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Ensemble stacking rockburst 
prediction model based 
on Yeo–Johnson, K‑means SMOTE, 
and optimal rockburst feature 
dimension determination
Lijun Sun1, Nanyan Hu1*, Yicheng Ye1, Wenkan Tan1, Menglong Wu1, Xianhua Wang2 & 
Zhaoyun Huang3

Rockburst forecasting plays a crucial role in prevention and control of rockburst disaster. To improve 
the accuracy of rockburst prediction at the data structure and algorithm levels, the Yeo–Johnson 
transform, K‑means SMOTE oversampling, and optimal rockburst feature dimension determination 
are used to optimize the data structure. At the algorithm optimization level, ensemble stacking 
rockburst prediction is performed based on the data structure optimization. First, to solve the 
problem of many outliers and data imbalance in the distribution of rockburst data, the Yeo–Johnson 
transform and k‑means SMOTE algorithm are respectively used to solve the problems. Then, based on 
six original rockburst features, 21 new features are generated using the PolynomialFeatures function 
in Sklearn. Principal component analysis (PCA) dimensionality reduction is applied to eliminate the 
correlations between the 27 features. Thirteen types of machine learning algorithms are used to 
predict datasets that retain different numbers of features after dimensionality reduction to determine 
the optimal rockburst feature dimension. Finally, the 14‑feature rockburst dataset is used as the input 
for integrated stacking. The results show that the ensemble stacking model based on Yeo–Johnson, 
K‑means SMOTE, and optimal rockburst feature dimension determination can improve the accuracy of 
rockburst prediction by 0.1602–0.3636. Compared with the 13 single machine learning models without 
data preprocessing, this data structure optimization and algorithm optimization method effectively 
improves the accuracy of rockburst prediction.

Rockbursts have always been a difficult and important topic in rock mechanics research. Rockbursts are fre-
quent geological disasters in the construction of water conservancy, hydropower, and transportation projects; 
deep mining; geological treatment of nuclear waste; and deep physical underground  laboratories1,2. They not 
only affect the construction process but also threaten lives and  property3,4. If the occurrence of a rockburst can 
be accurately predicted and protective measures taken in advance to reduce the occurrence of rockbursts, staff 
casualties and property losses can be greatly reduced. Therefore, rockburst prediction has attracted much atten-
tion in the past two  decades5.

There are four categories of rockburst prediction methods: empirical  methods6–8, simulation  techniques9–11, 
mathematical  algorithms12–14, and monitoring  technologies15–17. Both empirical methods and simulation tech-
niques use similar simulation tests, and there is a certain gap between the rockburst phenomenon in the labora-
tory and the actual engineering. Monitoring technologies it is difficult to determine the threshold of rockburst, 
and the monitoring equipment is easily damaged during underground mining. With the advent of big data and 
artificial intelligence, rockburst prediction research methods based on mathematical algorithms have become 
increasingly prominent. Initially, a single model was used for rockburst prediction. For example, Feng et al.18 
built a support vector machine model, Zhou et al.19 built a fisher discriminant analysis model, and Dong et al.20 
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built a random forest model for rockburst prediction. With further development of these techniques, combina-
tions of multiple algorithms have been used to improve the prediction ability at the algorithm level. The use of 
multiple algorithms can compensate for the difficulty of determining the optimal parameters for a single model, 
the difficulty of determining the weights of rockburst influencing factors, and the subjectivity of the weights of 
rockburst influencing factors. On this basis, rockburst prediction models were optimized to improve their rock-
burst prediction ability. Zhu et al.21 Established a rockburst prediction method based on improved support vector 
machine algorithm (SVR). Zhou et al.22 applied the rough set (RS) theory to calculate the support and weight of 
each rockburst index, which was combined with the approximate ideal solution sequencing method (TOPSIS) 
to determine the rockburst grade. The established RS-TOPSIS method was applied for rockburst prediction in 
deep mines and metal mines. Peng et al.23 used a real-coded GA to select the optimal support vector machine 
(SVM) model parameters and established a GA-SVM rockburst prediction model.

