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Selection of a stealthy and harmful 
attack function in discrete event 
systems
Qi Zhang1,2, Carla Seatzu2, Zhiwu Li3* & Alessandro Giua2

In this paper we consider the problem of joint state estimation under attack in partially-observed 
discrete event systems. An operator observes the evolution of the plant to evaluate its current states. 
The attacker may tamper with the sensor readings received by the operator inserting dummy events 
or erasing real events that have occurred in the plant with the goal of preventing the operator from 
computing the correct state estimation. An attack function is said to be harmful if the state estimation 
consistent with the correct observation and the state estimation consistent with the corrupted 
observation satisfy a given misleading relation. On the basis of an automaton called joint estimator, 
we show how to compute a supremal stealthy joint subestimator that allows the attacker to remain 
stealthy, no matter what the future evolution of the plant is. Finally, we show how to select a stealthy 
and harmful attack function based on such a subestimator.

The problem of cyber attacks in discrete event systems (DESs) has been addressed by several authors1–3. An 
attacker may insert (erase) sensor readings received by the supervisor (sensor attacks)4,5, and may corrupt the 
control actions of the supervisor (actuator attacks)6–8. In such a case, the specification imposed by the supervisor 
may be violated. Typical examples on cyber attacks of discrete event systems are as follows.

Carvalho et al.9 use a diagnoser-based approach to detect the attacker. Once it is detected, the supervisor will 
disable all the controllable events to keep the system safe. Lin and Su10 investigate the problem of synthesizing 
the covert attackers considering sensor replacement attacks, actuator enablement attacks, and actuator disable-
ment attacks. They transform such a problem into the Ramadge-Wonham supervisor synthesis problem so that 
existing techniques can be used.

Meira-Góes et al.11 study the problem of stealthy sensor attacks at the supervisory control layer. They define a 
structure called insertion-deletion attack structure that characterizes the interaction between the supervisor and 
the environment (includes the plant and the attacker). Such a structure can be used to synthesize three different 
kinds of attack policies: unbounded deterministic attack, bounded deterministic attack, and interruptible attack. 
Meira-Góes et al.12 develop a structure called solution-arena A sup that contains all the robust supervisors against 
sensor deception attacks. Lima et al.13 introduce the notion of network attack security. If the plant is network 
attack secure, then they present an algorithm to compute a security supervisor that can prevent the plant from 
reaching the unsafe state.

Alves et al.14 consider the problem of sensor attacks in DESs, where an attacker can corrupt the supervisor 
observation by inserting or erasing symbols from a specific set, but we do not know which symbol will be tam-
pered during an attack. They present a new method to verify if a given language is P-observable in terms of a 
new observability condition. The problem of stealthy attacker synthesis has been addressed by Lin et al.15, where 
the considered attacks include the sensor replacement attack and the actuator disablement attack. The authors 
assume that the attacker does not know the model of the supervisor, but can record a finite observation of the 
closed-loop system. Meira-Góes and Lafortune16 introduce a new defense strategy against sensor attacks called 
moving target defense paradigm, i.e., a plant is controlled by a set of supervisors, and only one supervisor is 
active at a certain time. They provide a necessary and sufficient condition for the existence of supervisors and a 
switching mechanism between them such that the specifications of safety, liveness, and maximal permissiveness 
can be enforced.

There are also many other works that consider the problem of cyber attacks in different settings. Li et al.17 
propose the problem of actuator enablement attacks in networked control systems, where control delays of the 
supervisor may occur. The problems of optimal multi-objective attack policies and mitigation of attacks are 
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discussed in the context of probabilistic discrete event systems18,19. The problem of sensor attacks for distributed 
control systems has been investigated20,21. The issue of attack-resilient supervisory control is studied by Wang 
et al.22,23, where the attacker is modeled as finite state transducers. You et al.24,25 consider the problem of supervi-
sory control under sensor attacks using Petri nets. Wang et al.26 consider the issue of supervisory control under 
attack including sensor attacks and actuator attacks, where the adopted model is labeled Petri nets. Finally, the 
problem of performance safety enforcement is proposed in the context of timed Petri nets and stochastic Petri 
nets, respectively27,28.

In this paper we study the problem of joint state estimation under attack in partially-observed discrete event 
systems. Assume that the plant and the operator are connected via a network that transmits the sensor readings 
of the events that have occurred in the plant. The operator observes the evolution of the plant with the objective 
of identifying its current state. An attacker, which has a full knowledge of the plant, may corrupt the operator’s 
observation by inserting fake events and erasing real events that have occurred in the plant so that the correct 
state estimation of the operator is compromised. In addition, we assume that the attacker needs to be stealthy, 
i.e., the operator should not be able to detect that the plant is under attack.

Given a plant G = (X,E, δ, x0) , assume that a word σ ∈ E∗ is generated. If there is no attack, the operator 
observes the word P(σ ) = s ∈ E∗o , where P is the natural projection on the set of observable events Eo , and com-
putes the state estimate C (s) ⊆ X , namely the set of states consistent with the observation s. Nevertheless, if an 
attacker gets involved changing the word s into a corrupted observation s′ ∈ E∗o , then the operator will construct 
a wrong state estimate C (s′) ⊆ X . To formalize such a problem, we introduce the notion of misleading relation 
R ⊆ 2X × 2X , and an attack is said to be harmful if (C (s),C (s′)) ∈ R.

The motivation of introducing the misleading relation R can be explained as follows. Assume that a plant 
G = (X,E, δ, x0) contains a set of critical states Xcr ⊆ X . An operator observes the plant evolution with the goal 
of establishing if a critical state x ∈ Xcr is reached so that it should activate protective actions that are essential 
for the safety of the plant. However, when a critical state is reached, if the attacker corrupts the operator’s obser-
vation making it believe that a non-critical state is reached, then no protective action is activated, and damages 
are caused to the system.

In Zhang et al.29, an automaton called joint estimator, which allows one to establish for each attack word, the 
joint state estimation of the attacker and of the operator, is constructed. This paper extends the work of Zhang 
et al.29. First, we show how to trim the joint estimator obtaining the supremal stealthy joint subestimator Â that 
contains all the stealthy attacks. Then, we give a procedure to compute a stealthy attack function f s from Â . 
Finally, we discuss the existence of a stealthy and harmful attack function w.r.t. a misleading relation R.

We point out that, in the framework of discrete event systems, most of the existing works on cyber attacks 
consider such a problem at the supervisory control layer. However, in this paper the problem of joint state esti-
mation under attack is proposed at the observation layer. Among the previous mentioned literature, Meira-Góes 
et al.11 inspired us most. However, there are three fundamental differences between the two works. 

