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DefectTrack: a deep learning‑based 
multi‑object tracking algorithm 
for quantitative defect analysis 
of in‑situ TEM videos in real‑time
Rajat Sainju1, Wei‑Ying Chen2, Samuel Schaefer1, Qian Yang3, Caiwen Ding3, Meimei Li2 & 
Yuanyuan Zhu1*

In‑situ irradiation transmission electron microscopy (TEM) offers unique insights into the millisecond‑
timescale post‑cascade process, such as the lifetime and thermal stability of defect clusters, vital 
to the mechanistic understanding of irradiation damage in nuclear materials. Converting in‑situ 
irradiation TEM video data into meaningful information on defect cluster dynamic properties 
(e.g., lifetime) has become the major technical bottleneck. Here, we present a solution called the 
DefectTrack, the first dedicated deep learning‑based one‑shot multi‑object tracking (MOT) model 
capable of tracking cascade‑induced defect clusters in in‑situ TEM videos in real‑time. DefectTrack 
has achieved a Multi‑Object Tracking Accuracy (MOTA) of 66.43% and a Mostly Tracked (MT) of 
67.81% on the test set, which are comparable to state‑of‑the‑art MOT algorithms. We discuss the 
MOT framework, model selection, training, and evaluation strategies for in‑situ TEM applications. 
Further, we compare the DefectTrack with four human experts in quantifying defect cluster lifetime 
distributions using statistical tests and discuss the relationship between the material science domain 
metrics and MOT metrics. Our statistical evaluations on the defect lifetime distribution suggest that 
the DefectTrack outperforms human experts in accuracy and speed.

In-situ transmission electron microscopy (TEM) is a powerful characterization tool that allows direct observa-
tions of dynamic changes in materials under technically relevant working conditions in real-time1. Specifically, 
the Intermediate Voltage Electron Microscopy (IVEM)—Tandem Facility at Argonne National Laboratory (ANL) 
offers unique in-situ TEM studies under simulating nuclear reactor environments with synergistic effects of 
irradiation, temperature, and  stress2. It is well known that irradiation (by high-energy particles such as neutrons 
or ions) can displace atoms, leading to the continual production of cascades of defects. The subsequent agglom-
eration of such defects produces nanometer-size  clusters3. Therefore, a clear understanding of the dynamic 
evolution of cascade-induced defect clusters plays a vital role in developing a comprehensive understanding 
of the mechanisms of irradiation damage for core and structural nuclear reactor materials. In particular, the 
lifetime of unstable defect clusters is one of the decisive factors that governs the equilibrium defect density and 
the onset of void  swelling4. However, the laborious manual defect analysis is a major technical bottleneck in in-
situ irradiation characterization. This technical bottleneck has become an increasingly pressing limitation for 
in-situ irradiation TEM video interpretation, especially as fast cameras are beginning to produce an ‘avalanche’ 
of TEM video data. For instance, ANL’s IVEM can collect 10-megapixel images at up to 313 frames per second 
(FPS), producing gigabytes-to-terabytes of in-situ TEM videos in a single irradiation experiment. Therefore, the 
lack of consistent and reproducible defect analysis methods has profoundly hindered our understanding of the 
dynamic processes of defect clusters evolution and slowed irradiation mechanism discovery.

Filling key gaps in the knowledge base of cascade-induced defect clusters and solving the above challenging 
technical bottleneck requires novel approaches. In recent years, deep learning has demonstrated breakthroughs 
in computer vision-related tasks for automated image and video  processing5–7, and in scientific research (e.g., 
cell  tracking8,9, controlling plasma in  tokamak10). To date, most deep learning-based computer vision applica-
tions to the materials science domain are mainly focused on relatively simple tasks like  classification11,12, object 
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 detection13–15, and semantic  segmentation16–19 of microscopy image data. For high-throughput tracking of cas-
cade-induced defect clusters and their dynamic evolution in in-situ irradiation TEM videos, deep learning-based 
multi-object tracking (MOT)  algorithm20 is a promising approach, yet, has not been realized. MOT is defined as 
the task of predicting the trajectories of the objects of interest in videos or image sequences. The current track-
ing application is restricted to dislocation loop  tracking14 and nanoparticle  tracking21,22 that use two-compute 
intensive separate models for object detection and tracking. The tracking model usually contains a traditional 
computer vision algorithm with a slow rigid feature Re-ID and association method. This two-model strategy is 
not conducive to developing real-time tracking systems as the total runtime is the sum of the runtime of the two 
separate models, where Re-ID model is separately applied to every bounding box detection. To enable high-speed 
real-time tracking, it is necessary to utilize deep learning-based one-shot (simultaneous detection and tracking 
using a shared network) MOT  models23,24 that have demonstrated effective fast-tracking of everyday objects.

Fast in-situ TEM videos of cascade-induced defect clusters pose particular challenges to this object tracking 
task, due to the presence of small  defects25 with inhomogeneous and evolving feature representations. Fig. 1 
showcases cascade-induced defect clusters in an in-situ TEM video snapshot acquired during 1 MeV  Kr2+ ions 
irradiation of a pure nickel at 700° C. This TEM frame contains a high density of defect clusters (320 counts) that 
are relatively small (an averaged size of 7.66 nm or 20 pixels), exhibiting a wide range of feature representations, 
contrast, and lifetimes. For example, the defect clusters in Fig. 1b,e show a sharp interface with a black-and-
white lobe pattern, while in Fig. 1c,d, the interface is not clear. The black-white lobe contrast originates from 
the asymmetrical strain field of defect clusters produced by irradiation. The time-series of the individual Defect 
Cluster#1–3 show that most defect clusters initially exhibit a sharp interface and, in time, their contrast faded 
monotonically and thus their interfaces become unclear. Usually, the defect contrast is much fainter and the 
size is smaller at the end of their lifetime. Moreover, there are cases where the defect cluster suddenly changes 
its appearance and is indistinguishable from the background (outlined by yellow). To quantify the lifetime of 
defect clusters, it is necessary to keep track of the formation, evolution, and annihilation of each defect clusters 
throughout an irradiation experiment. Altogether, the small size, a wide range of feature representations, varying 
lifetimes, and nonlinear changes in the defect contrast make online tracking of defect clusters a challenging task.

