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A machine learning‑based SNP‑set 
analysis approach for identifying 
disease‑associated susceptibility 
loci
Princess P. Silva1,2, Joverlyn D. Gaudillo1,2,3*, Julianne A. Vilela4, 
Ranzivelle Marianne L. Roxas‑Villanueva1,2, Beatrice J. Tiangco5,6, Mario R. Domingo3 & 
Jason R. Albia1,3,7

Identifying disease‑associated susceptibility loci is one of the most pressing and crucial challenges 
in modeling complex diseases. Existing approaches to biomarker discovery are subject to several 
limitations including underpowered detection, neglect for variant interactions, and restrictive 
dependence on prior biological knowledge. Addressing these challenges necessitates more ingenious 
ways of approaching the “missing heritability” problem. This study aims to discover disease‑
associated susceptibility loci by augmenting previous genome‑wide association study (GWAS) 
using the integration of random forest and cluster analysis. The proposed integrated framework is 
applied to a hepatitis B virus surface antigen (HBsAg) seroclearance GWAS data. Multiple cluster 
analyses were performed on (1) single nucleotide polymorphisms (SNPs) considered significant by 
GWAS and (2) SNPs with the highest feature importance scores obtained using random forest. The 
resulting SNP‑sets from the cluster analyses were subsequently tested for trait‑association. Three 
susceptibility loci possibly associated with HBsAg seroclearance were identified: (1) SNP rs2399971, 
(2) gene LINC00578, and (3) locus 11p15. SNP rs2399971 is a biomarker reported in the literature 
to be significantly associated with HBsAg seroclearance in patients who had received antiviral 
treatment. The latter two loci are linked with diseases influenced by the presence of hepatitis B 
virus infection. These findings demonstrate the potential of the proposed integrated framework in 
identifying disease‑associated susceptibility loci. With further validation, results herein could aid in 
better understanding complex disease etiologies and provide inputs for a more advanced disease risk 
assessment for patients.

Understanding the emergence and progression of complex diseases incessantly pose challenges to research-
ers due to its intricate and multifactorial nature. These diseases are caused by interplays between genetics and 
environmental factors leading to a plethora of combinations that need to be considered in modeling. From the 
genetics’ aspect, understanding the etiology of complex diseases necessitates an extensive localization of signifi-
cant genomic variations due to its polygenic  nature1–3. Identifying these biomarkers, albeit elucidating only a 
portion of the entire underpinnings of complex diseases, could nevertheless aid in increasing patients’ chances 
of survival by allowing a more personalized and advanced disease risk  assessment4.

A genome-wide association study (GWAS) is the traditional approach employed to discover genetic bio-
markers, i.e. single nucleotide polymorphisms (SNPs), associated with various traits and  diseases5. GWAS has 
been successful in identifying several risk loci for a wide array of illnesses including  cancer6, Type 2 diabetes 
 mellitus7, Crohn’s  disease8, and coronary artery  disease9, among others. However, despite these achievements, 
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GWAS faces limitations due to its individual-SNP analysis approach exacerbated by the high dimensionality of 
genomic datasets. As multitudinous individual association tests are performed, stringent thresholds must be 
adopted to account for error rates leading to underpowered  detection10. This increases the probability of not 
detecting SNPs with small effects that are truly associated with a trait and could significantly contribute to phe-
notypic  variability11. The traditional GWAS approach also fails to capture SNP-SNP interactions as it only tests 
for the marginal effects of SNPs and disregards the variants’ joint contributions to phenotypic expression. These 
interactions require explicit analysis since they are vital in addressing the “missing heritability”  problem12 which 
states that single genetic variations are insufficient in explaining the entire heritability of a trait.