(1)	 In terms of problem setting, we do not address a problem of supervisory control under attack, as in Meira-
Góes et al.11, but a problem of state estimation under attack. In the framework of supervisory control, one 
assumes that a supervisor has been designed to enforce a given specification. When the plant is under 
attack, the goal is that of understanding if the action of the attacker may mislead the supervisor so that 
the controlled system violates the specification and a supervisor which is robust under attack is eventu-
ally constructed. In the framework of state estimation, one assumes that an observer has been designed to 
allow an operator to reconstruct the state of a monitored plant from its observed outputs. When the plant 
is under attack, the goal is that of understanding how the action of the attacker may mislead the operator 
to make a wrong estimation.

(2)	 In terms of the structures that provide the solution, in Meira-Góes et al.11 a bipartite structure called 
insertion-deletion attack structure is used to solve the problem of supervisory control under attack. In our 
approach, an automaton, called joint estimator is adopted to solve the problem of state estimation under 
attack. The two structures are rather different.

(3)	 In terms of the synthesis of attack functions, in Meira-Góes et al.11 an attack function that has the shortest 
path to reach an unsafe state is synthesized. While in this work, a harmful attack function w.r.t. a misleading 
relation R that does not stop at a preempting state to remain stealthy is selected.

The remainder of the paper is organized as follows. “Preliminaries” section presents the basic concepts of discrete 
event systems (e.g. automata and observer). “Attack model” section introduces the definition of an attack function, 
and the attack model. “Attacker observer, operator observer, and joint estimator” section recalls the definitions of 
attacker observer, operator observer, and joint estimator from Zhang et al.29. “Problem statement” section provides 
the problem statement in terms of the harmfulness and stealthiness of an attack function. “Supremal stealthy 
joint subestimator” section details how to extract the supremal stealthy joint subestimator from a joint estimator. 
“Computing stealthy and harmful attack function” section discusses how to select a stealthy and harmful attack 
function on the basis of the supremal stealthy joint subestimator. “Conclusions and future work” section reports 
the conclusions and our possible future works in this topic.

Preliminaries
An alphabet E is a finite and non empty set of symbols and a word defined over E is a string composed by its 
symbols. Given an alphabet E, we denote as E∗ the set of all finite words defined over E, including the empty 
word ε that contains no symbol. As an example, let E = {a, b, c, d} . Then
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Note that the set E∗ is countably infinite.
Let D be a set. The power set of D, denoted as 2D , is the set of all the subsets of D, i.e., 2D = {d | d ⊆ D}.
A deterministic finite-state automaton (DFA) is a four-tuple, denoted by G = (X,E, δ, x0) , where X is the set 

of states, E is an alphabet, δ : X × E → X is the transition function, i.e., δ(x, e) = x′ means that at state x, there 
exists a transition labeled e yielding state x′ , and x0 is the initial state. The transition function can be extended 
to the domain X × E∗ , denoted by δ∗ : X × E∗ → X such that δ∗(x, σ e) = δ(δ∗(x, σ), e) , where σ ∈ E∗ . The 
language generated by G is defined by L(G) = {σ ∈ E∗ | δ∗(x0, σ) is defined}.

When automata are used to describe discrete event systems, the alphabet E represents the set of events that 
the system can generate. A word represents a particular evolution of the system and the generated language of 
the automaton represents the behavior of the system, i.e., the set of all its evolutions. The set of active events at 
state x is denoted as Ŵ(x) = {e ∈ E | δ(x, e) is defined} . Given two words σ1, σ2 ∈ L(G) , we denote their concat-
enation σ1σ2.

Due to the absence of sensors to record the occurrence of some events, not all the events are observable. 
As a result, the event set E is partitioned into two disjoint subsets: the set of observable events Eo and the set of 
unobservable events Euo.

Given two alphabets E and E′ such that E′ ⊆ E . The natural projection30 on E′ , PE′ : E∗ → (E′)∗ is defined 
as follows:

In plain words, given a word σ ∈ E∗ , the natural projection PE′ removes from σ events that do not belong to E′.
Given two DFA G1 = (X1,E1, δ1, x01) , G2 = (X2,E2, δ2, x02) , and set E = E1 ∪ E2 . The concurrent composition 

of L(G1) and L(G2) is defined by L(G1) � L(G2) = {σ ∈ E∗ | PE1(σ ) ∈ L(G1),PE2(σ ) ∈ L(G2)}.
For the sake of simplicity, we use P : E∗ → E∗o to denote the natural projection from E∗ to E∗o . Correspond-

ingly, the inverse projection P−1 : E∗o → 2E
∗ is defined by P−1(s) = {σ ∈ E∗ : P(σ ) = s} . In words, the inverse 

projection P−1(s) returns the set of all words σ ∈ E∗ that produce the observation s.
Consider a partially-observed DFA G = (X,E, δ, x0) , and let s ∈ P[L(G)] be an observation. In general there 

may exist more than one generated word σ ∈ L(G) that produces observation s. The set of words consistent with 
observation s is defined as:

and denotes the set of all words σ ∈ L(G) that produce observation s.
The set of states consistent with observation s is defined as:

and denotes the set of all states where the DFA may be when observation s is produced.
We also call C (s) ⊆ X the state estimate that corresponds to the observation s ∈ E∗o . One may use the notion 

of observer31 to solve the problem of state estimation for a partially-observed DFA. In order to construct the 
observer, the definition of unobservable reach is first introduced.

The unobservable reach UR(x) of state x ∈ X is defined by UR(x) = {x′ | ∃σ ∈ E∗uo, δ
∗(x, σ) = x′} . In words, 

UR(x) is the set of states x′ ∈ X reached from state x executing an unobservable word σ . Such a definition is 
extended to a set of states B ⊆ X as:

Let G = (X,E, δ, x0) be a partially-observed DFA with Eo ⊆ E , its observer Obs(G) is still a DFA:

where B ⊆ 2X is the set of states, Eo is the set of observable events, δobs : B× Eo → B is the transition function 
defined by:

and b0 := UR(x0) is the initial state.
Let G be a partially-observed DFA with the observer Obs(G) = (B,Eo, δobs , b0) . Given an observation 

s ∈ P[L(G)] , it holds that the set of states consistent with the observation s is C (s) = δ∗obs(b0, s).

Attack model
In this paper we adopt the attack model in Zhang et al.29, namely we assume that the attacker can insert dummy 
events and erase real events to interfere in the operator observation. To make the paper self-contained, in the 
following we recall some key definitions from Zhang et al.29.

As shown in Fig. 1, we assume that σ ∈ E∗ is a word generated by the plant G producing the observed word 
s = P(σ ) . The attacker may tamper with such an observation inserting fake signals or erasing real signals. There-
fore, the operator receives the corrupted observation s′ ∈ Eo , and computes its state estimation according to it 

E∗ = {ε, a, b, c, d, aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd, aaa, ...}.

(1)PE′(ε) := ε , PE′(σ e) :=

{
PE′(σ )e if e ∈ E′,
PE′(σ ) if e ∈ E \ E′.