In this study, we developed the DefectTrack, the first one-shot end-to-end deep learning-based MOT model 
capable of real-time detecting and tracking of nano-sized defect clusters in in-situ irradiation TEM videos. 
We established an MOT in-situ TEM video training dataset using the standard tracking annotation protocol. 
Several strategies were tested to identify the optimal model and training strategy to track the defects clusters in 
in-situ TEM video data with high fidelity. We performed both the standard MOT metrics evaluation and the 
materials science-relevant defect lifetime distribution evaluation, to thoroughly assess the model performance. 
For materials science domain evaluation, the performance of our DefectTrack in predicting the defect cluster 
lifetime distribution was compared with a group of human experts using statistical tests. Further, we inspected 
the relationship between the MOT metrics and the lifetime distribution statistical test metrics. These evalua-
tions suggest that MOT holds great potential for robust, reliable, and fast defect tracking in in-situ TEM videos.

Figure 1.  Representative defect clusters in a snapshot of an in-situ TEM video acquired during 1 MeV  Kr2+ ions 
irradiation of a pure nickel at 700 °C. (a) An in-situ TEM image frame with 320 defect clusters (green boxes) 
and dislocations (white boxes). (b–e) Individual defect clusters exhibit different contrasts and representations. 
(right). In-situ TEM image series of three selected defect clusters with different lifetimes. The time interval 
between frames marks in blue. In these sequences, the green outlined frames indicate when a defect cluster 
became visible; the red frames outline its annihilated, and the yellow frames mark when the defect clusters 
suddenly appear to be indistinguishable from the background.
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Methods
In‑situ irradiation TEM imaging. An annealed nickel TEM specimen was irradiated at 700ºC with 1 MeV 
krypton ions with a flux of 1.3 ×  1012 ions/(cm2·s) in the IVEM-Tandem facility at ANL, where the microstruc-
tural evolution under irradiation was observed in-situ with a Hitachi-9000 TEM operated at 300 kV. During 
irradiation, the microstructure was video recorded in the dark-field mode with 103 FPS and an image size of 
2048 pixels by 2048 pixels. The pixel resolution is 0.38 nm per pixel. The imaging condition was a two-beam 
dynamical condition with g = 200 near the [011] zone axis using a Gatan OneView camera. A detailed descrip-
tion of the experiment can be found in the authors’ previous  paper26.

Benchmark dataset. Ground truth annotation was carried out in VGG Image Annotator (VIA)27. Prior to 
the annotation, image pre-processing, including drift correction and image normalization, was performed on 
the entire video (Supplementary Sect. 1). Unlike conventional object detection annotation, the MOT annotation 
requires assigning and maintaining unique tracking IDs.

for each defect cluster (bounding box) throughout its lifetime. Figs. 2a,b showcase examples of our ground 
truth annotation of a 1200-frame (2048 × 2048 pixels) TEM video, with each defect cluster labeled and tracked 
by a uniquely colored bounding box and tracking ID. Fig. 2c shows the total number of defects as a function 
of irradiation time in the dataset. Three researchers experienced in radiation defect analysis worked meticu-
lously and iteratively in assigning and validating each label. The ground truth development took about 20 weeks 
(Fig. 2d) and successfully detected 243,052 defect clusters, with 4279 unique defect clusters (i.e., defects with 
the same unique ID) tracked throughout the entire video. This benchmark dataset includes annotated in-situ 
irradiation TEM video following the standard protocol outlined for  MOTChallenge28. One important thing to 
note is that the motion of defect clusters is almost negligible (i.e., only about 2.5 ± 1.1 pixels). Lastly, to facilitate 
the training of DefectTrack, this annotated dataset was divided in the spatial dimension into eight video sequences 
of 1200 frames 1024 × 512 pixels (Supplementary Sect. 2). While dividing an entire video into pieces leads to 
incomplete defect clusters usually located at the frame edges, such defects constituted < 1% of the total defects 
and thus were omitted from the labeling. The resulting eight sequences have a similar number of defect clusters 
and defect cluster tracks (Fig. S2b).

Model network. Fig. 3a presents an overview of our DefectTrack model architecture. We customized the 
 FairMOT24 framework to track defect clusters and obtain a statistically significant measurement of defect clus-
ter lifetime distribution in in-situ irradiation TEM videos. Our DefectTrack utilizes a simple network structure 
consisting of a backbone network with two branches: (1) the detection branch for detecting defect clusters and 
(2) the Re-ID branch to extract the re-ID features for each detected defect cluster. The predictions from these 

Figure 2.  An overview of the ground truth annotation, defect count quantification, and labeling cost. (a) An 
in-situ irradiation TEM video of 1200 frames (9.7 ms/frame) was manually annotated. (b) Illustration of the 
annotation performed on example video frames. Both long-lived (solid lines) and short-lived (dashed lines) 
defects are shown with their unique tracking ID. Defect clusters with a lifetime longer than 980.5 ms are 
considered long-lived. (c) Defect count as a function of irradiation time quantified directly from the annotation. 
(d) Time spent on ground truth manual annotation and validation.
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two branches are passed onto the tracking module for the online track association. As illustrated in Fig. 3b, the 
DefectTrack uses information from past frames to make predictions on the current frame and thus achieve track-
ing. Based on the detections in the first frame (highlighted in magenta), several tracks are initialized. Then the 
detected defect clusters in the subsequent frames are associated with the existing tracklets. It is worth mention-
ing that our DefectTrack is not a simple detection model; instead, it is a tracking model.

