be
computed using Eq. (13). Set Rw = R \ Rsf is called weakly exposing region.

Example 17  Consider again the partially-observed plant G = (X,E, δ, x0) in Fig. 2, where Eo = {a, c, d, e, f , g} ,
Euo = {b} , Eins = {d} , and Eera = {a, e, f } . The joint estimator A is shown in Fig. 5.

Here, exposing states are highlighted in gray, while states in Rw that are not exposing are highlighted in yellow.
To clarify how non-exposing states are added to Rw , let us consider state ({6}, {5}) . There exists a transition

labeled g ∈ Eo \ Eera that leads from ({6}, {5}) to a state in Rw (in such a case the exposing state is ({7}, b∅) ). This
is equivalent to say that ({6}, {5}) does not belong to g1(R \ Rw) [Eq. (11)]. In addition, ({6}, {5}) also does not
belong to g2(R \ Rw) [Eq. (12)] because from such a state it is not possible to reach a state in g1(R \ Rw) adding
a sequence of events in E+ . Hence ({6}, {5}) /∈ g(R \ Rw) . Once state ({6}, {5}) is reached, following the evolution
of the plant, an exposing state ( ({6}, b∅) or ({7}, b∅) ) will be necessarily reached.

We notice that state ({0}, {4}) should also be added to Rw because there exists a transition labeled d /∈ Eera that
leads to state ({4}, b∅) , and there does not exist a transition labeled d+ that leads it to a state not in Rw . However,
at state ({0}, {4}) , if event a occurs, the attacker can erase it leading to state ({1, 2}, {4}) that does not belong to
Rw . This means that, at state ({0}, {4}) , if event a occurs, then the attacker can erase it to remain stealthy; if event
d occurs, then the attacker is discovered, i.e., the stealthiness of the attacker depends on the future evolution of
the plant.

(13)Rsf =
⋂

k≥0

gk(Rs)

(14)R0 = {(ba, ba) ∈ R | ba = ba} ⊆ Rs

Figure 4.   Operator observer in Example 12 for the plant in Fig. 2.

Figure 5.   Joint estimator A in Example 13.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

At the first iteration of Eq. (13), states ({0}, {4}) , ({6}, {4}) , and ({6}, {5}) are added to Rw ; at the second itera-
tion, states ({5}, {4}) and ({6}, {0}) are added; finally at the third iteration, state ({5}, {0}) is added. 	� �

Definition 18  Consider a joint estimator A = (R,Ea, δa, r0) with set of stealthy states Rs . Let g : 2Rs → 2Rs be
the function defined in Eq. (10) and Rsf be its supremal fixed point. The DFA Â = (R̂,Ea, δ̂a, r0) called supremal
stealthy joint subestimator of A, is obtained from A in two steps:

(a)	 Let A′ be the automaton obtained removing from A all states in R \ Rsf and their input and output arcs.
(b)	 Let R̂ be the set of reachable states in A′ and let Â be the automaton obtained from A′ removing all states

that are not in R̂ and their input and output arcs.

	� �

In simple words Â = (R̂,Ea, δ̂a, r0) is obtained trimming A first removing all states that are not in Rsf and
then removing all states that are unreachable from the initial state.

Example 19  Consider again the plant G = (X,E, δ, x0) in Fig. 2 and its joint estimator A in Fig. 5, as discussed in
Example 17. The corresponding supremal stealthy joint subestimator is shown in Fig. 6. The reason for colour-
ing in green state ({3}, {4}) and marking state ({1, 2}, {0}) with a double circle will be discussed in the following
section. 	� �

Proposition 20  The language L(Â) of the supremal stealthy joint subestimator is the set of all attack words that are
stealthy and can be kept stealthy by a proper action of the attacker, regardless of the future evolution of the plant.