(2)S (s) = P−1(s) ∩ L(G) = {σ ∈ L(G) | P(σ ) = s},

(3)C (s) = {x ∈ X | (∃σ ∈ S (s)) δ∗(x0, σ) = x},

(4)UR(B) =
⋃

x∈B

UR(x).

(5)Obs(G) = (B,Eo, δobs , b0),

(6)δobs(b, eo) :=
⋃

x∈b

UR({x′ | δ(x, eo) = x′}),
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(neglect the internal structure of an attacker within the dotted lines for the moment). The goal of the attacker is 
to mislead the operator to construct the wrong state estimation.

Note that, in this paper, we assume that the attacker has a full knowledge of the plant, namely the attacker 
knows the model of the plant, and observes the plant with the same projection mask used by the operator, i.e., 
if the operator can (cannot) observe a certain event of the plant, then the attacker can (cannot) observe it. The 
above assumption is common to many works2,9,11,13 on cyber attacks in the framework of DES. We will consider 
the case in which the attacker only has a partial knowledge of the plant model in future work.

We assume that the plant contains a set of compromised events Ecom ⊆ Eo , i.e., the set of events that could be 
inserted or erased by the attacker. Note that such a definition was first proposed by Meira-Góes et al.11, however, 
it has been slightly generalized in Zhang et al.29 partitioning Ecom into two subsets: the set of events that can be 
inserted, denoted as Eins ; the set of events that can be erased, denoted as Eera . Namely Ecom = Eins ∪ Eera . We 
point out that, Eins and Eera are not necessarily disjoint.

In order to distinguish the original events of the plant from those produced by the action of the attacker, 
we introduce two new alphabets E+ and E− . We denote as E+ = {e+ | e ∈ Eins} the set of inserted events11, 
and E− = {e− | e ∈ Eera} the set of erased events11. The occurrence of an event e+ ∈ E+ means that e does not 
occur but the attacker inserts a fake signal e to the operator observation. The occurrence of an event e− ∈ E− 
implies that e has occurred in the plant but the attacker erases it. Finally, the attack alphabet is defined by 
Ea = Eo ∪ E+ ∪ E− . Note that by definition sets Eo , E+ , and E− are disjoint.

Definition 1  Let G be a plant with set of compromised events Ecom = Eins ∪ Eera , and Ea = Eo ∪ E+ ∪ E− be 
the attack alphabet. An attacker can be defined as an attack function f : P[L(G)] → E∗a : 

(1)	 f (ε) ∈ E∗+,

(2)	 ∀se ∈ P(L(G)) such that s ∈ E∗o : 
{
f (se) ∈ f (s){e−, e}E

∗
+ if e ∈ Eera,

f (se) ∈ f (s){e}E∗+ if e ∈ Eo \ Eera.

	�  �

In plain words, condition (1) indicates that the attacker may insert any word in E∗+ when no observable event 
is produced by the plant. Condition (2) means that if an event e ∈ Eera happens, the attacker can either erase 
it or not, and then insert any word in E∗+ . Furthermore, the attacker may also insert any word in E∗+ after the 
occurrence of an event in Eo \ Eera , which cannot be erased.

Due to the presence of an attack function, the augmented language of the plant is called attack language, 
defined as L(f ,G) = f (P[L(G)]) . We use w to denote a word in L(f, G), and call it attack word.

In order to characterize how the operator treats events in the attack alphabet Ea , we define the operator mask 
P̂ : E∗a → E∗o as follows:

Given an attack word w ∈ E∗a , the operator mask reduces w into a word in E∗o . In fact, the operator cannot 
distinguish event e ∈ Eo from the corresponding event e+ , and it cannot observe events in E−.

The internal structure of an attacker is depicted in Fig. 1 within the dotted lines. First, the attack function 
changes an observed word s ∈ E∗o into an attack word w ∈ E∗a . Then, the operator mask reduces w to a corrupted 
observation s′ ∈ E∗o.

Attacker observer, operator observer, and joint estimator
In this section, we review the notions of attacker observer, operator observer, and joint estimator, which were 
first proposed by Zhang et al.29.

Attacker observer.  Given a plant G = (X,E, δ, x0) , the attacker observer is constructed based on the 
observer of the plant Obs(G) = (B,Eo, δobs , b0) . The attacker observer generates all the attack words on the attack 
alphabet Ea resulting from the attack function, and provides the state estimation of the attacker according to the 
attack words. One can use Algorithm 1 in Zhang et al.29 to compute the attacker observer.

Definition 2  Consider a plant G = (X,E, δ, x0) with the observer Obs(G) = (B,Eo, δobs , b0) . Let Eins ⊆ Eo be the 
set of events that can be inserted by the attacker, Eera ⊆ Eo be the set of events that can be erased by the attacker, 
and Ea = Eo ∪ E+ ∪ E− be the attack alphabet. The attacker observer is defined as Obsatt(G) = (B,Ea, δatt , b0) , 
where the transition function δatt is defined as follows:

(7)P̂(ε) = ε, P̂(we′) =

{
P̂(w)e if e′ = e ∈ Eo ∨ e′ = e+ ∈ E+,

P̂(w) if e′ = e− ∈ E−.

Figure 1.   A plant G under attack.
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	�  �

According to Definition 2, first, for all the states b ∈ B , and for all the observable events e ∈ Eo , we impose 
δatt(b, e) = δobs(b, e) , i.e., the transition function of the attacker observer is initialized at the transition function 
of the observer of the plant. Then, for each observable event e ∈ Eera , namely for each event whose observation 
can be erased, we add the transition δatt(b, e−) = δatt(b, e) . In fact, the attacker knows that e− ∈ E− is an erased 
event that has occurred in the plant, and thus the attacker updates its state in the same way it does when event 
e ∈ Eera occurs. Finally, for all the events e ∈ Eins , we add self-loops labeled e+ at all the states of Obsatt(G) . In 
fact, the attacker knows that an event in E+ is a dummy event inserted by itself, thus the attacker does not update 
its state when e+ occurs.

In the following, given a plant G, we denote as F the set of attack functions, and define 
L(F ,G) =

⋃
f ∈F

f (P[L(G)]) the union of all the attack languages, where P is the natural projection. The following 

proposition sketches the language and the transition function of an attacker observer.

Proposition 3  29 Consider a plant G with its observer Obs(G) = (B,Eo, δobs , b0) . Let F be the set of attack func-
tions, and Obsatt(G) = (B,Ea, δatt , b0)  be the attacker observer constructed using Algorithm 1 in Zhang et al.29. 
The following statements hold: 

(a)	 L[Obsatt(G)] = L(F ,G);
(b)	 ∀s ∈ P[L(G)] , ∀f ∈ F with w = f (s) ∈ E∗a : δ∗att(b0,w) = δ∗obs(b0, s). � �

The formal proof of this proposition can be found in Zhang et al.29 (Proposition 1 therein). The language of 
an attacker observer L[Obsatt(G)] is equal to the union of all the attack languages L(F ,G) . According to the 
construction of the attacker observer, L[Obsatt(G)] contains all the words that correspond to the original behavior 
of the plant G, the insertion of events in E+ , and the erasure of events in E−.