Detection and Re‑ID. In this section, we first describe the backbone network, the detection branch, and the 
re-ID branch. We employed a customized High-Resolution  Network29 (HRNet-W18) as the backbone network 
(Fig. 3c). Compared to encoder-decoder methods, which adopt a high-resolution recovery process, the advan-
tage of HRNet-W18 is that it maintains a high-resolution representation throughout the  process29. HRNet-w18 
also outperformed our initial backbone-network candidates (Fig. S3a). The high-resolution feature map out-
puts make it easier to identify the ‘small’ defect clusters that exist in the benchmark dataset. We changed the 
model input image size from W × H × 3 (W = width, H = height in pixels; 3 for RGB channels) pixels to W’ × H’ × 1 
(W’ = 8/15  W, H’ = H/2; 1 channel for grayscale images). Since the in-situ TEM video frames are grayscale 
images, the convolution kernel size of the first layer was changed from 3 × 3 × 3 to 3 × 3 × 1 as the original algo-
rithm is built for prediction on everyday RGB images with MOTChallenge standardized image sizes. DefectTrack 
performs detection and re-ID30,31 on high-resolution feature maps of stride four meaning the output feature 
map size is W’/4 × H’/4. Traditional object detectors use a large output stride of  1632. Different from conven-
tional detection methods, the detection is performed by an anchor-free method that formulates object detection 
as a key-point estimation  problem33. The high-resolution feature map output from the backbone network is 
appended with three parallel heads in the detection branch (Fig. 3d) to estimate the object-center, center-offsets, 
and box-sizes24,33. These three pieces of information are combined to predict the defect cluster position and 
size. Lastly, non-maximum  suppression33 and confidence thresholding were applied to make the final predic-
tion. The object confidence score is calculated based on the object heatmap  score33. For details of the detection 
framework  see33. For re-identification (Re-ID), the goal is to generate re-ID features that have similar affinity for 
the same defect cluster across time and lower affinity for different  ones30. To generate the re-ID features, a con-
volution layer with 128 kernels was applied to the high-resolution output from the backbone network to extract 
a 128-dimensional vector for each position in the heatmap (W’/4 × H’/4). DefectTrack learns re-ID features like 
a classification task and essentially encapsulates the appearance of defect clusters that is updated in successive 
 frames24. As shown in Fig. 3e, each detected defect cluster is described by a re-ID vector, and by comparing the 
similarity of re-ID vectors of the detected defect cluster in the current frame with the one in the previous frames 
using cosine  distance24, defect clusters with the same identity can be associated across frames.

Figure 3.  Overview of our DefectTrack model network. (a) DefectTrack architecture. (b) Schematics of how 
DefectTrack achieves tracking via detection and tracklets association. (c) The neural network architecture of the 
backbone network. (d) DefectTrack’s detection branch. (e) DefectTrack’s core tracking module.
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Multiple object tracking. DefectTrack’s tracking function is realized by utilizing defect detection, re-ID features, 
bounding box spatial overlap, and visual tracking. To perform tracking, we first initialize the tracklets based 
on the detections in the first frame. Then, the operation of the tracking module can generally be divided into 
two levels. Fig. 3e illustrates the first level of tracking (also the core tracking method), which links the defect 
clusters into tracks based on the cosine distances between the Re-Id features and the spatial overlap via bipartite 
 matching34. Here, spatial overlap (Fig. 3e) is the intersection over the union (IoU) of two bounding boxes at 
frames t‑1 and t. In addition, Kalman  filter35 is used to predict the location of defect clusters in future frames 
and obtain appropriate defect tracklets. Overall, we combine re-ID features, spatial overlap, and Kalman filter to 
perform the first-level multi-object tracking. For further details of the online association step  see24.

The second level of tracking, which we refer to here as visual tracking, was added to mitigate missed detec-
tions, which are known to be challenging to handle and often lead to poor tracking  performances36. This problem 
of missed detection can be severe when the object of interest is small (< 32 × 32 pixels)25. Our defect clusters have 
an average size of 20 × 20 pixels. Additionally, defects that undergo sudden appearance changes are likely to be 
missed by the detector, no re-ID feature is generated, and fails to be tracked further. The original implementa-
tion trained to track humans failed to capture the characteristics of the cascade-induced defect clusters, such as 
decreases in contrast and size over their lifetime, sudden termination, shot noise, and dynamic changes in local 
TEM diffraction conditions. Thus, we designed a second level of tracking inspired by Bochinski et al.’s visual 
 tracking36. Here, visual tracking is performed only in the forward direction. Fig. 4 demonstrates the basic prin-
ciple of the visual tracking process. In Fig. 4a, tracking predictions of defect cluster ID#2 is fragmented (Fig. S5) 
due to missed detections, and for ID#3, the same defect cluster is identified with multiple IDs# 3, 4, and 5 also 
called ID Switch (IDSw) (Fig. S5b). To correct such cases, the visual tracker intelligently fills in the missed detec-
tions resolving IDSw by propagating the missing information into future frames. During tracking visual tracker 
is activated if a defect cluster in the current frame does not satisfy a spatial overlap threshold (σIOU) of 0.8 with 
previous detections. If this criterion is met within tVIOU (10) frames, the tracks are merged, and missed detec-
tions are interpolated. Otherwise, visual tracking ends for that defect cluster. As shown in Fig. 4b, this tracking 
procedure retrieves the missed detections, enabling the tracking of long-lived defect clusters and reducing the 
number of IDSw and track fragmentations. Collectively, the two levels of tracking resulted in uninterrupted 
and accurate defect cluster tracks (Fig. 4c). Moreover, we applied two additional criteria to the visual tracker to 
mitigate the problem of false-positive  tracks36,37. First, a minimum track length criterion was applied to remove 
defect cluster tracks that last fewer than tmin (2) frames. These short tracks are primarily due to false-positive 
detections and could skew the defect clusters’ lifetime distribution. Second, each defect cluster track is required 
to contain at least one detection with high detection confidence score of σh (0.6).

DefectTrack was trained on the in-situ TEM video data, and the best model was selected based on the per-
formance of the validation sets using the k-fold (eight-fold in our case) cross-validation  technique38. We report 
the test set performance and further evaluate the model  stability39 among different combinations of the divided 
dataset. Details of model selection, training procedure, and implementation see Supplementary Sect. 3.