Under the “polygenic paradigm”, refining statistical models, such as increasing sample  sizes13 and reducing 
the number of tests  employed14, is crucial in increasing the chances of discovering true associations. Empirical 
 evidence15,16 has shown that as sample size increases, GWAS continues to yield more novel trait-associated loci. 
However, this approach is not always  feasible14 especially for studies involving small populations and diseases 
with low prevalence. For this reason, it is more viable to reduce the number of tests employed to relax the 
stringent conditions used to consider genomic variants as significant. Existing approaches to this latter strategy 
include haplotype-based association analysis and SNP-set analysis, both of which also address the inability of 
GWAS to capture SNP-SNP  interactions17,18. Haplotype-based  analysis19 accounts for linkage disequilibrium 
between SNPs; while SNP-set analysis, e.g. gene-based20 and pathway-based  analyses21, considers the joint effects 
of variants on phenotypic expression. Aside from addressing the aforementioned GWAS’ limitations, SNP-set 
analysis further permits hypothesis testing on associations possibly existing between wider loci and  traits18. 
However, when this type of analysis groups SNPs based on prior biological knowledge, a study’s success may be 
hampered when information on genetic variations and competitive pathways related to the trait are insufficient. 
To allow a less restricted analysis, it is necessary to explore other methods of forming SNP-sets using information 
independent of a priori biological knowledge.

Machine learning (ML) is an innovative and powerful approach used in solving complex problems in various 
fields and disciplines due to its capability to handle and analyze high-dimensional  datasets22–24. Several studies 
have already demonstrated the usability of ML in genomic  datasets25–27; however, to our knowledge, there is only 
a handful of existing literature discussing its application to SNP-set  formation28–31. These studies employed cluster 
analysis to form SNP-sets in a data-driven manner. This approach could subsequently lead to the identification 
of novel risk loci associated with a  trait31, albeit there may be problems related to computational complexity and 
cost. As genomic datasets are usually of high dimension, it is susceptible to the “curse of dimensionality”32,33, 
a problem that could be addressed by solely clustering the SNPs found in certain genomic regions that are 
known to play a role in trait  development29,30. However, this approach defeats the purpose of performing an 
inclusive analysis as the search for significant biomarkers is restricted by relatively narrow regions. For a more 
varied selection of SNPs to analyze, dimensionality reduction techniques based on random forest (RF) could 
be used to reduce dataset dimensions before conducting cluster analysis. RF has been widely incorporated in 
SNP  research25,34–36 due to its significant properties: (1) a nonparametric nature that allows the establishment 
of predictive models without the need for preliminary statistical assumptions, and (2) the capability to provide 
an importance score, i.e. variable importance measure (VIM) for each SNP, which increases the probability of 
detecting highly relevant biomarkers.

Cluster analysis and random forest have already been proven applicable and effective in genomic data analy-
sis, specifically in identifying predictive and presumably disease-associated  SNPs31,37. However, based on the 
literature review, the integration of these approaches has not been explored on SNP data. This study aims to 
incorporate these two techniques to augment previous GWAS findings and allow the discovery of novel trait-
associated susceptibility loci. The study implements the proposed integrated framework using the following 
three-step algorithm:

1. Dimensionality reduction through RF;
2. SNP-set formation through cluster analysis involving top-ranking SNPs from Step 1 and SNPs considered 

by GWAS to be significantly associated with the trait of interest (termed in this study as ‘GWAS-identified 
SNPs’); and

3. Association testing on the resulting SNP-sets from Step 2.

In Step 1, dimension reduction is implemented using random forest feature selection to circumvent the “curse 
of dimensionality” problem associated with analyzing high-dimensional SNP  datasets35. In Step 2, top-ranking 
SNPs determined from the results of Step 1 and GWAS-identified SNPs are subjected to cluster analysis to 
evaluate shared similarities among the variants and form SNP-sets. Finally, Step 3 involves testing the SNP-sets 
derived from Step 2 for trait-association. The proposed methodology was applied to the GWAS data  by38 wherein 
the phenotype of interest is hepatitis B virus surface antigen (HBsAg) seroclearance, a marker for clearance of 
chronic hepatitis B virus (HBV) infection.

Methodology
This study aims to discover novel trait-associated susceptibility loci through a machine learning-based SNP-set 
analysis approach built on the integration of RF, cluster analysis, and previous GWAS findings. The entire analysis 
is divided into three main parts: dimension reduction, SNP-set formation, and association testing. Figure 1 shows 
the architecture of the proposed integrated framework.

