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Road damage detection algorithm 
for improved YOLOv5
Gege Guo1 & Zhenyu Zhang2,3*

Road damage detection is an important task to ensure road safety and realize the timely repair of road 
damage. The previous manual detection methods are low in efficiency and high in cost. To solve this 
problem, an improved YOLOv5 road damage detection algorithm, MN-YOLOv5, was proposed. We 
optimized the YOLOv5s model and chose a new backbone feature extraction network MobileNetV3 
to replace the basic network of YOLOv5, which greatly reduced the number of parameters and 
GFLOPs of the model, and reduced the size of the model. At the same time, the coordinate attention 
lightweight attention module is introduced to help the network locate the target more accurately 
and improve the target detection accuracy. The KMeans clustering algorithm is used to filter the prior 
frame to make it more suitable for the dataset and to improve the detection accuracy. To improve 
the generalization ability of the model, a label smoothing algorithm is introduced. In addition, the 
structure reparameterization method is used to accelerate model reasoning. The experimental results 
show that the improved YOLOv5 model proposed in this paper can effectively identify pavement 
cracks. Compared with the original model, the mAP increased by 2.5%, the F1 score increased by 
2.6%, and the model volume was smaller than that of YOLOv5. 1.62 times, the parameter was reduced 
by 1.66 times, and the GFLOPs were reduced by 1.69 times. This method can provide a reference for 
the automatic detection method of pavement cracks.

Cracks are common pavement distresses that seriously affect road safety and driving safety. For transportation 
agencies in most provinces and cities, maintaining high-quality road surfaces is one of the keys to maintaining 
road safety. The timely detection of pavement cracks is of great significance to prevent road damage and maintain 
traffic road safety. Traditional crack detection methods are mostly based on manual inspections or road survey 
vehicles equipped with various sensors. The efficiency of manual inspection is low, the risk factor is high, and the 
inspection results are affected by the subjective judgment of inspectors, which is not conducive to the accuracy 
rate. Road survey vehicles are expensive to build and can cost as much as $500,0001. Therefore, the research and 
application of fast, efficient, and accurate crack detection technology have great practical needs.

In recent years, with the rapid development of deep learning, object detection technology has also made 
remarkable achievements. Object detection technology is mainly divided into two categories. The first category is 
a region-based two-stage detection model, which is mainly divided into two processes. The first step is to propose 
several regions that may contain objects, and the second step is to run a classification network on the proposed 
regions to obtain the object category within each region. Common two-stage algorithms include fast region-based 
convolutional neural networks (Fast R-CNNs)2, region-based fully convolutional networks (R-FCNs)3, and mask 
region-based convolutional neural networks (Mask R-CNNs)4. The second type is a one-stage detection method 
based on regression, which directly separates specific categories and regresses the border. Its speed is faster than 
the two-stage detection method, but the accuracy is slightly lower. Common algorithms include the You Only 
Look  Once5,6 series, Single Shot MultiBox Detector (SSD)7, and  RetinaNet8.

Deep learning technology has also made great breakthroughs in the field of road damage detection. Naddaf-
SH et al. 9 proposed using the one-stage network EfficientDet-D710 to detect and classify asphalt pavement images 
and won the seventh place in the 2020 IEEE Big Data Challenge, but EfficientDet-D7 has the disadvantage of a 
large number of parameters. Hacıefendioğlu et al.11 used the two-stage network Faster R-CNN to detect concrete 
pavement cracks and studied the influence of different illumination and weather conditions on the model detec-
tion effect. Maeda et al.12 proposed using progressive growing of generative adversarial networks (PG-GANs)13 
and Poisson blending methods to generate real road damage images as new training data to improve the accuracy 
of pothole detection. Mandal et al.14 proposed using the YOLO CSPDarknet53 network to detect road damage 
and won fourth place in the 2020 IEEE Big Data Challenge. Although the above research has made a certain con-
tribution to the road damage detection task, there is still a large room for improvement in accuracy or detection 
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speed. As one of the classic single-stage detection algorithms, the YOLO algorithm has been updated to YOLOv5, 
which has great advantages in detection accuracy and detection efficiency. Therefore, we choose to optimize the 
model based on YOLOv5s to further improve the accuracy of the model and reduce its size.