Proof  By definition, a fixed-point of function g is a set of stealthy states of the joint estimator that the attacker can
make invariant by choosing a suitable action. Correspondingly, the words generated by evolutions that remain
within such a set can be kept stealthy by the attacker. The fact that set L(Â) contains all such words follows from
the fact that R̂ is the set of reachable states that belong to the supremal fixed-point of g. 	� �

Now we discuss the complexity of constructing the supremal stealthy joint subestimator Â.
Let G be a plant with set of states X, the observer of the plant Obs(G) has at most 2|X| states, the attacker

observer Obsatt(G) has at most 2|X| states, and the operator observer Obsopr(G) has at most 2|X| + 1 states. As a
result, the joint estimator A = Obsatt(G) � Obsopr(G) has at most 2|X| · (2|X| + 1) states.

In addition, testing if a state of a joint estimator r ∈ g(R \ Rw) has linear complexity in the size of A. Thus,
the complexity of constructing Â is O(24|X|).

Computing stealthy and harmful attack function
This section consists of three subsections. In “Preempting states” subsection we show how to identify a subset of
states of the supremal stealthy joint subestimator, called preempting states. In “Selection of a stealthy attack func-
tion” subsection we show how to select a stealthy attack function from the supremal stealthy joint subestimator.
Finally, in “Existence of a stealthy and harmful attack function w.r.t. a relation R ” subsection we discuss how
the existence of a stealthy and harmful attack function can be verified by means of the previous subestimator.

Preempting states.  In this subsection we define a subset of the states of the supremal stealthy joint sub-
estimator Â , called preempting states, which are needed to define a procedure to select a stealthy attack function
from Â.

Figure 6.   Supremal stealthy joint subestimator Â in Example 19.

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

Definition 21  Consider a joint estimator A = (R,Ea, δa, r0) with supremal stealthy joint subestimator
Â = (R̂,Ea, δ̂a, r0) . The set of preempting states of Â is

Define the set of non-preempting states of Â as

	� �

Recalling the definition of function g2 given in eq. (12), it is straightforward to observe that R̂p = g2(R̂).
Note that a state r ∈ R̂p (namely a state of the supremal stealthy joint subestimator Â ) is preempting if there

exists an observable event e in the original joint estimator whose occurrence (even if erased) leads out of R̂
and this may eventually lead to expose the attacker. However, the occurrence of such observable event e can be
preempted inserting a suitable sequence of events in E+ so as to reach a non-preempting state.

Example 22  Recall the partially-observed plant G = (X,E, δ, x0) in Fig. 2(a) with joint estimator A in Fig. 5 and
supremal stealthy joint subestimator in Fig. 6. Looking at Fig. 5 we realize that ({1, 2}, {0}) is a preempting state
because the occurrence of event c, which cannot be erased, yields exposing state ({3}, b∅) . The preempting state
is marked with a double circle in Fig. 6. Once state ({1, 2}, {0}) is reached, event d+ should be inserted to reach a
state that is not preempting. 	� �

Selection of a stealthy attack function.  In this subsection we show how an attacker may determine
a stealthy attack function f s given a supremal stealthy joint subestimator. This can be done associating to each
possible observation produced by the plant a suitable attack word.

The proposed approach is summarized in the following steps. Note that here, given a state r ∈ R̂ , we denote
as ŴA(r) ⊆ Ea the set of events enabled at r in Â . Furthermore, we denote as W+(r) ⊆ E∗+ the set of words that
can be generated in Â starting from r and executing a sequence of events w+ ∈ E∗+ that lead to a non-preempting
state, namely,

Procedure 1  (Compute a stealthy attack function f s from a supremal stealthy joint subestimator
Â = (R̂,Ea, δ̂a, r0) ).

	 1.	 Let s = ε.
	 2.	 Select a sequence w+ ∈ W+(r0).
	 3.	 Let f s(s) = w+.
	 4.	 Let r = δ̂∗a (r0,w+).
	 5.	 Wait for the system to generate a new event e ∈ Eo.
	 6.	 E = ∅.
	 7.	 If e ∈ Ŵ

Â
(r) then E = E ∪ {e}.