Data description and preprocessing. The data used in this study was adopted from the GWAS con-
ducted  by38 which aimed to identify susceptibility loci associated with HBsAg seroclearance among patients with 
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chronic hepatitis B. The dataset is composed of 1,365,088 SNPs collected from 200 subjects of Korean ethnicity. 
The subjects were further divided into two groups: the cases (n = 100), which consist of patients who had experi-
enced HBsAg seroclearance before the age of 60, and the controls (n = 100) comprising of patients who exhibited 
high levels (> 1000 IU/mL) of HBsAg at ≥ 60 years of age. An additive genetic model was utilized to transform 
the SNP dataset. A SNP marker is encoded as 0, 1, or 2 depending on the number of minor alleles it carries.

Dimension reduction. Dimension reduction is commonly a prerequisite in analyzing SNP datasets as large 
amounts of features impedes the capability of analytical approaches in performing fast and effective analyses. 
In this study, features are only selected for cluster analysis if they were considered by a previous GWAS to be 
statistically significant or if they are one of the top-ranking SNPs as per RF. RF ranks SNPs based on their fea-
ture importance scores which is a measure of the usefulness of a marker in predicting a target variable, in this 
case, trait occurrence. RF has been widely utilized in analyzing SNP data primarily due to its capacity to build 
a predictive model without making any assumptions about the underlying relationship between genotype and 
 phenotype39. In RF, the predictive abilities of multiple decision trees, which are trained on bootstrap samples of 
the data, are consolidated to generate the final output prediction. In addition, randomization is not only induced 

Figure 1.  The architecture of the proposed integrated framework. In Stage 2, SNPs in concentric circles in 
darker shades of gray represent higher-ranking SNPs based on RF. (Image generated using  Canva40).
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by bootstrapping but also introduced at the node level when growing a tree. It selects a random subset of SNPs at 
each node of the tree as candidates to find the best split for the node. In estimating the importance of SNPs, RF 
calculates the Gini importance which quantifies the difference between a node’s impurity and the weighted sum 
of the impurities of the two descendent nodes.

Mathematically, the importance of SNPj is determined by summing the decrease in impurity ( �I ) for all the 
nodes t  , where SNPj is split. The decreases in impurity are weighted by fractions of samples in the nodes p(t) 
and averaged over all trees in the forest. The Gini variable importance is then given by,

where Tk is the number of nodes in the kth tree, p(t) = nt
n  is the fraction of the samples reaching node t  ; and 

v(st) is the variable used in the split st.
Since one round of calculations is not enough to ensure robustness of scores, the Leave-One-Out cross-

validation (LOOCV) strategy was adopted. For each fold in the LOOCV, RF is trained on the (N-1) dataset, 
where N is the number of observations, and a corresponding score (the Gini variable importance) for each SNP 
is calculated. The scores obtained by a SNP for all folds are then averaged and the result would be the final feature 
importance score of that variant. In symbols,

where VIkgini
(

SNPj
)

 is the SNP importance for the jth fold, N is the number of subjects, and SNPi is the final SNP 
score of the ith SNP. The final scores are then used to rank the SNPs. The number of top biomarkers included 
in the clustering process is determined by the researchers as it is already outside the scope of RF. A detailed 
description on how SNPs are ranked is provided in the ‘Appendix’ section.

SNP‑set formation. This study exploited the similarities shared among SNPs to identify novel susceptibil-
ity loci associated with HBsAg seroclearance. The analysis utilized the unsupervised machine learning method 
known as cluster analysis which aims to separate data points into distinct groups such that more similarities are 
shared among objects within the same group than objects belonging to different groups. Similarities between 
SNPs can be quantified in terms of agreement, i.e. based on the occurrence of sequence alterations computed 
via matching coefficients and measures of correlation, or dependence, i.e. based on the presence or absence of 
dependence quantified via measures based on the χ2-statistic41. This study adopts an agreement-based simi-
larity measure by employing the method proposed  in30. This method modified an agglomerative hierarchical 
clustering algorithm with average linkage for continuous data to develop a Hamming distance-based algorithm 
for determining SNP-sets. Hamming distance is a similarity measure used to calculate the number of dissimilar 
components between two categorical data points of the same  size42. Applied to SNP data, the Hamming Distance 
dHAD between SNPs i and j would be,

where n is the total number of subjects and yk is the genotype of the kth subject. The similarity measure was 
adapted on SNP datasets based on the premise that the more individuals carrying the same genotype concern-
ing two given SNPs or two SNP-sets (signified by a relatively small Hamming distance), the more similar the 
variants are and more likely to  cluster30.