The main contributions of this study are as follows: (a) The real road environment is simulated. (b) For the 
specific task of pavement crack detection, we replace the backbone network of YOLOv5 and optimize the replaced 
backbone network combined with the attention mechanism to make it more suitable for the detection of this task. 
(c) In the optimized YOLOv5 model, we incorporate some other algorithms, such as structural reparameteriza-
tion, the label smoothing algorithm, and the k-means algorithm, aiming to make our model more suitable for 
task-specific detection. (d) Compared with the unoptimized model, the model is improved to a certain extent, 
which verifies the superiority and effectiveness of the model in the field of pavement disease detection.

The rest of the paper is organized as follows: "Methodologies" describes in detail what we did, including 
the techniques used and improved methods. The "Datasets and evaluation parameters" section introduces and 
analyses our datasets and the metrics used to evaluate the strengths and weaknesses of our models. The "Analysis 
of Results" section presents the experimental results after deployment and discusses the strengths and weak-
nesses of our model. In the "Conclusion" section, we summarize the entire paper and propose ideas for further 
research improvements.

Methodologies
YOLOv5. YOLOv5 is a single-stage object detection model with four versions: YOLOv5s, YOLOv5m, 
YOLOv5l, and YOLOv5x. Among them, the fastest and smallest model is YOLOv5s, with a parameter of 7.0 M 
and a weight of 13.7 M. The algorithm framework is shown in the figure, which is mainly divided into three 
parts: the backbone network (Backbone), the bottleneck layer network (Neck), and the detection layer (Output). 
The backbone network consists of a focus module (Focus), standard convolution module (Conv), C3 module, 
and spatial pyramid pooling module (SPP).

In YOLOv5, the four versions of the network architecture are the same, and the size of the network structure 
is controlled by two parameters: depth factor (depth_multiple) and width factor (width_multiple). For example, 
the C3 operation in YOLOv5s is only done once, while the depth of YOLOv5l is three times that of v5s, so three 
C3 operations will be performed. The specific network structure of the algorithm is shown in Fig. 1.

Improved YOLOv5. Since the YOLOv5s algorithm uses multilayer feature map prediction and is a one-
stage network, it has good results in terms of accuracy and detection speed. Especially in terms of speed, it meets 
the requirements of pavement crack detection tasks and can be well deployed in industry. This paper attempts 
to improve the YOLOv5s model, reduce the size of the model, and improve the detection accuracy by using a 

Figure 1.  YOLOv5s structure.
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lightweight network structure in terms of accuracy, parameter amount, and calculation amount while ensuring 
accuracy. First, by comparing various convolutional structures, MobileNetV3 is finally selected as the backbone 
network of the model. Second, the method of structural reparameterization is adopted to fuse the model convo-
lution layer and the batch normalization (BN) layer to optimize the model inference speed. At the same time, we 
conducted research and analysis on the pavement crack dataset and found that different crack types are similar 
and easy to confuse, which may lead to poor model generalization ability. Therefore, this paper presents a label 
smoothing technique for solving this problem. To improve the accuracy of the model, we introduced the Coor-
dination Attention module to improve the backbone network of the model. Finally, because the YOLOv5 model 
uses the a priori frame mechanism and the artificial experience design of the a priori frame is too subjective, the 
KMeans algorithm is used to iteratively analyse the dataset, and 9 a priori frames suitable for the dataset in this 
article are selected to improve the accuracy. The specific network structure of the algorithm is shown in Fig. 2.