Currently, there is a comprehensive effort to improve the rockburst prediction ability at the data structure 
and algorithm level. Different methods have been used to solve the problems of outliers, missing values, and 
data imbalances in rockburst datasets. The concept of an ensemble model combines multiple machine learning 
algorithms to obtain a model with stronger learning capabilities. For example, Zhang et al.24 used nine data 
interpolation algorithms to estimate the missing values in a rockburst dataset and aggregated seven individual 
machine learning algorithms. Yin et al.25 combined three data mining techniques: principal component analysis, 
local outlier factors, and an expectation maximization algorithm for dimension reduction, outlier detection, and 
outlier substitution, respectively. Ensemble stacking technology integrates the K-nearest neighbor (KNN), SVM, 
deep neural network (DNN), and recurrent neural network (RNN) methods. Wang et al.26 developed bagging 
and boosting tree-based ensemble techniques. Of these, bagging was the best method for rockburst prediction.

In summary, many scholars have proposed new methods for rockburst prediction based on mathematical 
algorithms from both the data structure and algorithm  levels27,28. At the data structure level, to address miss-
ing values and outliers in the rockburst dataset, the data interpolation method has been used to supplement 
the missing values, and the local outlier factor (LOF) algorithm has been used to detect, replace, and eliminate 
 outliers29. However, the estimation of missing values and replacement or elimination of outliers may destroy the 
original characteristics of the dataset. It also ignores a small number of objective laws. Oversampling is usually 
used to solve the problem of rockburst data imbalance, and the synthetic minority over-sampling technique 
(SMOTE), Boderline-SMOTE1, Boderline-SMOTE2, and SMOTE-NC algorithms have all been used previously 
to solve the problem of within-class imbalance. However, the problem of regional between-class imbalance has 
not been solved. In terms of the dimensions of rockburst features, the principal component analysis (PCA) 
algorithm is generally used to reduce the dimensionality of rockburst features. However, ignoring a number of 
existing rockburst features in the rockburst dataset may result in a dataset that is not sufficient to obtain optimal 
performance of the model. Hence, increasing the feature dimensions appropriately can improve the prediction 
ability of the model. At the algorithm level, the ensemble method has advantages over the use of single machine 
learning algorithms. There are three types of ensemble methods: stacking, bagging, and boosting. They are all 
considered in this study.

Therefore, this study aims to approach the limit state of rockburst prediction. A total of 275 sets of rockburst 
case samples with no missing values are collected from the literature. At the data structure level, the Yeo–Johnson 
transformation, K-means SMOTE balance processing, rockburst feature analysis, and optimal rockburst feature 
dimension determination are performed on the rockburst data. At the algorithm level, ensemble stacking is 
used for rockburst prediction to obtain the best accuracy of the rockburst classification prediction. To verify the 
effectiveness of the data structure optimization, the prediction results of 13 machine learning algorithms are 
used for comparison before and after data structure optimization. The 13 machine learning algorithms include 
models with both poor learning performance and strong learning performance.

The rockburst dataset transformation and balancing are described in section “Yeo–Johnson transformation 
and balancing of the rockburst data”. To deal with outliers in the rockburst dataset, Yeo–Johnson transform is 
used to normalize the data, reduce the distance between outliers and dense area points, and reduce the influence 
of outliers. To address the problem of unbalanced rockburst data, the K-means SMOTE algorithm is used to 
oversample the rockburst dataset after the Yeo–Johnson transformation. This balances the rockburst data. The 
Yeo–Johnson transformation method can reduce the heteroscedasticity caused by the rockburst data originat-
ing from different regions or engineering backgrounds, and amplify the normality of the rockburst data. The 
degree of outliers in the rockburst data is reduced, and the number of outliers in the rockburst data is reduced. 
The K-means SMOTE oversampling method is a combination of the K-means clustering algorithm and the 
SMOTE oversampling algorithm. First, the rockburst data is divided into k clusters by the K-means algorithm, 
and then the clusters with a high proportion of minority samples are filtered out, and finally the clusters with a 
high proportion of minority samples are subjected to SMOTE oversampling. This method adds a small number 
of grade I samples, grade II samples, and grade IV samples to keep the number basically the same as the number 
of grade III samples, and balances the number of rockburst samples of different grades. To verify the validity of 
the Yeo–Johnson transformation and the K-means SMOTE balancing process, 13 machine learning algorithms 
are used to analyze the original rockburst dataset and the rockburst dataset subjected to the Yeo–Johnson trans-
formation and K-means SMOTE oversampling. The prediction results are compared and analyzed to verify the 
effectiveness of the preprocessing method.