From the initial state b0 , the state reached in Obsatt(G) by executing w = f (s) is equal to the state reached 
in Obs(G) by executing s. This follows from the fact that events in E+ are self-loops in Obsatt(G) , and Obsatt(G) 
updates its states the same way in case of event e ∈ Eera and the corresponding event e−.

Operator observer.  Given a plant G = (X,E, δ, x0) , the operator observer is built based on the observer 
of the plant Obs(G) = (B,Eo, δobs , b0) . The operator observer characterizes the state estimation of an operator 
according to the attack words w ∈ E∗a . Such a structure generates two sets of words. The first set contains all the 
words that keep the attacker stealthy, and the second set includes all the words that reveal the presence of an 
attacker. In the operator observer, the second set of words lead to a fake state, denoted as b∅ . When such a state 
is reached, the operator realizes that the plant is under attack. The operator observer can be computed using 
Algorithm 2 in Zhang et al.29.

Definition 4  Consider a plant G = (X,E, δ, x0) with observer Obs(G) = (B,Eo, δobs , b0) . Let Eins ⊆ Eo be the set 
of events that can be inserted by the attacker, Eera ⊆ Eo be the set of events that can be erased by the attacker, and 
Ea = Eo ∪ E+ ∪ E− be the attack alphabet. The operator observer is defined by Obsopr(G) = (Bopr ,Ea, δopr , b0) , 
where Bopr = B ∪ b∅ , and the transition function δopr is defined as:

	�  �

In accordance with Definition 4, first, for all the states b ∈ B , and for all the observable events e ∈ Eo , we 
impose δopr(b, e) = δobs(b, e) , i.e., the transition function of Obsopr(G) is initialized at the transition function of 
Obs(G). Then, for each observable event e ∈ Eins , namely for each event whose observation can be inserted, we 
add the transition δopr(b, e+) = δopr(b, e) . This occurs because the operator cannot distinguish an event in Eins 
from the corresponding event in E+ . Furthermore, for all the events e ∈ Eera , we add self-loops labeled e− at all 
the states of Obsopr(G) . This happens because the operator cannot observe events in E− . Finally, for all the states 
b ∈ B and for all the events e ∈ Ea , if δopr(b, e) is not defined, then we impose δopr(b, e) = b∅ . In this way, for 
all the states b ∈ B and for all the events e ∈ Ea , δopr(b, e) is defined. On the contrary, for state b∅ , no transition 
function is defined.

In the following, given a plant G, we use Ws = {w ∈ E∗a | P̂(w) ∈ P(L(G))} to denote the set of stealthy words, 
and We = {we ∈ E∗a | w ∈ Ws, e ∈ Ea,we �∈ Ws} to denote the set of exposing words, where P is the natural pro-
jection, and P̂ is the operator mask.

(8)

{
∀b ∈ B, ∀e ∈ Eo, δatt(b, e) = δobs(b, e),
∀b ∈ B, ∀e ∈ Eera, δatt(b, e−) = δatt(b, e),
∀b ∈ B, ∀e ∈ Eins, δatt(b, e+) = b.

(9)






∀b ∈ B, ∀e ∈ Eo, δopr(b, e) = δobs(b, e),
∀b ∈ B, ∀e ∈ Eins, δopr(b, e+) = δopr(b, e),
∀b ∈ B, ∀e ∈ Eera, δopr(b, e−) = b,
∀b ∈ B, ∀e ∈ Ea, if δopr(b, e) is not defined, then δopr(b, e) = b∅.
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In plain words, Ws contains all the attack words w such that the observation s′ = P̂(w) can be observed by 
an operator when there is no attack. The set of exposing words We includes all the attack words that are the con-
catenation of a stealthy word w with an event e ∈ Ea such that we is not stealthy. While a stealthy word does not 
expose the presence of an attacker, an exposing word reveals an attacker, but only at the last step.

The following proposition describes the language and the transition function of an operator observer.

Proposition 5  29 Consider a plant G with its observer  Obs(G) = (B,Eo, δobs , b0) . Let Obsopr(G) = (Bopr ,Ea, δopr , b0) 
be the operator observer constructed using Algorithm 2 in Zhang et al.29. The following two statements hold: 

(a)	 L[Obsopr(G)] = Ws ∪We;
(b)	 ∀w ∈ L[Obsopr(G)] : if w ∈ Ws , then δ∗opr(b0,w) = δ∗obs[b0, P̂(w)] ; if w ∈ We , then δ∗opr(b0,w) = b∅. � �

The formal proof of the above proposition can be found in Zhang et al.29 (Proposition 2 therein). The lan-
guage of an operator observer L[Obsopr(G)] is equal to the union of the set of stealthy words Ws and the set of 
exposing words We.

If w ∈ Ws , from the initial state b0 , the state reached in Obsopr(G) by executing w is equal to the state reached 
in Obs(G) by executing P̂(w) . It follows from the fact that in Obsopr(G) events in E− are self-loops, and Obsopr(G) 
updates its states the same way in case of event e ∈ Eins and the corresponding event e+ . If w ∈ We , then state b∅ 
is reached by executing w in Obsopr(G) . This means that the attacker is exposed when the attack word w ∈ We 
is generated.
Joint estimator.  In this subsection we recall the notion of joint estimator and present a characterization of 
its language and transition function.

Definition 6  Given a plant G with set of compromised events Ecom . Let Obsatt(G) = (B,Ea, δatt , b0) be the 
attacker observer, and Obsopr(G) = (Bopr ,Ea, δopr , b0) be the operator observer. A joint estimator is a DFA, defined 
as A = (R,Ea, δa, r0) = Obsatt(G) � Obsopr(G) , where

•	 R = {r = (b, ba) | b ∈ B, ba ∈ Bopr} is the set of states,
•	 Ea = Eo ∪ E+ ∪ E− is the alphabet,
•	 the transition function δa[(b, ba), e] = [δatt(b, e), δopr(ba, e)] if e ∈ Ŵatt(b) ∩ Ŵopr(ba) . Note that, we use 

Ŵatt(b) (resp., Ŵopr(ba) ) to denote the set of active events at state b (resp., ba ) in Obsatt(G) (resp., Obsopr(G)),
•	 r0 = (b0, b0) is the initial state.  	�  �

We point out that, in the joint estimator A, if there exist unreachable states from the initial state r0 , then such 
states should be removed.