Multiple cluster analyses were performed exclusively on GWAS-identified and top-ranking SNPs obtained by 
random forest. As shown in Table 1 Column 2, the number of SNPs analyzed was gradually increased to achieve 
a higher likelihood of discovering novel susceptibility loci. The set of SNPs included in each cluster analysis is 
the union of the 52 significant SNPs from Kim et. al.’s  GWAS38 and the top biomarkers identified by random 
forest (starting from top 1000 to top 5000 SNPs in increments of 1000). Each implementation resulted in can-
didate SNP-sets identified using the following parameters: percentile cut which specifies the height wherein a 
dendrogram will be cut and minimum cluster size which dictates the minimum number of SNPs for all clusters.
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Table 1.  Number of SNPs subjected to cluster analysis.

Cluster analysis experiment ID Number of SNPs included

1 1047

2 2044

3 3041

4 4038

5 5036
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Association test. Hamming distance-based association tests (HDAT)30 were employed to identify the can-
didate SNP-sets significantly associated with HBsAg seroclearance. The presence of association depends on the 
amount of difference in the biomarkers found in cases and controls. Minor alleles were incorporated in the equa-
tions as it reveals more similarities in the genomes of two individuals than common  alleles43. A comprehensive 
discussion of the equations used in HDAT can be found  in30. Permutation test, a non-parametric test used to 
evaluate the statistical significance of a model through randomization, is used to compute the p-value of each 
SNP-set. The test calculates the p-value by permuting the dataset and constructing a test-statistic distribution 
and evaluating the probability that a test-statistic would be equal to or more extreme than the initial computed 
value.

Ethics approval and consent to participate. This study used the data provided  in38 which was a project 
approved by the ethics committees at Korea University Anam Hospital (ED13220) and conducted in agree-
ment with the ethical principles of the Declaration of Helsinki. According to the project’s ethical declaration, all 
patients provided written informed consent for participation and use of their data for research purposes.

Results
Top‑ranking SNPs from dimension reduction. This study used random forest feature selection to 
reduce dataset dimensions prior to conducting cluster analysis. Specifically, random forest was employed to 
rank SNPs based on their feature importance score, a measure which determines a variant’s relevance in mak-
ing accurate phenotype predictions. SNPs are assigned a feature importance score based on the average scores 
for every fold in LOOCV to eliminate bias and ensure robustness. Investigation into the functional significance 
of three of the top five biomarkers ranked by RF led to possible connections between the variants and HBsAg 
seroclearance. SNPs rs28588178 (top-ranking SNP), rs1994209 (3rd-ranking SNP), and rs7958186 (5th-ranking 
SNP) are linked with Cadherin 4 (CDH4), PIG11, and PCED1B, respectively—genes reported to be associated 
with hepatocellular carcinoma (HCC)44–46, a disease that can develop due to the presence of the hepatitis B virus.

Generated SNP‑sets. Upon performing multiple cluster analyses, a total of 108 candidate SNP-sets were 
identified at a percentile cut of 0.9 and a minimum cluster size of 3. SNP-sets with the maximum number of 
SNPs were chosen in cases where there were overlaps to maximize the information obtained from the analyses.

SNP-sets containing SNPs which were considered significant in a previous GWAS were investigated as the 
variants sharing high degrees of similarity with GWAS-identified SNPs may also provide insights into trait 
etiology. As shown in Table 2, SNPs rs2399971, rs2119977, rs6826277, rs35689347, rs1505687, and rs741229 
were grouped with at least one of the variants reported to be significantly associated with HBsAg seroclearance 
(Note: SNPs in boldface are those that obtained a p-value less than  10–4 in Kim et. al.’s  GWAS38). Genes were 
retrieved from  dbSNP47  and38.) No information regarding possible association existing between the latter five 
SNPs and the phenotype of interest was found; meanwhile, the opposite was true for rs2399971. Notably, albeit 
rs2399971 had not reached the cut-off value used in the GWAS performed by Kim et al.38 on the whole study 
population, it was nevertheless found to be significantly associated with HBsAg seroclearance in the subjects who 
had received antiviral  treatment38. Figure 2 shows the dendrogram of the GWAS-identified SNPs together with 
the aforementioned six variants and as presented, the SNPs belonging to the SNP-set which contains rs2399971 
shows the least height differences, indicating that the SNPs in the set are more similar to each other than the 
variants found in other clusters.