The rockburst feature analysis and determination of the optimal rockburst feature dimensions are presented 
in section “Rockburst data feature analysis and determination of the optimal rockburst feature dimensions”. First, 
the mean decrease accuracy graph and Pearson correlation coefficient figures are used to analyze the rockburst 
features. It is determined that all of the rockburst features are predictive to some extent, and the features are not 
completely correlated. Then, based on the six original rockburst features, 21 new rockburst features are generated 
to increase the feature dimension. PCA dimensionality reduction is applied to process the 27 rockburst features, 
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eliminate the correlations between rockburst features, and ensure the features are independent. Finally, the 
exhaustive method is used to identify the number of features that provides the highest average accuracy under 
the 13 machine learning algorithms.

Rockburst prediction based on stacking is presented in section “Rockburst prediction based on ensemble 
stacking”. A rockburst dataset comprising 14 features is input for stacking. Then, an appropriate model is selected 
from the 13 machine learning algorithms as the first layer base model for stacking. The logistic regression classi-
fier is used as the second output model for stacking, which obtains the rockburst prediction results. The XgBoost 
model, which has the highest learning ability for the rockburst dataset comprising 14 features, is compared with 
the ensemble stacking model. The results demonstrate the advantages of the ensemble stacking model.

Rockburst data acquisition and analysis
Although there are numerous records of rockburst cases around the world, the impact factors of rockbursts in 
related cases are very limited. A total of 275 rockburst case samples with no duplicates or missing values were 
collected from the literature. The overall sample includes 51 groups of no rockburst occurrence (I) samples, 74 
groups of weak rockburst (II) samples, 117 groups of moderate rockburst (III) samples, and 33 groups of strong 
rockburst (IV) samples. Based on previous research in machine learning and a comprehensive evaluation of 
rockburst influencing factors used in rockburst prediction, the following were selected as the rockburst predic-
tion features: the maximum tangential stress of the surrounding rock ( σθ ), uniaxial compressive strength of the 
rock ( σc ), uniaxial tensile strength of the rock ( σt ), rock elastic strain energy index ( Wet ), rock stress coefficient 
SR(σθ/σc)and rock brittleness coefficient BR(σc/σt).

A comprehensive understanding of the rockburst dataset characteristics is a prerequisite for data structure 
optimization. Therefore, the statistical parameters of the features for each rockburst grade are listed in Table 1. 
The relevant rockburst classification  standards30–32 are summarized in Table 2, which combines domestic and 
international criteria and engineering cases of rockbursts as well as the classification standard for the Qinling 
Tunnel in China and the classification standard for rockbursts suggested by the Ministry of Railways. Figure 1 
shows the proportion of each grade of rockburst, and Fig. 2 shows the overlaid histograms of each feature in the 
rockburst dataset.

In Fig. 1, the ratio of rockburst samples of grades I, II, III, and IV is 1.8:2.7:4.3:1.2; thus, the numbers of 
rockburst samples in each grade are unbalanced. In particular, the number of grade IV and grade III samples 
is quite different, and the ratio of grade IV samples to grade III samples is 1:3.5. We assume that there are only 

Table 1.  Statistical parameters of different rockburst grades.

Rockburst grades

Rockburst features

Statistical parameters σθ (MPa) σc (MPa) σt (MPa) Wet SR BR

I

Maximum 118.40 237.10 17.66 7.90 5.26 8.21

Minimum 1.60 18.32 0.38 1.10 0.05 45.42

Mean 26.38 104.30 4.83 3.43 0.43 24.81

Coefficient of variation 0.90 0.51 0.58 0.62 2.26 0.50

II

Maximum 148.40 263.00 22.60 10.00 4.55 42.96

Minimum 13.50 26.06 0.77 0.85 0.11 4.48

Mean 51.83 127.88 6.71 4.31 0.51 22.94

Coefficient of variation 0.52 0.39 0.61 0.44 1.27 0.41

III

Maximum 132.10 304.00 54.15 10.00 2.56 80.00

Minimum 14.40 30.00 1.50 2.03 0.09 2.97

Mean 65.52 145.75 8.21 5.52 0.48 23.00

Coefficient of variation 0.34 0.31 0.82 0.28 0.5 0.52

IV

Maximum 110.35 306.58 58.59 11.20 0.82 32.24

Minimum 30.10 80.60 2.50 1.90 0.26 2.80

Mean 82.37 160.34 11.50 6.34 0.54 17.58

Coefficient of variation 0.29 0.34 0.83 0.29 0.30 0.37

Table 2.  Rockburst classification standards.