Selection of the backbone network. In 2019, Howard et al. proposed the  MobileNetV315 network. As 
the latest version of the MobileNet series, it has the characteristics of small parameters, high accuracy, and fast 
real-time detection speed and is widely used in embedded and mobile terminals. The MobileNetV3 network 
inherits the features of MobileNetV1’s depthwise separable convolution and MobileNetV2’s inverse residual 
structure with a linear bottleneck and uses the NetAdapt algorithm to search and optimize the number of con-
volution kernels and channels. To reduce the number of parameters and GFLOPs of the model, this paper uses 
MobileNetV3 as the backbone network for feature extraction. The contents of MobileNetV3 are as follows:

Depthwise separable convolution. The depthwise separable  convolution16 can be divided into two parts: depth-
wise convolution and point convolution. The depthwise convolution adopts different convolution kernels for 
each input channel, that is, the number of groups of the network is the same as the number of channels of the 
network, thereby reducing the calculation amount of convolution and then using point convolution to fuse 
between channels. Assuming that DK × DK is the size of the convolution kernel, M is the number of input chan-
nels, N is the number of output channels, and DF × DF is the size of the output feature map, then the calculation 
amount of ordinary convolution is shown in formula (1):

The calculation amount of the depthwise separable convolution is shown in formula (2):

(1)DK × DK ×M × N × DF × DF

Figure 2.  Experimental model diagram.
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As shown in Eq. (3), the depthwise separable convolution is equivalent to compressing the calculation amount 
of ordinary convolution as:

With the depthwise separable convolution, the amount of computation is greatly reduced.

Inverse residual structure with linear bottlenecks. Since the activation function ReLU used by the original resid-
ual block has less available information in low dimensions, it easily causes information loss, so  MobileNetV217 
proposed an inverted residual structure with a linear bottleneck. The original residual structure adopts the 
method of reducing the dimension first and then increasing the dimension, but the depth convolution param-
eters are few, and the extracted features are relatively small. Therefore, the inverted Resblock first expands to per-
form feature extraction and then compresses, and the inverted Resblock first uses a 1 × 1 convolution to increase 
the dimension, then reduces the number of calculation parameters through the 3 × 3 depthwise separable convo-
lution (DWConv), then reduces the dimension through a 1 × 1 convolution, and finally connects the result to the 
input. In addition, after the convolutional layer has performed dimensionality reduction, activation functions 
such as ReLU are no longer added for nonlinear transformation. The purpose of this is to avoid information loss 
as much as possible. As shown in Fig. 3.

Squeeze‑and‑excitation networks. Squeeze-and-excitation networks (SENet)18 is a channel attention mecha-
nism proposed by Hu et al. at CVPR in 2018. Its core idea is to model the interdependence between channels 
and generate corresponding weights for each channel to improve important features. and suppress unimportant 
features. The process of the SENet network is divided into two steps: squeeze and excitation. Squeeze obtains the 
global compressed feature vector of the current feature map by performing the global average pooling (GAP) 
operation on the extracted features. Excitation obtains the weight of each channel after normalization through 
two layers of full connection, and the weighted features are used as the input to the next layer of the network. The 
SENet attention mechanism structure is shown in Fig. 4.

The size of input X is H ×W × C , GAP represents global average pooling, FC represents a fully connected 
layer, ReLU  and h− swish are activation functions, and Y  multiplies the generated weight coefficient of each 

(2)DK × DK ×M × DF × DF +M × N × DF × DF

(3)
DK × DK ×M × DF × DF +M × N × DF × DF

DK × DK ×M × N × DF × DF
= 1

N
+ 1

D2
K

Figure 3.  InvertResidual structure.

Figure 4.  Squeeze-and-excitation networks.
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channel with all elements of the corresponding channel. The important features are enhanced, and the unim-
portant features are weakened so that the extracted features are more directional.

h‑swish. The activation function h-swish is improved based on swish , replacing the original sigmoid function 
with ReLU6(x + 3)/6 . The swish function has the characteristics of no upper bound, lower bound, smooth-
ness, and nonmonotonicity, and it is better than ReLU in deep models. However, because the sigmoid function 
is complex to calculate and consumes many resources on the mobile side, MobileNetV3 uses the approximate 
function ReLU6(x + 3)/6 to approximate swish. This replacement reduces problems such as the disappearance 
of network gradients due to the increase in the number of network layers and can also effectively reduce the 
amount of computation, improve model performance, and improve model detection efficiency. 15% efficiency.