For a generic state r = (b, ba) of the joint estimator A, its first element characterizes the state estimation of 
the attacker according to the correct observation, and its second element characterizes the state estimation of the 
operator according to the corrupted observation. Since the attacker observer and the operator observer have the 
same alphabet Ea , according to the definition of concurrent composition, at state r = (b, ba) , event e can occur 
only if such an event is active at state b of Obsatt(G) , and at state ba of Obsopr(G) simultaneously.

The following theorem characterizes the language and the transition function of the joint estimator A.

Theorem 7  29 Given a plant G with its observer  Obs(G) = (B,Eo, δobs , b0) , let Ws and We be the sets of stealthy 
words and exposing words, and A = (R,Ea, δa, r0) be the joint estimator. The following statements hold: 

(a)	 L(A) = L(F ,G) ∩ (Ws ∪We);
(b)	 ∀s ∈ P[L(G)] , ∀f ∈ F with w = f (s) ∈ E∗a : 

	 (i)	 if w ∈ Ws , then δ∗a (r0,w) = (ba, ba) ⇐⇒ δ∗obs(b0, s) = ba , δ∗obs[b0, P̂(w)] = ba;
	 (ii)	 if w ∈ We , then δ∗a (r0,w) = (ba, b∅) ⇐⇒ δ∗obs(b0, s) = ba , δ∗obs[b0, P̂(w)] is not defined. � �

The formal proof of Theorem 7 can be found in Zhang et al.29 (Theorem 1 therein). Since the joint estima-
tor A is obtained as the concurrent composition of the attacker observer Obsatt(G) and the operator observer 
Obsopr(G) that have the same alphabet Ea , then the language of the joint estimator L(A) is equal to the intersec-
tion of their languages. The proof of item (b) follows from Proposition 3, Proposition 5, and the definition of 
concurrent composition.

Problem statement
In this paper we want to provide a tool to establish if an attack function exists, which satisfies two main proper-
ties, namely stealthiness and harmfulness with respect to a given misleading relation. Such properties can be 
formalized as follows.

Definition 8  Consider a plant G = (X,E, δ, x0) with its observer Obs(G) = (B,Eo, δobs , b0) . An attack function 
f is said to be harmful w.r.t. a misleading relation R ⊆ 2X × 2X if ∃s ∈ P(L(G)) with s′ = P̂(f (s)) such that 
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(C (s),C (s′)) ∈ R , where C (s) = δ∗obs(b0, s) (resp., C (s′) = δ∗obs(b0, s
′) ) is the set of states consistent with 

observation s (resp., s′ ). 	�  �

In words, an attack function is harmful if there exists an observation s that can be altered into a corrupted 
observation s′ such that the pair of the sets of consistent states belongs to the misleading relation R.

Definition 9  Consider a plant G with attack language L(f, G), let P be the natural projection, and P̂ be the opera-
tor mask. An attack function f is said to be stealthy if P̂(L(f ,G)) ⊆ P(L(G)) . 	�  �

In simple words, an attack function is stealthy if the set of words that an operator may observe when the 
plant is under attack is included in the set of words that the operator may observe when no attack happens. This 
guarantees that the operator does not realize that the plant is under attack.

To clarify the motivation of introducing the misleading relation R , we present the following example.

Example 10  An operator monitors the plant G = (X,E, δ, x0) to determine if a state in the set of critical states Xcr 
is reached in order to activate protective actions for the plant. An attacker corrupts the operator’s observation 
preventing it from realizing when a critical state is reached.

The above problem can be defined by a misleading relation R = {(X1,X2) | X1 ∩ Xcr �= ∅ and X2 ∩ Xcr = ∅} , 
i.e., there exists at least one word s ∈ P(L(G)) such that C (s) ∩ Xcr �= ∅ (indicating that a critical state may have 
been reached), which can be corrupted into an observation s′ ∈ E∗o such that C (s′) ∩ Xcr = ∅ (implying that the 
operator evaluates that the plant is not in a critical state).

If a critical state has been reached, but the operator does not realize it, then the operator activates no protec-
tive actions, and the system will be seriously damaged. 	�  �

Consider a plant G with set of compromised events Ecom , and a misleading relation R ⊆ 2X × 2X . The main 
contribution of this work is that of constructing an automaton, called supremal stealthy joint subestimator, 
which contains all the possible attacks that an attacker can carry out during the evolution of the system, while 
guaranteeing stealthiness. A procedure to compute a stealthy attack function based on the supremal stealthy 
joint subestimator is proposed. Then it is shown how such a structure allows one to determine if a harmful and 
stealthy attack function exists. This is not only useful to the attacker, but also to the operator. Indeed, it can be 
used to evaluate if the system is robust to attacks in the considered setting.

Supremal stealthy joint subestimator
In this section we first construct the attacker observer Obsatt(G) , operator observer Obsopr(G) , and joint estimator 
A. Then, we show how a joint estimator A should be appropriately trimmed to ensure that all the actions that an 
attacker may implement (erase or insert events) based on it, guarantee stealthiness. The DFA resulting from the 
trimming operation is called supremal stealthy joint subestimator.

Example 11  Consider a plant modeled by a partially-observed DFA G = (X,E, δ, x0) in Fig.  2(a). Let 
Eo = {a, c, d, e, f , g} and Euo = {b} . The observer of the plant is depicted in Fig. 2(b). We assume that Eins = {d} 
and Eera = {a, e, f } . The attacker observer Obsatt(G) is sketched in Fig. 3.

Since a ∈ Eera , and there exists a transition labeled a from state {0} to state {1, 2} in the observer Obs(G), we 
add transitions labeled a and a− from state {0} to state {1, 2} in the attacker observer Obsatt(G) . Similar discus-
sions can be used to clarify the other transitions labeled e− and f− . Since d ∈ Eins , we add self-loops labeled d+ 
at all the states of Obsatt(G) . 	�  �

Example 12  Consider again the plant in Fig. 2. Assume that Eins = {d} and Eera = {a, e, f } . The operator observer 
Obsopr(G) is shown in Fig. 4.

First, since d ∈ Eins , and there exists a transition labeled d from state {0} to state {4} in the observer Obs(G), 
we add transitions labeled d and d+ from state {0} to state {4} in Obsopr(G).

Figure 2.   (a) A plant G; (b) its observer Obs(G).
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Then, since a, e, f ∈ Eera , we add self-loops labeled a− , e− , and f− at all the states of Obsopr(G) . Finally, all the 
missing transitions are added to state b∅ that has no output arc.  	�  �

Example 13  Review the plant G in Example 11, its attacker observer Obsatt(G) and operator observer Obsopr(G) 
are depicted in Figs. 3 and 4, respectively. The joint estimator A = Obsatt(G) � Obsopr(G) is sketched in Fig. 5 
(the reasons for highlighting the states in different colours will be discussed later).