	 8.	 If e− ∈ Ŵ
Â
(r) then E = E ∪ {e−}.

	 9.	 Select an event e′ ∈ E and a sequence w+ ∈ W+(δ̂a(r, e
′)) and let w = e′w+.

	10.	 Let f s(se) = f s(s)w.
	11.	 Let s = se.
	12.	 Let r = δ̂∗a (r,w).
	13.	 Goto Step 5.

The above procedure can be explained as follows. If no event occurs in the plant, the attacker can insert a
word w+ ∈ E∗+ , provided that the state reached executing w in Â is in R̂np , namely it is not a preempting state.
Note that in general the choice of w+ is not unique. Indeed, in Step 2 we select one w+ in the set W+(r0) , which
in general is not a singleton. In Step 3 we update accordingly function f s , and in Step 4 we compute the new
current state of Â , denoted as r.

We then wait for the system to generate a new observable event e (Step 5). In this case a new set E is defined
and it is initialized at the empty set. As specified in Steps 7 and 8, such a set may contain the event e, if e is ena-
bled at r. In addition, it may contain the event e− , if e− is enabled at r. At Step 9 one event e′ ∈ E is selected, as
well as one word w+ ∈ W+(δ̂a(r, e

′)) . Finally, the corrupted word w is defined as the concatenation of e′ and w+.
Then, function f s is updated accordingly (Step 10), as well as the observation s (Step 11) and the current

state r of Â (Steps 12). The procedure goes ahead (Step 13) when a new observable event is generated, starting
again from Step 5.

As discussed in the above procedure, the key feature in selecting a stealthy attack function is that of choosing,
from the supremal stealthy joint subestimator, attack words that do not end in a preempting state.

(15)R̂p = {r ∈ R̂ | (∃e ∈ Eo) δa(r, e) ∈ R \ R̂ ∧ (e �∈ Eera ∨ δa(r, e−) ∈ R \ R̂) }.

(16)R̂np = R̂ \ R̂p.

(17)W+(r) = {w+ ∈ E∗+ | δ̂∗a (r,w+) = r′, r′ ∈ R̂np}.

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

Example 23  Review the plant G = (X,E, δ, x0) in Fig. 2(a). We show how to compute a stealthy attack func-
tion on the basis of the supremal stealthy joint subestimator Â which is sketched in Fig. 6. At the initial state
({0}, {0}) , since a− ∈ ŴA(({0}, {0})) , the attacker chooses such an action, corresponding to the transition
δa[({0}, {0}), a−] = ({1, 2}, {0}) . Since ({1, 2}, {0}) is a preempting state, the attacker does not stay there. It chooses
to insert d+ leading to state ({1, 2}, {4}) . In this way, the correct observation a is altered into the corrupted obser-
vation d. 	� �

Proposition 24  Consider a plant G under attack and let f : P(L(G)) → E∗a be an attack function.

Function f is stealthy if and only if for all s ∈ P(L(G)) the attack word f(s) can be computed by Procedure 1.

Proof  We denote by A = (R,Ea, δa, r0) the joint estimator of G with set of stealthy states Rs . We also denote by
Â = (R̂,Ea, δ̂a, r0) the supremal stealthy joint subestimator computed by A using Definition 18.

(If) By construction R̂ ⊆ Rs ⊆ R , i.e., language L(Â) only contains stealthy words and thus any word computed
by Procedure 1 is stealthy. In addition, a word computed by the procedure yields a non-preempting state r ∈ R̂ ,
i.e., r ∈ g1(R̂) using the notation of Eq. (11). This means that for any observable event e ∈ Eo that the plant can
generate after s, the procedure will compute a new word f(se) still in L(Â) and thus function f is stealthy.

(Only if) Assume that for a given attack function f there exists an observation s ∈ P(L(G)) such that f(s) can-
not be computed by Procedure 1. Two cases are possible.

(a)	 If f (s) ∈ L(Â) , then f(s) yields a preempting state and there exists some observable event e ∈ Eo such that
f (se) ∈ L(A) \ L(Â) , i.e., f(se) yields in A a state not in R̂.

(b)	 If f (s) ∈ L(A) \ L(Â) , then f(s) yields in A a state not in R̂.

This means that attack function f produces an attack word not in L(Â) and hence, by Proposition 20, it cannot
be stealthy. 	� �

Existence of a stealthy and harmful attack function w.r.t. a relation R.  In this subsection we
characterize those cases in which a stealthy attack function that is harmful w.r.t. a certain relation R exists.