Improvement of the backbone network. The optimization of the feature extraction network is based 
on the needs of the road damage detection algorithm, which further improves the detection and identification of 
the four types of pavement cracks in the model, making it more suitable for pavement crack detection tasks. The 
MobileNetV3 network consists of an inverted residual with linear bottleneck modules, which greatly reduces the 
number of parameters and GFLOPs of the model, but there is still room for improvement in detection accuracy. 
Therefore, we added the attention mechanism coordinate attention module to improve the inverted residual with 
a linear bottleneck module in this study to more fully improve the detection accuracy of the model for specific 
tasks. The improved module is named Block, as shown in Fig. 5:

Coordinate attention. In CVPR2021, Hou et al. proposed the coordinate  attention19 module, which is a new 
attention module proposed for channel attention that ignores location information that is important for gen-
erating spatially selective attention. CA encodes channel relations and long-term dependence through precise 
location information, and the specific operation is divided into two steps: embed coordinate information and 
coordinate attention generated. Its structure is shown in Fig. 6.

Embedding of coordinate information. Global pooling is usually used for global encoding of channel attention 
encoding spatial information, but it is difficult to save location information because it compresses global spatial 
information into channel descriptors. To enable the attention module to capture remote spatial interactions with 
precise location information, this paper decomposes global pooling into a pair of one-dimensional feature cod-
ing operations according to the following formula:

Specifically, given input, the pooling kernel of size (H , 1) or (1,W) is first used to encode each channel along 
with horizontal and vertical coordinates, respectively. Therefore, the output of the first channel whose height is 
can be expressed as:

Similarly, the output of the first channel of width can be written as:

(4)Zc =
1

H ×W

H
∑

i=1

W
∑

j=1

xc(i, j)

(5)Zh
c (h) =

1

W

∑

0≤i≤W

xc(h, i)

(6)Zw
c (w) =

1

H

∑

0≤j≤H

xc(j,w)

Figure 5.  Block structure.
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The above two transformations aggregate features along two spatial directions to obtain a pair of direction-
aware feature maps. This is very different from SENet, which produces a single eigenvector in the channel atten-
tion approach. These two transformations also allow the attention module to capture long-term dependencies 
along one spatial direction and store precise location information along the other spatial direction, which helps 
the network more accurately locate targets of interest.

Generation of coordinated attention. Coordinate information embedding can well obtain the global receptive 
field and encode accurate location information through the above transformation. To utilize the resulting rep-
resentation, the author proposed a second transformation called coordinate attention generation. After passing 
the transformation in information embedding, this part concatenates the above transformation and then uses 
the convolution transformation function to transform it:

 where the concatenation operation along a spatial dimension is the nonlinear activation function and is the 
intermediate feature mapping encoding spatial information in horizontal and vertical directions. Here, it is used 
to control the reduction rate of the SE block size. Then, along the dimension of space, it will decompose into two 
separate tensors. They are transformed into tensors with the same number of channels as the input by using the 
other two convolution transformations to obtain:

Here is the sigmoid activation function. To reduce model complexity and computational overhead, an appropri-
ate reduction ratio is usually used to reduce the number of channels. The output is then expanded as attention 
weights. Finally, the output of the coordinate attention block can be written as:

Auto anchor searching. In object detection, the model needs to learn not only the category of the object 
but also the location and size of the object. Since there are objects of different scales and aspect ratios in each 
image, it is difficult for the model to learn the shapes of different objects during the training process. There-
fore, Ren et al.20 proposed an a priori box mechanism in Faster R-CNN to solve this problem. The a priori box 
mechanism divides the space where objects with different scales and aspect ratios are located into several sub-

(7)f = δ(F1([zh, zw]))

(8)gh = σ(Fh(f
h))

(9)gw = σ(Fw(f
w))

(10)yc(i, j) = xc(i, j)× ghc (i)× gwc (j)