Performance evaluation and lifetime distribution assessment. In this work, we evaluated detec-
tion using the four commonly used detection metrics: precision, recall, Average Precision (AP), and F1-score. 
The tracking performance was assessed using the widely accepted MOT  metrics40–42. In particular, we used 
the evaluation metrics such as Mostly Tracked (MT), Multi-Object Tracking Accuracy (MOTA), Multi-Object 
Tracking Precision (MOTP), IDF1, and ID switches (IDSw) to assess the tracking performance metrics. Among 
these, MT, MOTA, and IDF1 were monitored to inform tracking performance during training. For details of 
the detection and MOT metrics, see Supplementary Sect. 4. In addition to the machine learning MOT metrics 
above, we compared the predicted lifetime distribution (by the DefectTrack and by Human Experts) with the 
ground truth lifetime distribution and evaluated the similarity of the two sets companions using statistical tests, 
including the Kolmogorov-Smirnov43 and the Chi-Square44 tests. The four experienced human experts who 

Figure 4.  Schematics of the second level of tracking with a visual tracker. (a) An example of tracker prediction 
after the first level of tracking. Some defect cluster tracks are fragmented mainly due to missed detections (False 
Negatives) and it increases the chances of identity switches (ID SW: ID#3, 4, 5 are assigned to the same defect 
cluster). (b) The correction of missed detections by the visual tracker. Corrected missed detections are outlined 
in yellow. (c) The final output of DefectTrack shows uninterrupted and accurate tracking of three defect clusters 
with unique IDs throughout their lifetime.
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participated in this study have more than 5 years of experience in radiation defect analysis. The description and 
interpretation of the two statistical tests are detailed in Supplementary Sect. 5.

Results and discussion
Detection of defect clusters. Robust and accurate detection is essential to reliable tracking of defect clus-
ters in a video. Instead of training the entire DefectTrack directly on its tracking function, we found that train-
ing the network first on defect cluster detection promoted the overall performance and subsequently reduced 
the tracking training complexity. Specifically, after obtaining a preliminary detection model (Supplementary 
Sect. 3), we worked on identifying the sources of detection errors and mitigated their effects. Within a couple of 
iterations, we achieved an excellent detection performance. Below, we first report the performance of the Defect‑
Track’s standalone detection (no detection information from past frames is used to make detections on the future 
frames), and then discuss the sources of detection errors and their mitigation.

Considering that the calculation of detector performance depends on the IoU threshold, rather than tak-
ing the IoU = 0.5 as used in the computer vision  challenges45, we surveyed the AP and F1 as a function of IoU 
(Fig. S4). For our small defect clusters (lower total area), the computed IoU is sensitive to the bounding box 
parameter prediction (i.e., position and size). A minute but reasonable shift in the box parameters by a couple of 
pixels significantly alter the IoU value, affecting AP and F1. F1 and AP decrease with increasing IoU threshold 
(Fig. S4). In this work, we set the IoU threshold to 0.3 for two reasons: (1) a lower IoU threshold works better for 
the small defect clusters in our in-situ TEM videos, and (2) it accommodates better the evolving and sometimes 
not well-specified defect size as the defect clusters are evolving during ion irradiation (Fig. 1). Table 1 summarizes 
the standalone detection performance of the DefectTrack over the eight test sets: AP of 78.41 ± 4.16%, F1-score of 
79.38 ± 3.33%, Precision of 77.97 ± 4.17%, and Recall of 80.99 ± 4.023%. While most current SOTA models on the 
 MOTChallenge28 do not report their standalone detection performance, we interpolated their detection accuracy 
from their tracking results, the F1-scores of the top two MOT models GMOTv2 and  TransCenter46 are 88.32% 
and 78.90%,  respectively7. Despite the interpolated detection performance of tracker being much higher than 
the actual standalone detection performance, as they have access to information from the past video frames to 
make better detections, the F1-score of our standalone detector (F1 = 79.38%) is comparable to the interpolated 
detection performance of these SOTA models. Moreover, when compared with dedicated detectors, which are 
applied to the “small objects”25, our DefectTrack’s standalone detector (AP = 78.41%) well outperforms the recent 
FairMOT detectors using HRNet-w18 (AP = 51.10%), and the DLA-34 (AP = 46.80%)24.

To inspect DefectTrack’s detection performance, we generated a color-coded confusion matrix (TP in tur-
quoise, FP in red, and FN in yellow) for each predicted defect cluster in TEM video frames. Figs. 5a–e illustrate 
examples of our detections visualized directly on the video frames. Remarkably, the detector correctly identifies 
most small defect clusters (TP in Turquoise) with different appearances (e.g., defects with a visible interface and 
no clear interface in Fig. 1). We think this detection performance is attributed to the combination of training 
optimizations carried out to achieve the lowest generalization error and the use of the HRNet that utilizes higher 
resolution feature maps that are spatially precise and semantically robust in detecting smaller  objects24,47. Even 
for regions with a relatively high defect density (e.g., region D1 in Fig. 5b), the defect cluster location and size 
are correctly predicted. Because the defect clusters are small and require spatially accurate predictions to obtain 
high IoU values, our choice of the anchor-free detector (Fig. 3d) leads to better location and size predictions. 
This ability of DefectTrack in resolving defect clusters’ centers with high accuracy will later benefit the extraction 
of the re-ID feature for tracking. In addition, our implementation of image augmentations further increased the 
F1-score by 5.76% (Fig. S3c), as it works by expanding the range of feature possibilities such that the dataset can 
capture various corner and edge cases.