Proposition 25  Consider a plant G = (X,E, δ, x0) under attack and let Â = (R̂,Ea, δ̂a, r0) be its supremal stealthy
joint subestimator. Given a misleading relation R ⊆ 2X × 2X , a stealthy and harmful attack function f can be
selected iff R̂np ∩R �= ∅ , where R̂np is the subset of non-preempting states in R̂.

Proof  (If) Assume that, in Â , there exists a state r ∈ R̂np ∩R such that r = δ̂∗a (r0,w) and w = f (s) , where
s ∈ P(L(G)) , and P is the natural projection. Since r ∈ R̂np , it means that the attack word w does not end in a
preempting state. Then according to Procedure 1 and Proposition 24, we can conclude that f is stealthy.

Since r = (ba, ba) ∈ R , on the basis of Theorem 7, if w ∈ Ws , then ba = δ∗obs(b0, s) , and ba = δ∗obs(b0, P̂(w)) .
This indicates that there exists an observation s that can be corrupted into a word s′ = P̂(w) such that
(C (s),C (s′) ∈ R , where C (s) = ba , C (s′) = ba , and P̂ is the operator mask. According to Definition 8, it
can be concluded that f is also harmful.

(Only if) Assume that there exists a stealthy and harmful attack function f. Since f is stealthy, according to
Procedure 1 and Proposition 24, the attack word w = f (s) does not end in a preempting state of Â , thus state
r = δ̂∗a (r0,w) ∈ R̂np.

Since f is harmful, on the basis of Definition 8, there exists an observation s that can be changed into a cor-
rupted observation s′ such that (C (s),C (s′) ∈ R , where C (s) = δ∗obs(b0, s) , and C (s′) = δ∗obs(b0, s

′) . Accord-
ing to Theorem 7, if w ∈ Ws , then state r = δ̂∗a (r0,w) = (ba, ba) , where ba = δ∗obs(b0, s) , ba = δ∗obs(b0, s

′) , and
s′ = P̂(w) . Therefore, state r ∈ R . According to the above discussions, state r ∈ R̂np ∩R , i.e., R̂np ∩R �= ∅.

Note that, in the above proofs, we exclude the case that w ∈ We because all the exposing states have been
removed from Â . 	� �

Example 26  Consider again the partially-observed plant G = (X,E, δ, x0) in Fig. 2(a), where Eo = {a, c, d, e, f , g}
and Euo = {b} . Let the misleading relation R = {({3},X) | X ⊆ {0, 4}} . The supremal stealthy joint subestimator
Â is shown in Fig. 6.

State ({3}, {4}) , highlighted in green, is a harmful state. When such a state is reached following the attacked
observation, the plant is in state {3} , while the operator thinks it is in state {4} . In such a case, the attack is harm-
ful. In particular, the harmful attack can be realized by first erasing the occurrence of event a, then inserting
d+ , and finally waiting for the plant to generate event c, so that the correct observation s = ac is corrupted to
s′ = dc . 	� �

Conclusions and future work.  The problem of state estimation of discrete event systems under attack has
been investigated. The joint estimator, which takes into account the state estimation of the attacker in accordance
with the real observation and the state estimation of the operator in accordance with the corrupted observation,
is computed as the concurrent composition of two particular structures called the attacker observer and opera-
tor observer. By appropriately trimming the joint estimator we obtain the supremal stealthy joint subestimator,

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

which contains all the attacks that keep the attacker stealthy. According to the definition of preempting state, a
formal procedure to select a stealthy attack function from such a subestimator is provided. Finally, it is shown
how to synthesize a stealthy and harmful attack function w.r.t. the misleading relation R.

In the future, on the one hand, we plan to discuss how the proposed procedure may also be useful to an
operator, in the case that the system is not robust to attack, to prevent the occurrence of certain events, via a
supervisory control law, in order to enforce robustness w.r.t. attack. On the other hand, we intend to consider the
case that the attacker only has a partial knowledge of the plant model. It is also interesting to solve the problem
considered in this paper using Petri nets, which may provide a more efficient solution.