Figure 6.  CA structure.
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spaces, which reduces the difficulty of the problem and the difficulty of model learning. This mechanism is also 
widely used in various excellent object detection models, such as SSD, YOLOv3, and RetinaNet. The artificially 
designed a priori boxes are highly subjective and cannot guarantee that they will fit the dataset well. Therefore, 
by analysing the shape and characteristics of pavement cracks, this paper uses the KMeans algorithm to cluster 
the training set to obtain 9 a priori boxes as the initial clustering boxes. The core goal of the KMeans clustering 
algorithm is to divide the dataset into K clusters, give the corresponding center point of each sample data, and 
automatically generate a set of a priori boxes that are more suitable for the dataset, thereby effectively reduc-
ing the initial cost of the original algorithm. According to the clustering deviation caused by clustering points, 
an a priori frame of suitable size is obtained and matched to the corresponding feature map, which effectively 
improves the detection accuracy and recall rate.

The initial anchor boxes of the YOLOv5 model are ’10, 13, 16, 30, 33, 23’, ’30, 61, 62, 45, 59, 119’ and ’116, 
90, 156, 198, 373, 326’, which are used to detect small, medium, large objects. The original anchor box is only 
suitable for the COCO dataset, not for the pavement crack data. We use the KMeans algorithm to recluster the 
pavement crack dataset to obtain a new anchor box suitable for our dataset. The new anchor box is ’46, 29, 104, 
23, 39,66’, ’86,75, 206,36, 91,149’, ’168,107, 221,216, 455,249’.

Label smoothing. Label smoothing is an effective regularization strategy for deep neural networks, and it 
is often used to reduce the overfitting problem of training deep neural networks (DNNs) and further improve 
classification performance. Overfitting is a common problem encountered in the training of deep learning mod-
els, which means that the model performs well in the training set, but the performance in the test set is not sat-
isfactory, the generalization is poor, and the model cannot be effectively used to predict unknown data. Neural 
network training will prompt itself to learn in the direction with the largest difference between the correct label 
and the wrong label. When the training data are small and insufficient to represent all the sample features, it is 
easy to cause the network to overfit.

Label smoothing solves the above problems through the following ideas. During training, it is assumed that 
there are incorrectly labelled labels to avoid overconfidence in the labels of training samples. Taking the clas-
sification problem as an example, we usually think that the object category probability in the training data is 1, 
the nonobject probability is 0, and the traditional label vector yi is

Label smoothing combines a uniform distribution, replacing the traditional label vector yi with the updated 
label vector ŷi:

where is the total number of K multicategory categories and ∂ is a small hyperparameter (usually 0.1), that is,

In this way, the smoothed distribution of the labels is equivalent to adding noise to the real distribution, 
preventing the model from being overconfident in the correct label, reducing the difference between the output 
values of predicted positive and negative samples, thereby avoiding overfitting and improving the generalization 
of the ability of the model.

In this study, with a ∂ set of 0.1, the label smoothing method can significantly improve the performance of 
the model when the training set is not too large.

Structural reparameterization. The concept of structural reparameterization refers to constructing a 
series of network structures in the training phase and transforming the network structure into another set of 
network structures by equivalently transforming its parameters into another set of parameters in the inference 
phase. The advantage of this method lies in that we can use the network structure with a larger structure and 
certain good properties, such as higher accuracy and sparsity, to train the dataset during training, while the con-
verted reasoning structure is smaller and retains such properties, thus obtaining a more efficient and convenient 
deployment model.

Ding Xiaohan implemented this idea in the  RepVGG21 network structure proposed in ICCV2021. The method 
of mathematical derivation is mainly used in the idea of structural reparameterization, and the validity of the 
idea is verified by experiments. This paper mainly adopts the idea of Conv-BN merging. In neural network train-
ing, the BN layer can speed up network convergence, suppress overfitting, and effectively solve the problems 
of gradient disappearance and gradient explosion. However, when the network infers forward, the BN layer 
will occupy more memory and video memory, which will affect the performance of the model. Therefore, it is 
necessary to use the fusion of the Conv layer and BN layer to speed up the inference speed of the network. The 
formula derivation is as follows: The formula is calculated by the convolution layer, as shown in formula 14, 
where ω is the weight and b is the bias:

The calculation of the BN layer is shown in formula 15, where γ and β are learning parameters, u is the sample 
mean, σ is the variance, and ε represents a small number (preventing the denominator from being 0):

(11)yi =
{

1, i = target
0, i �= target

(12)ŷi = yi(1− ∂)+ ∂/K

(13)ŷi =
{

1− ∂ , i = target
∂/K , i �= target

(14)X1 = ωx + b
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Formula 14 is substituted into formula 15, and convolution and BN are combined to obtain formula 16:

Equation 17 can be obtained by splitting Eq. (16) as follows:

Let γω√
σ2+ε

= ω′ , β+ γ b−u√
σ2+ε

= b′ , obtain formula 18:
It can be seen that the final merged convolution is still composed of weight w and bias b.

According to the homogeneity of convolution, the process of merging BN layers is a linear operation, which 
is equivalent to modifying the convolution kernel, while the convolution remains unchanged. Therefore, accord-
ing to the reasoning, the combination of the convolutional layer and the BN layer can improve the speed of the 
forward inference of the model.

Datasets and evaluation parameters
RDD2020. The dataset used in this paper is the open-source dataset  RDD202022, which consists of road 
images from three countries: Japan, India, and the Czech Republic. The dataset includes longitudinal cracks D00, 
transverse cracks D10, mesh cracks D20, pothole D40, longitudinal construction joint part D01, lateral con-
struction joint part D11, crosswalk blur D43, and white line blur D44. The first four types of cracks are the main 
types of road damage. Therefore, in this study, the damage categories considered are longitudinal cracks D00, 
transverse cracks D10, network cracks D20, and pothole D40. The dataset is divided into the training set, test set 
1, and test set 2. The training set has a total of 21,041 images, and test set 1 and test set 2 have 2631 images and 
2664 images, respectively. Since some pictures in the training set do not contain the detection target of this study, 
it is necessary to process the training set and screen out the pictures that do not contain the detection target of 
the research. After analysis and processing, among the 10,506 pictures from Japan, 7900 pictures contain the 
detection target of this research, and among the 2829 pictures from the Czech Republic, 1072 pictures contain 
the detection target of this research. Among the 7706 pictures from India, there are 3223 images containing the 
detection target of this study, so there are a total of 12,195 training set images with detection target instances. 
After filtering out images that do not contain the four crack types detected in the study, we randomly select 
1211 images from the training set as the validation set according to the 1:9 partitioning rule. The images in the 
training set are preannotated with different categories of road damage as ground-truth labels. The test set does 
not contain real labels, and the predicted value file needs to be output and uploaded to the IEEE Big Data 2020 
website to obtain the F1 score. Table 1 lists all four types of road damage, namely, longitudinal cracks, transverse 
cracks, network cracks, and pothole.

Evaluation parameters. The environment for this experiment is the Ubuntu18.04 operating system, the 
model algorithm is implemented through the PyTorch deep learning framework, the graphics card is an NVIDIA 
GeForce RTX 2080 Ti, the CPU is an Intel XeonE5-2678v3, and the memory is 62 GB.

During training, the input image is set to 640 × 640, and SGD is used as the optimization function to train the 
model. The model training period (epochs) is 100, the batch size is 24 and the initial learning rate is 0.02. This 
experiment adopts the same data augmentation algorithm as the original YOLOv5 algorithm.

The evaluation indicators used in this paper are precision, recall rate (recall), F1 score, mean Average Preci-
sion (mAP), the number of parameters (Params), Giga Floating-point Operations Per Second (GFLOPs), and 

(15)X2 = γ
X1 − u√
σ2 + ε

+ β

(16)X2 = γ
ωx + b− u√

σ2 + ε
+ β

(17)X2 = γ
γω√
σ2 + ε

x + β+ γ
b− u√
σ2 + ε

(18)X2 = ω′x + b′

Table 1.  Dataset category.
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Frames Per Second (FPS). Among them, the precision and recall rate are used as the basic indicators, and the F1 
score and mAP calculated according to the precision and recall rate are used as the final evaluation indicators 
to measure the recognition accuracy of the model. GFLOPs are used to measure the complexity of the model 
or algorithm, and Params represents the size of the model. Usually, the smaller the Params and GFLOPs are, 
the smaller the computing power required to represent the model, the lower the performance requirements for 
hardware, and the easier it is to build in low-end devices.