At the initial state ({0}, {0}) , event a ∈ Eera may occur in the plant G, corresponding to transition 
δa[({0}, {0}), a] = ({1, 2}, {1, 2}) . In such a case, both the first and the second element of the state are updated since 
both the attacker and the operator realize the occurrence of such an observable event of G. On the other hand, 
if the attacker erases a, this corresponds to transition δa[({0}, {0}), a−] = ({1, 2}, {0}) . In this way, only the first 
element is updated because the operator cannot observe events in E− . In addition, the attacker may also insert 
d+ before the occurrence of a real event of the plant, corresponding to transition δa[({0}, {0}), d+] = ({0}, {4}) . 
In such a case, only the second element is updated since the attacker realizes that d+ is a fake event. Similar 
discussions can be used to clarify the other states and transitions. 	�  �

Definition 14  Given a joint estimator A = (R,Ea, δa, r0) we define the set of exposing states as 
Re := {r = (ba, ba) ∈ R | ba = b∅} and the set of stealthy states as Rs = R \ Re . 	�  �

An attack word leading to an exposing state reveals the presence of an attacker to an operator observing the 
system’s evolution. Note, however, that there may exist stealthy states from which an exposing state is necessarily 
reached following a particular evolution of the plant.

Example 15  Consider the joint estimator A in Fig. 5 already discussed in Example 13. When the stealthy state 
({6}, {5}) is reached, the plant is in state {6} . At this point, event g ∈ Eo \ Eera may occur in the plant. Since the 
attacker cannot erase event g, then the exposing state ({7}, b∅) is reached. The attacker may try to preempt the 
occurrence of event g inserting an event in E+ = {d+} . However, from ({6}, {5}) inserting such an event also 
yields exposing state ({6}, b∅) . 	�  �

Consider function g : 2Rs → 2Rs defined for all R′ ⊆ Rs as follows:

where

and

In words, the set g(R′) ⊆ R′ is the set of states from which a suitable attacker decision can prevent leaving 
R′ and includes states belonging to two different sets: g1(R′) and g2(R′) . Set g1(R′) includes the states of R′ such 
that, if there exists an observable event e whose occurrence leads outside R′ , then the attacker may cancel it to 
remain in R′ . Set g2(R′) includes the states of R′ that do not belong to g1(R′) , from which it is possible to reach a 
state in g1(R′) inserting a word w+ , and all the states visited generating it belong to R′.

A fixed-point of g is a set Rfix ⊆ Rs such that g(Rfix) = Rfix.
The following theorem shows that function g in Eq. (10) has a supremal (i.e., unique maximal) non-empty 

fixed point.

Theorem 16  Consider a joint estimator A = (R,Ea, δa, r0) with set of stealthy states Rs . Let g : 2Rs → 2Rs be the 
function defined for all R′ ⊆ Rs as in eq. (10). Function g has a non-empty supremal fixed point, denoted in the 
following as Rsf .

(10)g(R′) = g1(R
′) ∪ g2(R

′)

(11)g1(R
′) =

{
r ∈ R′ | ife ∈ Eo and δa(r, e) ∈ R \ R′, then e ∈ Eera and δa(r, e−) ∈ R′

}
.

(12)g2(R
′) =

{
r ∈ R′ \ g1(R

′) | (∃w+ ∈ E∗+) [δa(r,w+) ∈ g1(R
′) and (∀w ≺ w+) δa(r,w) ∈ R′]

}
.

Figure 3.   Attacker observer in Example 11 for the plant in Fig. 2.
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Proof  We preliminarily observe that function g is monotone, i.e., by definition for all R′ ⊆ R′′ it holds that 
g(R′) ⊆ g(R′′) . Thus according to Tarski’s fixed-point theorem32 function g has a unique maximal fixed-point, 
i.e., a supremal fixed-point, that we denote as Rsf  and that can be computed as

in at most |Rs| iterations33.
In addition, one can easily verify that, for all joint estimators A, the set of states reachable without any attack

is a fixed-point of g since the occurrence of an event e ∈ Eo does not lead out of this set: this ensures that Rsf ⊇ R0 
is not empty. 	�  �

In the following, the supremal fixed-point Rsf  of function g is called strongly stealthy region, and it can be 
computed using Eq. (13). Set Rw = R \ Rsf  is called weakly exposing region.

Example 17  Consider again the partially-observed plant G = (X,E, δ, x0) in Fig. 2, where Eo = {a, c, d, e, f , g} , 
Euo = {b} , Eins = {d} , and Eera = {a, e, f } . The joint estimator A is shown in Fig. 5.

Here, exposing states are highlighted in gray, while states in Rw that are not exposing are highlighted in yellow.
To clarify how non-exposing states are added to Rw , let us consider state ({6}, {5}) . There exists a transition 

labeled g ∈ Eo \ Eera that leads from ({6}, {5}) to a state in Rw (in such a case the exposing state is ({7}, b∅) ). This 
is equivalent to say that ({6}, {5}) does not belong to g1(R \ Rw) [Eq. (11)]. In addition, ({6}, {5}) also does not 
belong to g2(R \ Rw) [Eq. (12)] because from such a state it is not possible to reach a state in g1(R \ Rw) adding 
a sequence of events in E+ . Hence ({6}, {5}) /∈ g(R \ Rw) . Once state ({6}, {5}) is reached, following the evolution 
of the plant, an exposing state ( ({6}, b∅) or ({7}, b∅) ) will be necessarily reached.

We notice that state ({0}, {4}) should also be added to Rw because there exists a transition labeled d /∈ Eera that 
leads to state ({4}, b∅) , and there does not exist a transition labeled d+ that leads it to a state not in Rw . However, 
at state ({0}, {4}) , if event a occurs, the attacker can erase it leading to state ({1, 2}, {4}) that does not belong to 
Rw . This means that, at state ({0}, {4}) , if event a occurs, then the attacker can erase it to remain stealthy; if event 
d occurs, then the attacker is discovered, i.e., the stealthiness of the attacker depends on the future evolution of 
the plant.

(13)Rsf =
⋂

k≥0

gk(Rs)

(14)R0 = {(ba, ba) ∈ R | ba = ba} ⊆ Rs

Figure 4.   Operator observer in Example 12 for the plant in Fig. 2.

Figure 5.   Joint estimator A in Example 13.
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At the first iteration of Eq. (13), states ({0}, {4}) , ({6}, {4}) , and ({6}, {5}) are added to Rw ; at the second itera-
tion, states ({5}, {4}) and ({6}, {0}) are added; finally at the third iteration, state ({5}, {0}) is added. 	�  �

Definition 18  Consider a joint estimator A = (R,Ea, δa, r0) with set of stealthy states Rs . Let g : 2Rs → 2Rs be 
the function defined in Eq. (10) and Rsf  be its supremal fixed point. The DFA Â = (R̂,Ea, δ̂a, r0) called supremal 
stealthy joint subestimator of A, is obtained from A in two steps: 

(a)	 Let A′ be the automaton obtained removing from A all states in R \ Rsf  and their input and output arcs.
(b)	 Let R̂ be the set of reachable states in A′ and let Â be the automaton obtained from A′ removing all states 

that are not in R̂ and their input and output arcs. 