To analyze the source of detection errors, we first examined the missed detections (FN). As shown in Fig. 5a–e, 
the FN detections (yellow boxes) in the comparison maps suggest the errors are mostly related to defect clusters 
with considerably weak contrast. Compared to these weak-contrast defects, the defect clusters with sharp con-
trast (indicated by turquoise arrows) were detected with high confidence. However, during their lifetimes, most 
defect clusters exhibit significant modifications in size and contrast, due to growth and recovery and changes in 
local TEM diffraction  conditions48. This dynamic evolution of defect clusters might lead to missed detections 
in some frames even though it is tracked for most frames (Fig. S5a). We then modified the pixel-wise logistic 
regression with designed focal loss (α = 3, β = 5) to handle these weak-contrast defect  clusters33. The focal loss 
works by dynamically scaling the loss based on the detection confidence scores. It weighs the harder (low confi-
dence) to detect defect clusters more than the easier (high confidence) ones and improves the overall detection 
performance. Although some defect clusters with uncommon feature representations were still missed, without 
generating additional training data (which is expensive), a 4.35% gain in recall was achieved through this loss 
function modification.

Table 1.  DefectTrack’s standalone detection performance. Average detection performance sets for eight-fold 
cross-validation and the overall standard deviation across all image sequences are presented here. Note that up 
arrows indicate that the higher the score the better the model performance. For details of the detection metrics, 
see Supplementary Sect. 4.

Model detection performance F1 ↑ AP ↑ Precision ↑ Recall ↑

Eight-fold cross-validation 79.38 ± 3.33 78.41 ± 4.16 77.97 ± 4.17 80.99 ± 4.02
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Lastly, we analyze the source of the false detections (FP), marked by red boxes in the comparison maps in 
Fig. 5a–e. We found that most FP predictions have a lifetime of one to two video frames. Some FP detections 
can be attributed to the background noise that causes random intensity fluctuations in TEM images that look 
resemble a white–black lobe pattern. Other FPs (e.g., marked by red arrows in Fig. 5a–c) are found to contain 
high-intensity pixels and are along the image edge boundaries (red arrows in Fig. 5d–f). Since the size of these 
defects is small, a slight fluctuation in the areal intensity can be confused as a defect cluster, and thus leads to 
FPs. Nevertheless, considering that DefectTrack’s standalone detector performance is already close to the SOTA 
interpolated detectors, we decided to halt further detector optimization, and treat the FP and the remaining FN 
errors in subsequent tracking training. Specifically, as Re-ID and visual tracking can access the detection infor-
mation from past frames, we expect to use them to reduce detection errors. These further mitigation strategies 
are discussed in the following tracking section.

Tracking of defect clusters. In this section, we focused on training the DefectTrack on tracking the defect 
clusters in the in-situ TEM video dataset. By using the model trained first on defect detection, we then jointly 
trained the detector and Re-ID branch. Collectively, our DefectTrack demonstrates a competitive tracking per-
formance. Below, we first summarize the tracking performances and then discuss the steps taken to achieve 
this performance. Table 2 summarizes the averaged tracking performance over the eight test sets. An MT of 
67.81 ± 2.07%, MOTA of 66.43 ± 2.32%, and IDF1 of 57.38 ± 1.81% were obtained. In the recent MOTChallenge, 
the SOTA MOT models GMOTv2 reported an MT of 72.1%, MOTA of 72.9 ± 13.4%, and IDF1 of 69.2 ± 12.1%, 
while  TransCenter46 has MT of 48.4%, MOTA of 57.2 ± 22.2%, and IDF1 of 46.4 ± 14.8%28. When compared 
to DefectTrack’s tracking performance, it is evident that our model performance is competitive. Another key 
feature of a good tracker is model stability. In particular, the model performance is robust to training-test data 
partitioning. We found that the standard deviation of MOTA of DefectTrack is small (± 2.32%), when compared 
to GMOTv2 (± 13.4%) and TransCenter (± 22.2%)28. This suggests that our model is quite stable. While image 
contrast varies in different divided video sequences (Fig. S2) derived from one TEM video, we think this contrast 
variation is largely mitigated by the variance normalization applied. Thus, proper image pre-processing applied 
prior to model training is beneficial to enhancing model stability.

Fig. 6a illustrates DetectTrack’s tracking performance on a representative 256 × 256 pixels section of the test 
set. The color of a bounding box remains unchanged as long as the defect cluster is tracked with the same ID (i.e., 
the defect cluster is accurately tracked). As shown in the prediction overview in Fig. 6a, most of the bounding 

Figure 5.  DefectTrack’s standalone detector performance. (a–f) Examples of the detector performance 
visualized in selected in-situ TEM video frames with color-coded confusion box-map comparison: true positive 
(turquoise), false positive (red), and false negative (yellow). Detection is presented here at video frames with 
a time interval of 1941.7 ms. Turquoise arrows indicate defect clusters with high detection confidence. Yellow 
arrows mark representative defect clusters with considerably weak contrast and are occasionally missed by the 
detector. Red arrows mark the misidentified defect clusters.

Table 2.  DefectTrack’s multi-object tracking performance. Average tracking performance and standard 
deviation on the eight test sets are presented here for eight-fold cross validation. Note that the up arrows 
indicate the higher the score the better the tracking performance, and vice versa. For details of the MOT 
metrics, see Supplementary Sect. 4.

Model performance MT ↑ MOTA ↑ IDF1 ↑ ID Sw. ↓ FPS ↑

Eight-fold cross validation 67.81 ± 2.07 66.43 ± 2.32 57.38 ± 1.84 89 ± 12 28
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boxes maintain the same color throughout the video. This suggests that DefectTrack can successfully track defect 
clusters with different defect representations and lifetimes at the individual defect level. Specifically, in Fig. 6a, 
short-lived (S1), medium-lived (M1), and long-lived (L1) defect clusters are highlighted to demonstrate that our 

Figure 6.  Visualization of the DefectTrack’s multi-object tracking performance on a representative test set. (a) 
Cropped 256 × 256 video frames from the DefectTrack prediction on the test set with a time interval of 291.3 ms 
(30 frames). The tracked defect clusters are marked with a bounding box and unique tracking IDs in the video 
frames. The bounding box color is encoded based on its tracking ID. (b) Representative example of individual 
defect clusters tracked by the DefectTrack. The time interval between frames is indicated by blue text inside 
the bracket. (c) DefectTrack predicted defect cluster tracks. The start of the bar indicates defect formation, the 
length is the lifetime, and the end of the horizontal bar marks the annihilation of defect clusters during in-situ 
irradiation. Note that only defect clusters with a lifetime greater than 600 ms are shown here for clarity.
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model can consistently track defect clusters with different lifetimes. In Fig. 6b, time series prediction is shown for 
the three defects. These tracked defects can be better visualized in Fig. 6c. Each horizontal bar represents a defect 
cluster and only defect clusters having long lifetimes greater than 600 ms are visualized. In short, our DefectTrack 
successfully tracked defect clusters with lifetimes ranging from 19.4 ms (2 frames) to 6,411.7 ms (660 frames).