Results and analysis
Evaluation results. To verify the effectiveness of the improved YOLOv5 algorithm in the road damage 
detection task, five groups of experiments are designed in this paper. Experiment 1 compares the performance 
of the original YOLOv5s algorithm and MobileNetV3 as the backbone network. Since the default learning rate 
of the original YOLOv5 algorithm is 0.01, and the learning rate of the improved model is 0.02, for a fairer com-
parison, the experiments show the performance of the original YOLOv5s algorithm under different learning 
rates. Experiments show that when using MobileNetV3 as the backbone network, compared with the original 
YOLOv5 algorithm with learning rates of 0.01 and 0.02, the F1 score is increased by 1.4% and 0.5%, and the mAP 
is increased by 1.6% and 1.1%. At the same time, the number of GFLOPs and parameters was greatly reduced, as 
shown in Table 2. (LR is the learning rate.)

To further improve the model performance, this paper introduces the KMeans clustering algorithm to replace 
the prior box. Experiment 2 compared the effect of using the original YOLOv5s algorithm a priori frame and the 
a priori frame obtained by using the KMeans clustering algorithm, and the effect is shown in the table. Compared 
with the original a priori frame, the a priori frame selected by the KMeans algorithm has a 0.7% increase in mAP 
and a 0.4% increase in the F1 score. As shown in Table 3.

To accurately locate the object position, the CA module is introduced in this paper, and the third experiment 
is the model after integrating the CA module. Compared with the unused model, the experiment found that the 
introduction of the CA module increased mAP by 0.4%, and the F1 score increased by 1.0%, as shown in Table 4.

Since road damage detection is usually used in industry, to meet the lightweight requirements and facili-
tate the deployment of the model on mobile terminals or embedded terminals, this paper adopts the fusion 
method of the structurally reparameterized BN layer and the convolution layer. The fourth experiment is to verify 
the effect of structural reparameterization. The experiment found that the FPS of the model using structural 

(19)precision = tp

tp+ fp

(20)recall = tp

tp+ fn

(21)F1 = 2
precision× recall

precision+ recall

Table 2.  Performance comparison of MobileNetV3.

Model Params/M GFLOPs Precision (%) Recall (%) mAP (%) F1 (%) FPS

YOLOv5s-LR = 0.01 7.0 16.4 56.5 50.4 50.6 53.1 67

YOLOv5s-LR = 0.02 7.0 16.4 55.6 52.4 51.1 54.0 67

MobileNetV3-YOLOv5 4.0 9.3 55.1 53.8 52.2 54.5 60

Table 3.  Performance comparison of KMeans.

Model Params/M GFLOPs Precision (%) Recall (%) Map (%) F1 (%) FPS

MobileNetV3-YOLOv5 4.0 9.3 55.1 53.8 52.2 54.5 60

MobileNetV3-YOLOv5 + KMeans 4.0 9.3 57.2 52.7 52.9 54.9 60

Table 4.  Performance comparison of CA.

Model Params/M GFLOPs Precision (%) Recall (%) mAP (%) F1 (%) FPS

MobileNetV3-YOLOv5 + KMeans 4.0 9.3 57.2 52.7 52.9 54.9 60

MobileNetV3-YOLOv5 + KMeans + CA 4.2 9.7 58.4 53.7 53.3 55.9 36
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reparameterization was increased by 15% compared with the model without structural reparameterization, which 
effectively accelerated the model inference speed, as shown in Table 5.

Due to the imbalance of the dataset categories, this paper introduces the label smoothing algorithm, and the 
fifth experiment verifies the effect of the label smoothing algorithm. Experiments show that the model using the 
label smoothing algorithm has a 0.3% increase in mAP and a 0.7% increase in F1 score compared to the unused 
model, as shown in Table 6.