Significant SNP‑sets. Hamming distance-based association test (HDAT) was performed on the candidate 
SNP-sets to further identify SNPs possibly associated with HBsAg seroclearance. After performing a Bonferroni 

Table 2.  Cluster memberships of the SNPs that obtained a p-value less than  10–4 in Kim et al.’s  GWAS38.

SNP-set SNPs Genea Chromosome

1 rs1809862, rs10769023, rs10838245, rs2017434, rs2047456, rs7945342, 
rs872751

UBQLNL;
rs7945342
- OLFM5P

11

2 rs2399971, rs10508462, rs2153442, rs4748035 BEND7 10

3 rs2215905, rs2192611, rs199869387, rs887941, rs12464531, rs13018470 – 2

4 rs2119977, rs6826277, rs11931577 – 4

5 rs6749972, rs1558599, rs11891860, rs17584600 – 2

6 rs35689347, rs2173091, rs8037510 AGBL1 15

7 rs6462008, rs6947275, rs6462003

rs6462008
- EVX1, HOXA13;
rs6947275
- HOTTIP, EVX1;
rs6462003
- HOXA13

7

8 rs1505687, rs12620748, rs13382813 rs12620748 and rs13382813
- LINC01246 2

9 rs741229, rs12151705, rs6737829 – 2
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correction for multiple tests, 11 SNP-sets significantly associated with HBsAg seroclearance (p-value < 0.0005) 
were identified, the majority of which (7 out of 11) were found to harbor at least one of the GWAS-identified 
SNPs. Among the SNP-sets obtaining the lowest p-values, the set which obtained the highest test statistic is 
the one composed of rs1809862, rs10769023, rs10838245, rs2017434, rs2047456, rs7945342, and rs872751—all 
GWAS-identified  SNPs38. All these variants reside in 11p15.4, a region that shows a possible correlation with 
HBsAg seroclearance. In a study  by48, it was observed that among hepatocellular carcinoma cases, more than 20 
percent loss of heterozygosity (LOH) was shown for locus 11p, wherein region 11p15 was commonly affected. 
Moreover, a significant correlation was found to exist between LOH on 11p and HBsAg positivity. Specifically, 
results showed that there is a significantly higher frequency of LOH on 11p among hepatitis B virus  carriers48.

Table 3 shows the five significant SNP-sets which do not hold any of the GWAS-identified SNPs (p-values 
were obtained from 10000 permutations). No supporting evidence was found regarding possible associations 
between the individual variants belonging to the five SNP-sets and HBsAg seroclearance. Nonetheless, interesting 
findings were discovered when SNPs were analyzed collectively. Results showed that three out of the five SNP-sets 
in Table 3 harbor SNPs residing in similar genes, i.e. there is a corresponding gene for each distinct set. These 
are the following: (1) LOC105373438 for SNP-set 3, (2) LINC00578 for SNP-set 4, and (3) STOX2 for SNP-set 5. 
 In49, LINC00578 was reported to be a prognostic marker for pancreatic cancer (PC), a disease for which hepatitis 
B has been suggested to be a risk  factor50–52, increasing the likelihood of PC by 24%53.

Discussion
This study aims to discover novel trait-associated susceptibility loci by augmenting previous GWAS findings 
using a machine learning-based SNP-set analysis approach built on the integration of RF and cluster analysis. 
By analyzing SNP-sets instead of individual variants, we increase the chances of discovering other existing true 
associations in two ways. First, by exploiting the similarities shared among the variants, SNPs that are truly 
associated with the trait of interest but which did not pass the threshold of significance can still be detected when 
grouped with statistically significant SNPs. Second, by reducing the unit of analysis into groups, a substantial 
decrease in the number of tests ensues which eliminates the necessity to adopt stringent thresholds used in 
considering a SNP significant. Investigation into the functional relevance of variants found in the same SNP-set 

Figure 2.  Dendrogram of the SNPs listed in Table 2.