Moreover, DefectTrack achieved a high average IDF1 of 58.74% (GMOTv2 IDF1 = 69.2%, TransCenter 
IDF1 = 46.4%)28 and a low average ID switch (IDSw) of 89 (GMOTv2 average IDSw = 421, TransCenter average 
IDSw = 1123)28. This means our model can accurately maintain the same ID during defect cluster tracking. Only 
in limited cases, as demonstrated by low IDSw, wrong ID assignment occurs even though an average of 30,381 
defects clusters are encountered per video sequence (Fig. S2b). As marked in Fig. 6b, the tracking is activated 
(green frames) immediately after the defect cluster is first detected. Then, the re-ID branch encodes the defect 
appearance and is updated every frame. However, due to sudden change in defect appearance and/or weak defect 
contrast, some defect clusters are missed (outlined with yellow boxes in Fig. 6b) by the detection branch, and thus 
neither a re-ID vector is generated, nor a bounding box is predicted. This change in appearance is particularly 
obvious for the defect cluster S1. For such a case, the visual tracking is then activated. With the addition of visual 
tracker on the original algorithm, a significant performance gain is achieved, e.g., MT (up 18.29%), MOTA (up 
12.67%), and IDF1 (up 6.10%). Furthermore, the DefectTrack successfully handles defect cluster tracking in dense 
defect regions like the T1 yellow dashed box in Fig. 6a). To precisely track defects in such scenarios, extracting 
accurate re-ID features is of utmost importance. As ambiguous re-ID features lead to track fragmentation (low 
MT), IDSw, and premature defect track termination. For this reason, we adopted an anchor-free detector in the 
DefectTrack and the HRNet-w18 for high-resolution representations, leading to robust re-ID features and precise 
defect cluster position and size prediction.

One remaining issue in model performance is related to the false positives. These errors can adversely affect 
the defect cluster lifetime distribution measurement. In our case, most false-positive predictions are single-frame 
detections that do not form defect tracks. For multi-object tracking, it is more important to track defects that exist 
in multiple frames. To enable tracking of long‑lived objects MOT algorithms apply a threshold on the number 
of frames an object (defect clusters in our case) should be detected before they are  tracked21,24,36. To repeat, we 
alleviated the issues of FP defect clusters (Fig S5c) by setting the minimum track length (tmin) to two frames and 
defect tracks by requiring at least one defect in the track to have a high confidence score (σh) of 0.6. In sum, the 
design of two-level tracking module of DefectTrack works in tandem and mitigates challenges posed by false 
positives and missed detections, leading to excellent tracking performance.

Comparing defect lifetime distribution between DefectTrack and human experts. Standard 
MOT metrics are fundamentally different compared to materials science evaluation metrics. While DefectTrack 
processed the entire dataset in 57.14 s on NVIDIA QUADRO RTX 6000 GPUs, it took the human experts an 
average of 5.25 h to track 1/10 defect clusters (Fig. S6). For practical application to the materials science domain, 
it is necessary to also assess how well the model output captures actual physical phenomena. In our case, defect 
lifetime distribution is a crucial measure to understand defect evolution under irradiation  conditions48. Under-
standing the relationship between this distribution and MOT metrics could help guide and determine the end 
goal of model training. Below, we first compare DefectTrack’s performance in predicting the defect lifetime distri-
bution with that of human experts using the Two-sample Kolmogorov–Smirnov (KS)  Test43 and the Two-sample 
Chi-Square  Test44, and then discuss the relationship between the evaluation metrics (machine learning vs. the 
material science domain) for defect cluster lifetime distribution prediction.

In the two-sample KS test, we test the null hypothesis that the predicted defect lifetimes (whether by Defect‑
Track or human experts) and the ground truth defect lifetimes are drawn from the same distribution. Table 3 
lists the KS test results for the defect lifetime distribution prediction made by the model with that of four human 
experts, including the KS test statistic (D) and corresponding p-value. The p-value is a statistical measure that 
estimates the probability of obtaining the observed test results assuming that the null hypothesis is true (details 
see Supplementary Sect. 5). We note that at significance level α = 0.05, we can reject the null hypothesis for 
humans 2 and 4 since the p-value is less than α , and conclude that there is a statistically significant difference 
between the ground truth lifetime predictions and the predictions made by humans 2 and 4. In the case of Defect‑
Track and human experts 1 and 3, we cannot reject the null hypothesis. Note that although the test statistic D 

Table 3.  Kolmogorov–Smirnov test results for comparing the defect cluster lifetime distribution predicted 
by DefectTrack and human experts measurements with the ground truth. N is the sample size, i.e., the total 
number of tracked defect clusters. DefectTrack‑1 and DefectTrack‑2 are results of the Kolmogorov–Smirnov test 
performed by random sampling of 150 defect clusters from the total predicted by DefectTrack.