	�  �

In simple words Â = (R̂,Ea, δ̂a, r0) is obtained trimming A first removing all states that are not in Rsf  and 
then removing all states that are unreachable from the initial state.

Example 19  Consider again the plant G = (X,E, δ, x0) in Fig. 2 and its joint estimator A in Fig. 5, as discussed in 
Example 17. The corresponding supremal stealthy joint subestimator is shown in Fig. 6. The reason for colour-
ing in green state ({3}, {4}) and marking state ({1, 2}, {0}) with a double circle will be discussed in the following 
section. 	�  �

Proposition 20  The language L(Â) of the supremal stealthy joint subestimator is the set of all attack words that are 
stealthy and can be kept stealthy by a proper action of the attacker, regardless of the future evolution of the plant.

Proof  By definition, a fixed-point of function g is a set of stealthy states of the joint estimator that the attacker can 
make invariant by choosing a suitable action. Correspondingly, the words generated by evolutions that remain 
within such a set can be kept stealthy by the attacker. The fact that set L(Â) contains all such words follows from 
the fact that R̂ is the set of reachable states that belong to the supremal fixed-point of g. 	�  �

Now we discuss the complexity of constructing the supremal stealthy joint subestimator Â.
Let G be a plant with set of states X, the observer of the plant Obs(G) has at most 2|X| states, the attacker 

observer Obsatt(G) has at most 2|X| states, and the operator observer Obsopr(G) has at most 2|X| + 1 states. As a 
result, the joint estimator A = Obsatt(G) � Obsopr(G) has at most 2|X| · (2|X| + 1) states.

In addition, testing if a state of a joint estimator r ∈ g(R \ Rw) has linear complexity in the size of A. Thus, 
the complexity of constructing Â is O(24|X|).

Computing stealthy and harmful attack function
This section consists of three subsections. In “Preempting states” subsection we show how to identify a subset of 
states of the supremal stealthy joint subestimator, called preempting states. In “Selection of a stealthy attack func-
tion” subsection we show how to select a stealthy attack function from the supremal stealthy joint subestimator. 
Finally, in “Existence of a stealthy and harmful attack function w.r.t. a relation R ” subsection we discuss how 
the existence of a stealthy and harmful attack function can be verified by means of the previous subestimator.

Preempting states.  In this subsection we define a subset of the states of the supremal stealthy joint sub-
estimator Â , called preempting states, which are needed to define a procedure to select a stealthy attack function 
from Â.

Figure 6.   Supremal stealthy joint subestimator Â in Example 19.
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Definition 21  Consider a joint estimator A = (R,Ea, δa, r0) with supremal stealthy joint subestimator 
Â = (R̂,Ea, δ̂a, r0) . The set of preempting states of Â is

Define the set of non-preempting states of Â as

	�  �

Recalling the definition of function g2 given in eq. (12), it is straightforward to observe that R̂p = g2(R̂).
Note that a state r ∈ R̂p (namely a state of the supremal stealthy joint subestimator Â ) is preempting if there 

exists an observable event e in the original joint estimator whose occurrence (even if erased) leads out of R̂ 
and this may eventually lead to expose the attacker. However, the occurrence of such observable event e can be 
preempted inserting a suitable sequence of events in E+ so as to reach a non-preempting state.

Example 22  Recall the partially-observed plant G = (X,E, δ, x0) in Fig. 2(a) with joint estimator A in Fig. 5 and 
supremal stealthy joint subestimator in Fig. 6. Looking at Fig. 5 we realize that ({1, 2}, {0}) is a preempting state 
because the occurrence of event c, which cannot be erased, yields exposing state ({3}, b∅) . The preempting state 
is marked with a double circle in Fig. 6. Once state ({1, 2}, {0}) is reached, event d+ should be inserted to reach a 
state that is not preempting.  	�  �

Selection of a stealthy attack function.  In this subsection we show how an attacker may determine 
a stealthy attack function f s given a supremal stealthy joint subestimator. This can be done associating to each 
possible observation produced by the plant a suitable attack word.

The proposed approach is summarized in the following steps. Note that here, given a state r ∈ R̂ , we denote 
as ŴA(r) ⊆ Ea the set of events enabled at r in Â . Furthermore, we denote as W+(r) ⊆ E∗+ the set of words that 
can be generated in Â starting from r and executing a sequence of events w+ ∈ E∗+ that lead to a non-preempting 
state, namely,

Procedure 1  (Compute a stealthy attack function f s from a supremal stealthy joint subestimator 
Â = (R̂,Ea, δ̂a, r0) ).  

	 1.	 Let s = ε.
	 2.	 Select a sequence w+ ∈ W+(r0).
	 3.	 Let f s(s) = w+.
	 4.	 Let r = δ̂∗a (r0,w+).
	 5.	 Wait for the system to generate a new event e ∈ Eo.
	 6.	 E = ∅.
	 7.	 If e ∈ Ŵ

Â
(r) then E = E ∪ {e}.

	 8.	 If e− ∈ Ŵ
Â
(r) then E = E ∪ {e−}.

	 9.	 Select an event e′ ∈ E and a sequence w+ ∈ W+(δ̂a(r, e
′)) and let w = e′w+.

	10.	 Let f s(se) = f s(s)w.
	11.	 Let s = se.
	12.	 Let r = δ̂∗a (r,w).
	13.	 Goto Step 5.

The above procedure can be explained as follows. If no event occurs in the plant, the attacker can insert a 
word w+ ∈ E∗+ , provided that the state reached executing w in Â is in R̂np , namely it is not a preempting state. 
Note that in general the choice of w+ is not unique. Indeed, in Step 2 we select one w+ in the set W+(r0) , which 
in general is not a singleton. In Step 3 we update accordingly function f s , and in Step 4 we compute the new 
current state of Â , denoted as r.

We then wait for the system to generate a new observable event e (Step 5). In this case a new set E is defined 
and it is initialized at the empty set. As specified in Steps 7 and 8, such a set may contain the event e, if e is ena-
bled at r. In addition, it may contain the event e− , if e− is enabled at r. At Step 9 one event e′ ∈ E is selected, as 
well as one word w+ ∈ W+(δ̂a(r, e

′)) . Finally, the corrupted word w is defined as the concatenation of e′ and w+.
Then, function f s is updated accordingly (Step 10), as well as the observation s (Step 11) and the current 

state r of Â (Steps 12). The procedure goes ahead (Step 13) when a new observable event is generated, starting 
again from Step 5.

As discussed in the above procedure, the key feature in selecting a stealthy attack function is that of choosing, 
from the supremal stealthy joint subestimator, attack words that do not end in a preempting state.