Table 3.  SNP-sets obtaining the lowest p-values (excluding those that harbor variants reported by Kim et al.38 
to be significantly associated with HBsAg seroclearance).

SNP-set List of SNPs p-value

1 rs6731235, rs199703414, rs16829541, rs1485096, rs2341849 0.0002

2 rs28365850, rs62625038, rs17102970 0.0004

3 rs59659073, rs10754962, rs2380525 0.0004

4 rs200957040, rs1499880, rs4857702 0.0004

5 rs12644266, rs13130260, rs6815422 0.0001
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containing GWAS-identified SNPs and SNP-sets obtaining significant p-values led to the discovery of loci that 
may also contribute to phenotypic expression yet overlooked by GWAS as a consequence of its individual SNP 
analysis approach. The novelty in our proposed method lies in the GWAS-based and data-driven approach in 
feature selection prior to cluster analyses. This study did not restrict the discovery of susceptibility loci to a certain 
genomic region alone as the criteria for selecting SNPs depend on statistical significance and predictive powers. 
As a result, the resulting SNP-sets implicated a varied selection of genes and cytobands.

The proposed method was applied on an HBsAg seroclearance GWAS  data38 and was able to enhance the 
GWAS findings in two ways. First is through the discovery of SNPs highly similar with GWAS-identified variants. 
As shown in Table 2, statistically significant SNPs tend to cluster together. This acts as justification for further 
investigation of all variants belonging to the sets which contain GWAS-identified SNPs. It is possible that they 
may be false negatives or linked with the phenotype in some way. For example, rs2399971, a variant detected in 
the cluster analyses stage, was not considered significant in the GWAS conducted on the whole study population 
as it did not reach the threshold that was used (obtaining a p-value of 1.05 ×  10–4 wherein the cut-off p-value 
used was 1.00 ×  10–4). Nevertheless, it was found to be significantly associated with HBsAg seroclearance in 
patients who had received antiviral  treatment38. The other way in which the proposed approach has successfully 
enhanced the previous GWAS findings is through the identification of SNP-sets significantly associated with 
the trait of interest. Variants in Table 3 were not considered as statistically significant by the previous GWAS. 
However, since the SNP-sets where they belong showed association with the phenotype upon testing, we could 
say that some, if not all of them, could still be susceptible SNPs. This assumption is based on how HDAT results 
are interpreted as defined  by30. Identifying these significant SNP-sets also allows hypothesis generation not only 
on SNPs but also on other larger biological units such as genes or  cytobands18,29. For instance, gene LINC00578 
and locus 11p15, regions implicated by two of the SNP-sets with the lowest p-values, have shown potential in 
understanding HBsAg seroclearance as both are linked with diseases associated with the presence of hepatitis B 
virus infection. By mapping out these implicated regions and identifying shared susceptibility loci with a well-
researched phenotype, a better understanding of the intricate underpinnings of the trait of interest could be 
achieved. For instance, some of the SNPs associated with height may be considered in understanding the etiology 
of HBsAg seroclearance as 11p15 has been reported to harbor genes responsible for growth and  development54. 
Furthermore, elevations in alanine transaminase (ALT) level, a consideration in declaring HBsAg seroclearance, 
was found to be an important factor for growth impairment in  children55.

Despite the advantages of the proposed method, several issues remain to be resolved. First, the total number 
of SNPs to consider in the clustering process should be optimized in future implementations of the approach so 
that variants possibly associated with the trait but obtaining low feature importance scores could still have higher 
chances of being discovered. Secondly, parameter values would still have to be tuned by utilizing specific measures 
such as gap  statistics56,57 to ensure an optimal number and a more cohesive composition of SNP-sets. Thirdly, the 
type of clustering procedure and association test employed on the SNP-sets should be modified depending on 
the goals of a study. HDAT, the association test used herein, only evaluates whether a SNP-set could distinguish 
different disease phenotypes. It does not determine if there is a presence of interaction in the set and even more 
so if that interaction is significant. Accounting for complex SNP interactions and nonlinear effects would require 
employing a different type of test on the SNP-sets such as the logistic kernel-machine-based test  by18.