Prediction Test Statistic (D) P-Value ↑

DefectTrack (N = 4378) 0.018 0.488

DefectTrack‑1 (N = 150) 0.065 0.541

DefectTrack‑2 (N = 150) 0.065 0.547

Human Expert 1 (N = 150) 0.077 0.336

Human Expert 2 (N = 150) 0.141 0.005

Human Expert 3 (N = 150) 0.056 0.725

Human Expert 4 (N = 150) 0.150 0.002
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(0.018) is the smallest for DefectTrack, it does not have the highest p-value. This is because the large sampling size 
or total defect clusters tracked by DefectTrack (4378) requires a relatively lower D to achieve the same p-value 
as the human experts who only tracked 150 defect  clusters44. While it is not in general appropriate to compare 
p-values, in this case, it is useful to note that DefectTrack achieves a higher p-value than human experts despite 
having a much larger sample size. For DefectTrack, the p-value is 0.488, which is much higher than human 
experts 1, 2, and 4; only human expert 3 has a higher p-value of 0.725. Considering that the much larger sample 
size of DefectTrack makes any differences between the empirical cumulative distribution functions (CDFs) more 
statistically significant, the lack of statistical significance observed by the KS test suggests that DefectTrack’s 
predictions match well with the ground truth. Fig. 7a presents the empirical CDF of defect lifetimes according 
to the ground truth, DefectTrack, and four human experts. It is clear that DefectTrack prediction closely follows 
the ground truth. We performed additional KS tests with smaller sample sizes by randomly selecting 150 defect 
clusters from the DefectTrack prediction with replacement (Table 3 and Fig. S7). The new p-values of 0.541 and 
0.547 for two such random samples are consistent with the earlier result. In short, DefectTrack can predict the 
defect lifetime distribution much better than three out of the four human experts. Furthermore, the results in 
Fig. 7a show a wide variation among the lifetime distributions measured by human experts. This suggests that 
automated and robust techniques can remove subjectivity in the analysis of TEM images. To summarize, Defect‑
Track outperforms human experts at quantifying the defect lifetime distribution.

We also assessed the similarity between predicted and ground truth histograms, using the Two-sample 
Chi-Square Test (a binned test)44. This test is important because defect lifetime distribution data is commonly 
described by  histograms48. First, we discuss the design of the test. In order to make a fair comparison and to 
accommodate: (i) the small number of defects tracked by human experts, and (ii) the shorter lifetimes of defects 
tracked by human experts 1 and 3 (with the longest lifetime of 2400 ms), we adopted the two-sample chi-square 
test for  shape44 (i.e., make use of normalized histograms), and only compared the distribution of defect clusters 
with a lifetime of less than 2400 ms. Fig. 7b shows the raw defect lifetime count histogram with a lifetime of 0 to 
2400 ms (Fig. S8a shows the entire lifetime histogram comparison). The number of defects predicted by Defect‑
Track and in the ground truth for each bin is 20 to 30 times higher than that of human experts. A common rule 
of thumb for the chi-square test is to have a minimum bin count of 5. To accommodate this, for a given histogram 
bin width we also applied a corresponding lifetime cut-off to remove bins with lower counts corresponding to 
longer lifetimes, so that all bins have a count of at least 5. To emphasize, tracking defects with a long lifetime is 

Figure 7.  Comparison of the defect lifetime distribution prediction by DefectTrack and by Human Experts 
with the ground truth. (a) The cumulative distribution functions (CDF) of defect lifetime distribution of 
ground truth, as predicted by DefectTrack, and four human expert measurements. (b) Histogram showing the 
true lifetime distribution, DefectTrack prediction, and Human Expert measurements. (c) Normalized lifetime 
histogram. 93.4% of ground truth was included in the comparison after lifetime cutoffs. (d) The calculated 
distribution-difference (Dist. Diff.) for different bin widths (Fig. S7 and Table S2). The black arrow points to 
the bin widths at which DefectTrack has the lowest distribution-difference. Note the distribution-difference 
comparison can only be made for each bin width, and not across bin widths. (e) The correlation between the 
calculated distribution-difference (Dist. Diff.) on the y-axis and the MOT tracking performance evaluation on 
the x-axis.
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important because the statistical distribution of lifetime can be used to infer the nature of the defects such as 
interstitial dislocation loops, vacancy dislocation loops or stacking-fault tetrahedra as the stability of different 
defect clusters  differs48–50. DefectTrack is capable of tracking defect clusters with a lifetime of up to 6411.7 ms 
or 661 frames (Fig. S8a). In contrast, manual tracking, which is inherently error-prone and laborious, human 
experts can only analyze a reasonable number of frames (~ 2400 ms; 97 frames). Long-lived defect clusters are 
likely missed in manual analysis, skewing the distribution to shorter lifetimes.

In this work, in addition to using the Chi-Square test statistic to determine statistical significance (p-value), 
we also use it to compare the substantive significance (effect size) of the results in our analysis. We use the term 
“distribution-difference” to refer to the Chi-Squared test statistic to emphasize that the comparison is being made 
under the same degrees of freedom, and in the equal sample size setting via normalized histograms so that the 
effect size varies monotonically with the test statistic (Details see Supplementary Sect. 5). Fig. 7c presents a nor-
malized lifetime histogram with a cut-off at ~ 1600 ms. The bin width was determined using the Doane  method51, 
and 93.4% of the ground truth data is included in the comparison. It is well known that the bin width used to per-
form the Chi-Square test can significantly affect the Chi-Square statistic ( χ2 ) value, and this is indeed observed in 
our calculated distribution-difference (Fig. 7d). Hence, we computed the distribution-difference for histograms 
with various bin width determination methods such as  Doane51, Freedman-Diaconis (FD)52,  Stone53,  Scott54, and 
 Rice55 to check this influence (Fig. S8b–e and Table S1 and S2). Additionally, we selected bin widths that are fac-
tors of 2400 ms. A low χ2 statistic corresponds to higher p-values. For the same bin width, a higher χ2 indicates 
that differences between the predicted and the ground truth distributions are more statistically significant. We 
found that the relative ranking of distribution-difference values between DefectTrack and the four human experts 
remains approximately stable for bin widths greater than 160 ms and less than 420 ms (Fig. 7d). In Fig. 7d, we use 
black arrows to mark the bin widths for which DefectTrack has the lowest distribution-difference. It is evident 
that DefectTrack has the lowest distribution-difference at many bin widths (i.e., by methods designed by Scott, 
and Rice). DefectTrack performs the best when applying the Doane method; the distribution-difference or χ2 is 
1.379 (df = 3) which has a p-value of 0.71 (Table S1 and Table S2). In particular, Doane is the most appropriate 
binning method for this dataset since it was developed for non-normal and skewed data (exponential distribu-
tion has a skewness of  256). For smaller bin widths produced by other methods such as FD, the lifetime cut-offs 
are necessarily very short to ensure a minimum count of 5 per bin, so the comparisons are likely invalid since 
a large proportion of defects are not considered. We have also assessed the lifetime distribution histogram by 
applying probability binning (Fig. S9 and Table S3), which allows for comparison using the entire ground truth 
data without a lifetime cut-off. The results further demonstrate that DefectTrack outperforms human experts in 
tracking defect clusters to estimate the actual lifetime distribution of defects.