Received: 17 January 2022; Accepted: 2 September 2022

References
	 1.	 Thorsley, D. & Teneketzis, D. Intrusion detection in controlled discrete event systems. In Proc. 45th IEEE Conf. Decis. Control,

6047–6054 (2006).
	 2.	 Su, R. Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations. Automatica 94, 35–44 (2018).
	 3.	 Lima, P. M., Alves, M. V. S., Carvalho, L. K. & Moreira, M. V. Security against communication network attacks of cyber-physical

systems. J. Control Autom. Electr. Syst. 30(1), 125–135 (2019).
	 4.	 Wakaiki, M., Tabuada, P. & Hespanha, J. P. Supervisory control of discrete-event systems under attacks. Dyn. Games Appl. 9(4),

965–983 (2019).
	 5.	 Khoumsi, A. Sensor and actuator attacks of cyber-physical systems: A study based on supervisory control of discrete event systems.

In Proc. 8th Int. Conf. Syst. Control, 176–182 (2019).
	 6.	 Zhu, Y., Lin, L. & Su, R. Supervisor obfuscation against actuator enablement attack. In Proc. 18th Eur. Control Conf., 1760–1765

(2019).
	 7.	 Yao, J., Yin, X. & Li, S. On attack mitigation in supervisory control systems: A tolerant control approach. In Proc. 59th IEEE Conf.

Decis. Control, 4504–4510 (2020).
	 8.	 Zheng, S., Shu, S. & Lin, F. Modeling and control of discrete event systems under joint sensor-actuator cyber attacks. In Proc. 6th

Int. Conf. Automat., Control Robot. Eng., 216–220 (2021).
	 9.	 Carvalho, L. K., Wu, Y.-C., Kwong, R. & Lafortune, S. Detection and mitigation of classes of attacks in supervisory control systems.

Automatica 97, 121–133 (2018).
	10.	 Lin, L. & Su, R. Synthesis of covert actuator and sensor attackers. Automatica 130, 109714 (2021).
	11.	 Meira-Góes, R., Kang, E., Kwong, R. H. & Lafortune, S. Synthesis of sensor deception attacks at the supervisory layer of cyber-

physical systems. Automatica 121, 109172 (2020).
	12.	 Meira-Góes, R., Marchand, H. & Lafortune, S. Synthesis of supervisors robust against sensor deception attacks. IEEE Trans. Autom.

Control 66(10), 4990–4997 (2021).
	13.	 Lima, P. M., Alves, M. V. S., Carvalho, L. K. & Moreira, M. V. Security of cyber-physical systems: design of a security supervisor

to thwart attacks. IEEE Trans. Automat. Sci. Enghttps://​doi.​org/​10.​1109/​TASE.​2021.​30766​97.
	14.	 Alves, M. R. C., Pena, P. N. & Rudie, K. Discrete-event systems subject to unknown sensor attacks. Discret. Event Dyn. Syst. 32(1),

143–158 (2022).
	15.	 Lin, L., Tai, R., Zhu, Y. & Su, R. Heuristic synthesis of covert attackers against unknown supervisors. In Proc. 60th IEEE Conf. Decis.

Control, 7003–7008 (2021).
	16.	 Meira-Góes, R. & Lafortune, S. Moving target defense based on switched supervisory control: A new technique for mitigating

sensor deception attacks. In Proc. 15th IFAC Workshop Discrete Event Syst., 317–323 (2020).
	17.	 Li, Y., Tong, Y. & Giua, A. Detection and prevention of cyber-attacks in networked control systems. In Proc. 15th IFAC Workshop

Discrete Event Syst., 7–13 (2020).
	18.	 Meira-Góes, R., Kwong, R. H. & Lafortune, S. Synthesis of optimal multi-objective attack strategies for controlled systems modeled

by probabilistic automata. IEEE Trans. Autom. Controlhttps://​doi.​org/​10.​1109/​TAC.​2021.​30947​37.
	19.	 Wang, Z. Y., Meira-Góes, R., Lafortune, S. & Kwong, R. H. Mitigation of classes of attacks using a probabilistic discrete event system

framework. In Proc. 15th IFAC Workshop Discrete Event Syst., 35–41 (2020).
	20.	 Jakovljevic, Z., Lesi, V. & Pajic, M. Attacks on distributed sequential control in manufacturing automation. IEEE Trans. Ind. Inf.