(15)R̂p = {r ∈ R̂ | (∃e ∈ Eo) δa(r, e) ∈ R \ R̂ ∧ (e �∈ Eera ∨ δa(r, e−) ∈ R \ R̂) }.

(16)R̂np = R̂ \ R̂p.

(17)W+(r) = {w+ ∈ E∗+ | δ̂∗a (r,w+) = r′, r′ ∈ R̂np}.
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Example 23  Review the plant G = (X,E, δ, x0) in Fig. 2(a). We show how to compute a stealthy attack func-
tion on the basis of the supremal stealthy joint subestimator Â which is sketched in Fig. 6. At the initial state 
({0}, {0}) , since a− ∈ ŴA(({0}, {0})) , the attacker chooses such an action, corresponding to the transition 
δa[({0}, {0}), a−] = ({1, 2}, {0}) . Since ({1, 2}, {0}) is a preempting state, the attacker does not stay there. It chooses 
to insert d+ leading to state ({1, 2}, {4}) . In this way, the correct observation a is altered into the corrupted obser-
vation d. 	� �

Proposition 24  Consider a plant G under attack and let  f : P(L(G)) → E∗a be an attack function.

Function f is stealthy if and only if for all s ∈ P(L(G)) the attack word f(s) can be computed by Procedure 1.

Proof  We denote by A = (R,Ea, δa, r0) the joint estimator of G with set of stealthy states Rs . We also denote by 
Â = (R̂,Ea, δ̂a, r0) the supremal stealthy joint subestimator computed by A using Definition 18.

(If) By construction R̂ ⊆ Rs ⊆ R , i.e., language L(Â) only contains stealthy words and thus any word computed 
by Procedure 1 is stealthy. In addition, a word computed by the procedure yields a non-preempting state r ∈ R̂ , 
i.e., r ∈ g1(R̂) using the notation of Eq. (11). This means that for any observable event e ∈ Eo that the plant can 
generate after s, the procedure will compute a new word f(se) still in L(Â) and thus function f is stealthy.

(Only if) Assume that for a given attack function f there exists an observation s ∈ P(L(G)) such that f(s) can-
not be computed by Procedure 1. Two cases are possible. 

(a)	 If f (s) ∈ L(Â) , then f(s) yields a preempting state and there exists some observable event e ∈ Eo such that 
f (se) ∈ L(A) \ L(Â) , i.e., f(se) yields in A a state not in R̂.

(b)	 If f (s) ∈ L(A) \ L(Â) , then f(s) yields in A a state not in R̂.

This means that attack function f produces an attack word not in L(Â) and hence, by Proposition 20, it cannot 
be stealthy.  	�  �

Existence of a stealthy and harmful attack function w.r.t. a relation R.  In this subsection we 
characterize those cases in which a stealthy attack function that is harmful w.r.t. a certain relation R exists.

Proposition 25  Consider a plant G = (X,E, δ, x0) under attack and let Â = (R̂,Ea, δ̂a, r0) be its supremal stealthy 
joint subestimator. Given a misleading relation R ⊆ 2X × 2X ,  a stealthy and harmful attack function f can be 
selected iff  R̂np ∩R �= ∅ , where R̂np is the subset of non-preempting states in R̂.

Proof  (If ) Assume that, in Â , there exists a state r ∈ R̂np ∩R such that r = δ̂∗a (r0,w) and w = f (s) , where 
s ∈ P(L(G)) , and P is the natural projection. Since r ∈ R̂np , it means that the attack word w does not end in a 
preempting state. Then according to Procedure 1 and Proposition 24, we can conclude that f is stealthy.

Since r = (ba, ba) ∈ R , on the basis of Theorem 7, if w ∈ Ws , then ba = δ∗obs(b0, s) , and ba = δ∗obs(b0, P̂(w)) . 
This indicates that there exists an observation s that can be corrupted into a word s′ = P̂(w) such that 
(C (s),C (s′) ∈ R , where C (s) = ba , C (s′) = ba , and P̂ is the operator mask. According to Definition 8, it 
can be concluded that f is also harmful.

(Only if) Assume that there exists a stealthy and harmful attack function f. Since f is stealthy, according to 
Procedure 1 and Proposition 24, the attack word w = f (s) does not end in a preempting state of Â , thus state 
r = δ̂∗a (r0,w) ∈ R̂np.

Since f is harmful, on the basis of Definition 8, there exists an observation s that can be changed into a cor-
rupted observation s′ such that (C (s),C (s′) ∈ R , where C (s) = δ∗obs(b0, s) , and C (s′) = δ∗obs(b0, s

′) . Accord-
ing to Theorem 7, if w ∈ Ws , then state r = δ̂∗a (r0,w) = (ba, ba) , where ba = δ∗obs(b0, s) , ba = δ∗obs(b0, s

′) , and 
s′ = P̂(w) . Therefore, state r ∈ R . According to the above discussions, state r ∈ R̂np ∩R , i.e., R̂np ∩R �= ∅.

Note that, in the above proofs, we exclude the case that w ∈ We because all the exposing states have been 
removed from Â . 	�  �

Example 26  Consider again the partially-observed plant G = (X,E, δ, x0) in Fig. 2(a), where Eo = {a, c, d, e, f , g} 
and Euo = {b} . Let the misleading relation R = {({3},X) | X ⊆ {0, 4}} . The supremal stealthy joint subestimator 
Â is shown in Fig. 6.

State ({3}, {4}) , highlighted in green, is a harmful state. When such a state is reached following the attacked 
observation, the plant is in state {3} , while the operator thinks it is in state {4} . In such a case, the attack is harm-
ful. In particular, the harmful attack can be realized by first erasing the occurrence of event a, then inserting 
d+ , and finally waiting for the plant to generate event c, so that the correct observation s = ac is corrupted to 
s′ = dc . 	�  �

Conclusions and future work.  The problem of state estimation of discrete event systems under attack has 
been investigated. The joint estimator, which takes into account the state estimation of the attacker in accordance 
with the real observation and the state estimation of the operator in accordance with the corrupted observation, 
is computed as the concurrent composition of two particular structures called the attacker observer and opera-
tor observer. By appropriately trimming the joint estimator we obtain the supremal stealthy joint subestimator, 
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which contains all the attacks that keep the attacker stealthy. According to the definition of preempting state, a 
formal procedure to select a stealthy attack function from such a subestimator is provided. Finally, it is shown 
how to synthesize a stealthy and harmful attack function w.r.t. the misleading relation R.

In the future, on the one hand, we plan to discuss how the proposed procedure may also be useful to an 
operator, in the case that the system is not robust to attack, to prevent the occurrence of certain events, via a 
supervisory control law, in order to enforce robustness w.r.t. attack. On the other hand, we intend to consider the 
case that the attacker only has a partial knowledge of the plant model. It is also interesting to solve the problem 
considered in this paper using Petri nets, which may provide a more efficient solution.
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