Fig. 7e presents a comparison between the distribution-difference and the average of two important MOT 
metrics—MT and MOTA—which we collectively refer to in this section as tracking accuracy. Here, the distribu-
tion-difference refers to the Chi-Square test statistic calculated using the Two-sample Chi-Square test for shape 
with normalized histograms as described above and Doane-based bin widths, so that we can use their values for 
trend comparison even though the total defect count may be different at different confidence cut-off thresholds. 
We found that the higher the tracking accuracy, the lower the distribution-difference and the better the Defect‑
Track predicts the lifetime distribution. To enable this comparison, we gathered MT and MOTA values (Fig. S10a) 
and the distribution-difference for DefectTrack prediction at various confidence thresholds (Fig. S10b,c) and 
found that only having a high MT or a high MOTA is not sufficient to achieve a low distribution-difference. This is 
most likely due to the high numbers of false positives at high MT, which is obtained at low confidence threshold-
ing, and similarly a high false negative rate at low MT due to a high confidence threshold (Fig. S10a,b). Although 
a higher MT can be achieved at lower tracking confidence thresholds, the MOTA is significantly worse, mainly 
due to the increase in false negatives (Fig. S10a). It leads to an error-prone estimation of the lifetime distribu-
tion. Similarly, simply looking at MOTA when assessing the tracking performance also leads to errors in lifetime 
measurements. A high MOTA score does not correspond to the lowest distribution-difference (Fig. S10c). Also, 
the error in lifetime distribution estimation increases at MOTA ~ 80% due to a large number of false negatives. 
Thirdly, it does not account for the number of defect clusters that are mostly tracked (MT). Lastly, there is an 
unexpected rise in distribution-difference at MOTA around 40%. This might be due to a combination of high 
false positives and false negatives, which affect the tracking capability of DefectTrack. Overall, high MOTA and 
MT scores are both required for a good prediction of the lifetime distribution.

Conclusion and outlook
This work demonstrates the viability of DefectTrack—a deep learning-based one-shot MOT algorithm—to track 
dynamically evolving defect clusters in in-situ irradiation TEM video data for the first time. To enable this devel-
opment, we established an in-situ TEM video ground truth for irradiation-induced defect clusters following 
the standard MOTChallenge protocol. The presence of weak-contrast defect clusters, due to their growth and 
recovery as well as changes in local TEM diffraction conditions, is one of the primary sources of uncertainties in 
MOT prediction. To overcome these challenges posed by the real in-situ TEM video data (not simulated ones), we 
found that the implementations of proper image pre-processing, a suitable MOT framework and loss function, 
and strategic optimizations are necessary for a successful MOT model. Moreover, we also found that training 
DefectTrack on defect cluster detection first and addressing the sources of errors improve detection performance 
(F1-score = 79.38 ± 3.33), and ultimately promote the overall tracking performance. Within a minute, our model 
has demonstrated the capability of tracking 4,378 unique defect clusters with lifetimes ranging from 19.4 to 
6411.7 ms. The ability to track defects with a long lifetime allows us to infer the nature of the defects. As a result, 
our DefectTrack has achieved high MT, MOTA, and IDF1 scores of 67.81 ± 2.07%, 66.43 ± 2.32%, 57.38 ± 1.81%, 
respectively, and is capable of performing simultaneous detection and tracking.
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To further assess DefectTrack’s performance under criteria relevant to the materials science domain, we com-
pared the defect lifetime distribution produced by this MOT model and by human experts. The Two-sample Kol-
mogorov–Smirnov Test shows DefectTrack does not produce statistically significant differences from the ground 
truth lifetime distribution, while two out of four human experts did. This points to the reliability of machine 
learning methods such as DefectTrack compared to more variable human experts. Similarly, the Two-sample 
Chi-Square test fails to reject the null hypothesis that the lifetimes of defects predicated by DefectTrack are drawn 
from the same distribution as the ground truth even at high significance levels. A quantitative comparison of 
the effect size, which we derive from the Chi-Square test statistic and name “distribution-difference”, confirms 
that DefectTrack matches the ground truth lifetime distribution better than human experts. Finally, DefectTrack 
is capable of identifying > 10 times more defect clusters with > 2.5 times longer lifetimes than human experts. 
The achieved reliable, accurate, and high-throughput defect tracking and quantification for analyzing large in-
situ video data (gigabytes-to-terabytes in a single irradiation experiment) is essential for understanding defect 
evolution and the overall material response under irradiation conditions. The video processing rate achieved in 
this work (at 28 FPS) can be further increased to go beyond 100 FPS with future work adding dedicated hard-
ware like field-programmable gate arrays and model compression techniques. We conclude that dedicated deep 
learning-based MOT algorithms developed on practical in-situ TEM videos have demonstrated great potential 
in revolutionizing real-time defect analysis and in promoting a statistically meaningful understanding of the 
irradiation effects.

Data availability
The DefectTrack model, training video datasets, and ground truth labels of the current study are available in the 
repository (https:// figsh are. com/s/ 9e7f6 c0870 e828d bc1a2).
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