Comparison of detection results of different algorithms. It can be seen from the experiments that 
the algorithm proposed in this paper can achieve an F1 score of 56.6% and a mAP value of 53.6% on the veri-
fication set of the road damage detection task. Compared with the original YOLOv5s algorithm, the mAP is 
increased by 2.5%, and the F1 score is increased by 2.6%. An F1 score of 61.86% and an F1 score of 60.92 were 
achieved on the two test sets, and the comparison with the results submitted on the Global Road Damage Detec-
tion Challenge’2020 is shown in Table 710,15,23–25.

At the same time, the parameter amount and calculation amount of the algorithm is small, the GFLOPs is 
9.7, and the parameter amount is 4.2 M. Compared with the GFLOPs 16.4 and 7.0 M parameters of the original 
YOLOv5s algorithm, the algorithm proposed in this paper has greater improvement and better performance.

This paper fuses the MobileNetV3 network with the CA module, uses the KMeans algorithm and the Label-
Smoothing algorithm and fuses the convolutional layer and the BN layer. The experiment verifies the effectiveness 
of the algorithm, and Fig. 7 shows the detection effect of the algorithm.

Conclusion
This paper proposes an improved road damage detection method based on the YOLOv5s model, which uses a 
large amount of data to train the network model to detect various pavement cracks. In the proposed method, 
first, to reduce the size of the model, we propose to use the lightweight network MobileNetV3 as the backbone 
network to replace the backbone network of the original YOLOv5s model to reduce the number of parameters 
and GFLOPs of the model. Then we use the Coordinate Attention module to optimize the MobileNetV3 network 
to improve the model detection accuracy. Second, we use the KMeans clustering algorithm to select three sets 
of anchor boxes for our model that are more suitable for the pavement crack detection task, which improves the 
model detection accuracy and uses the LabelSmoothing algorithm to enhance the generalization ability of the 
model. Finally, we integrate the BN layers and convolutional layers of the model to improve the model inference 
speed. Experiments show that compared with the original YOLOv5s, our model improves the accuracy, reduces 
the number of parameters and GFLOPs, and is suitable for scenarios with accuracy requirements and limited 

Table 5.  Comparison of the performance of the structural reparameterization.

Model Params/M GFLOPs Precision (%) Recall (%) mAP (%) F1 (%) FPS/

MobileNetV3-YOLOv5 + KMeans + CA 4.2 9.7 58.4 53.7 53.3 55.9 36

MobileNetV3-YOLOv5 + KMeans + CA + Conv-BN 4.2 9.7 58.4 53.7 53.3 55.9 42

Table 6.  Performance comparison of LabelSmoothing.

Model Params/M GFLOPs Precision (%) Recall (%) mAP (%) F1 (%) FPS

MobileNetV3-YOLOv5 + KMeans + CA + Conv-BN 4.2 9.7 58.4 53.7 53.3 55.9 42

MobileNetV3-YOLOv5 + KMeans + CA + Conv-
BN + LabelSmoothing 4.2 9.7 57.2 56 53.6 56.6 42

Table 7.  Comparison of the detection results of different algorithms.

Model Test1-F1 (%) Test2-F1 (%)

YOLOv5x 56.83 57.10

Ensemble(YOLO-v4 + Faster-RCNN) 56.36 57.07

EfficientDet 56.5 54.7

YOLOv4 55.4 54.1

YOLO model trained on CSPDarknet53 backbone 58.14 57.51

Multi-stage Faster R-CNN with Resnet-50 and Resnet-101 backbones 53.68 54.26

Road Damage Detector using Detectron2 and Faster R-CNN 51 51.4

FR-CNN; Classifying the region and using regional experts for the detection 47.20 46.56

Ours 61.86 60.92
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memory and computing power, such as embedded devices. In the future, we will further optimize the network 
model to improve its accuracy, so that the model can be better applied to the pavement crack detection task.

Data availability
Data or code presented in this study is available on request from the corresponding author.
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