Aside from optimizing the settings directly involved in the actual data analysis, another fundamental issue 
that needs to be addressed in this study is the possible presence of population structure in the dataset which 
could negatively affect the clustering results and could lead to spurious associations. Some approaches that could 
be used to correct for this include principal component analysis (PCA) and clustering techniques which utilize 
similarity measures such as the allele-sharing distance (ASD)58. However, the results of these techniques could 
be distorted when there is a large number of correlated markers due to linkage disequilibrium (LD)58. To address 
this problem, one could employ a clustering-based strategy on the SNPs initially in order to minimize the number 
of markers to only the most informative  ones59. Following these premises, a proposed approach that could be 
utilized to avoid unreliable results is to perform clustering on the SNPs first to select representative markers, 
then on the patients to identify subpopulations, and lastly on the variants once again to identify the final list of 
SNP-sets that would then be subjected to the association tests. Although correcting for population structure is a 
prerequisite for any genetic data analysis, it should be proceeded with caution when the dataset being analyzed 
contains only a few observations (small sample size). In these settings, handling population stratification could be 
more complicated than usual especially if statistical power is at  stake30. Mentioned that even though it is intuitive 
to address population stratification first before conducting association tests on the case and control groups of the 
same population, if the stratified populations are only of smaller sizes, then it could just lead to unstable findings.

Conclusion
This study aims to identify disease-associated susceptibility loci by augmenting previous GWAS findings using the 
integration of RF and cluster analysis. The proposed approach was applied to a hepatitis B virus surface antigen 
(HBsAg) seroclearance GWAS  data38. Thereafter, the researchers were able to detect rs2399971, a variant that 
was not considered to be significantly associated with the phenotype in the main GWAS, but which obtained a 
significantly low p-value in a subgroup  analysis38. Results of the association tests conducted on the generated 
SNP-sets led to the implication of gene LINC00578 and locus 11p15. The former was linked with pancreatic 
 cancer49 and the latter with hepatocellular  carcinoma48, diseases associated with hepatitis B virus infection. 
There are three ways in which readers could reinforce their findings using the proposed approach. The first one 
could be done during the dimension reduction phase wherein random forest is employed to identify SNPs which 
are highly predictive of the trait of interest. If a researcher found that the variant they discovered to be associ-
ated with a phenotype is also one of the top-ranking SNPs as per RF, then this could provide strong evidence 
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for follow-up investigations on the said variant. Predictive importance and association do not always coincide 
and so if they do, it could show important promise for clinical translation. The second way that readers could 
reinforce their findings is by looking at the SNP-sets which are significantly associated with the trait of interest. 
By identifying the genomic regions implicated by these sets, further evidence is provided to studies reporting 
on the significance of the said regions on a given phenotype. And lastly, one could check if the variant discov-
ered to be associated with a phenotype belongs to a set which contains GWAS-identified SNPs. For instance, 
SNP rs2399971 was discovered in this study as it shared a high degree of similarity with variants significantly 
associated with HBsAg seroclearance. This somehow  supports38’s finding on the association existing between 
rs2399971 and HBsAg seroclearance on patients who had received antiviral  treatment38. Researchers who aim to 
extend this study could experiment on different supervised learning techniques for feature selection and utilize 
other similarity measures for clustering SNPs. With further investigation and validation, insights gleaned using 
the proposed framework could also be integrated into prediction models to aid in quantifying patients’ risks for 
trait or disease development.

Data availability
The dataset used in this study can be accessed through this link: https:// figsh are. com/ artic les/ datas et/ gtRep ort_ 
txt/ 66149 75. The Python code used for implementing random forest can be found in https:// github. com/ jdgau 
dillo/ SNP- ML. git while the R codes for clustering and association tests are available at http:// homep age. ntu. edu. 
tw/ ~ckhsi ao/ Hammi ngDis tance/ HD. htm.
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