17(2), 775–786 (2021).
	21.	 Lesi, V., Jakovljevic, Z. & Pajic, M. Security analysis for distributed IoT-based industrial automation. IEEE Trans. Automat. Sci.

Eng.https://​doi.​org/​10.​1109/​TASE.​2021.​31063​35.
	22.	 Wang, Y. & Pajic, M. Supervisory control of discrete event systems in the presence of sensor and actuator attacks. In Proc. 58th

IEEE Conf. Decis. Control, 5350–5355 (2019).
	23.	 Wang, Y. & Pajic, M. Attack-resilient supervisory control with intermittently secure communication. In Proc. 58th IEEE Conf.

Decis. Control, 2015–2020 (2019).
	24.	 You, D., Wang, S., Zhou, M. & Seatzu, C. Supervisory control of Petri nets in the presence of replacement attacks. IEEE Trans.

Autom. Control 67(3), 1466–1473 (2022).
	25.	 You, D., Wang, S. & Seatzu, C. A liveness-enforcing supervisor tolerant to sensor-reading modification attacks. IEEE Trans. Syst.

Man Cybern. Syst. 52(4), 2398–2411 (2022).
	26.	 Wang, Y., Li, Y., Yu, Z., Wu, N. & Li, Z. Supervisory control of discrete-event systems under external attacks. Inf. Sci. 562, 398–413

(2021).
	27.	 He, Z., Ma, Z. & Tang, W. Performance safety enforcement in strongly connected timed event graphs. Automatica 128, 109605

(2021).
	28.	 He, Z. & Ma, Z. Performance safety enforcement in stochastic event graphs against boost and slow attacks. Nonlinear Anal. Hybrid

Syst. 41, 101057 (2021).
	29.	 Zhang, Q., Seatzu, C., Li, Z. & Giua, A. Joint state estimation under attack of discrete event systems. IEEE Access 9, 168068–168079

(2021).
	30.	 Ramadge, P. J. G. & Wonham, W. M. The control of discrete event systems. Proc. IEEE 77(1), 81–98 (1989).
	31.	 Cassandras, C. G. & Lafortune, S. Introduction to discrete event systems (Springer, 2021).
	32.	 Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955).
	33.	 Kushi, N. & Takai, S. Synthesis of similarity enforcing supervisors for nondeterministic discrete event systems. IEEE Trans. Autom.

Control 63(5), 1457–1464 (2018).

https://doi.org/10.1109/TASE.2021.3076697
https://doi.org/10.1109/TAC.2021.3094737
https://doi.org/10.1109/TASE.2021.3106335

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:16302 | https://doi.org/10.1038/s41598-022-19737-w

www.nature.com/scientificreports/

Acknowledgements
This work was partially supported by the National Key R &D Program of China under Grant 2018YFB1700104,
the Natural Science Foundation of China under Grand No. 61873342, the ShaanXi Huashan Scholars, the Science
and Technology Development Fund, MSAR, under Grant No. 122/2017/A3.

Author contributions
Q.Z. wrote the manuscript. C.S. wrote and reviewed the manuscript. Z.L. provided suggestions to improve the
manuscript, and reviewed the manuscript. A.G. provided the original motivation of this work, and wrote the
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Selection of a stealthy and harmful attack function in discrete event systems
	Preliminaries
	Attack model
	Attacker observer, operator observer, and joint estimator
	Attacker observer.
	Operator observer.
	Joint estimator.

	Problem statement
	Supremal stealthy joint subestimator
	Computing stealthy and harmful attack function
	Preempting states.
	Selection of a stealthy attack function.
	Existence of a stealthy and harmful attack function w.r.t. a relation .
	Conclusions and future work.

	References
	Acknowledgements