Rockburst grades

Rockburst features

σθ (MPa) σc (MPa) σt (MPa) Wet SR BR

I 0–24.0 0–80.0 0–5.0 0–2.0 0.1–0.3 40.0–53.0

II 24.0–60.0 80.0–120.0 5.0–7.0 2.0–3.5 0.3–0.5 26.7–40.0

III 60.0–126.0 120.0–180.0 7.0–9.0 3.5–5.0 0.5–0.7 14.5–26.7

IV 126.0–200.0 180.0–320.0 9.0–30.0 5.0–6.5 0.7–0.9 0–14.5
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grade IV samples and grade III samples in the rockburst dataset. When all grade IV samples are predicted as 
grade III samples, the prediction accuracy rate for grade III samples can reach 78%. Therefore, in the unbalanced 
rockburst dataset, the classification results are often affected by the majority class. Machine learning models can 
easily divide minority class samples into majority class  samples33.

It can be observed from the rockburst classification standards in Table 2, that as the values of features σθ , σc , 
σt , Wet , and SR increase, the rockburst grade increases accordingly. In contrast, the rockburst grade increases 
as the value of feature BR decreases. However, the average value of SR in grade II (0.51) is greater than that for 
grade III (0.48), while the average value of BR in grade II (22.94) is less than that in grade III (0.48). This is 
inconsistent with the increasing and decreasing trends of the rockburst classification standards. The reason for 
this phenomenon is that the maximum and minimum values of the features for each rockburst grade are quite 
different, the coefficients of variation of the rockburst features are large, and there are many outliers. As shown in 
Fig. 2, there are many outliers for each feature for different rockburst grades, and the sparse outliers are far away 
from the dense area of points. Thus, it is difficult to distinguish the rockburst grade based only on the value of a 
single feature. According to the rockburst classification standard in Table 2, single features were used to judge the 
rockburst grades of the dataset. The accuracy rates of σθ , σc , σt , Wet , SR, and BR were 0.48, 0.35, 0.35, 0.33, 0.39, 
and 0.44, respectively. Therefore, the single features have low accuracy for judging the grade of rockburst cases. 
The root cause of this phenomenon is the failure of rockburst grades to fully reflect the influence of rockburst 
control factors. Therefore, comprehensively judging the grades of rockburst cases based on multiple features 
can provide higher accuracy.

Yeo–Johnson transformation and balancing of the rockburst data
Yeo–Johnson transformation. The preprocessing of the rockburst dataset mainly solves the problems of 
a large number of outliers in the dataset and the imbalance in the number of samples of each rockburst grade. 
For outliers in the dataset. Tan et al.29 proposed the LOF algorithm to detect and remove outliers in a dataset. 
Yin et al.25 proposed the LOF algorithm to detect outliers in a dataset and replaced them using the expectation 
maximization (EM) algorithm. Properly removing or replacing outliers in the spatial distribution of rockburst 
samples can effectively improve the data structure and the rockburst prediction ability. However, outliers in the 
rockburst dataset are inherent attributes. The elimination and replacement of outliers may destroy the original 
characteristics of the data and ignore a small number of objective laws.

In view of this, the Yeo–Johnson34 transform was proposed to process the rockburst features. This method is a 
power transformation, which is often used in the data preprocessing stage of data mining and machine learning. 
It can reduce the heteroscedasticity of rockburst features and amplify the normality, thus resulting in a probability 
density function that is closer to a normal distribution. Compared with directly removing or replacing outliers, 
the Yeo–Johnson transformation retains outliers in the original dataset, improves the data structure, and reduces 
the influence of outliers on the prediction results.

The Yeo–Johnson transformation is defined as follows:

where y is the rockburst feature data, and � is the parameter estimated by the maximum likelihood method.
High-dimensional digital features are difficult to display intuitively in space. Therefore, to illustrate the effect 

of the transformation, feature σθ with a smaller coefficient of variation and feature SR with a larger coefficient 
of variation are selected to construct the scatter plots in Figs. 3 and 4. Figure 3 shows the original data without 
scaling, whereas Fig. 4 shows the data after the Yeo–Johnson transformation. Surrounding the scatter plot is the 

(1)ψ(�, y) =















{(y + 1)� − 1}/� if � �= 0, y ≥ 0
log(y + 1) if � = 0, y ≥ 0

−{(−y + 1)2−� − 1}/(2− �) if � �= 2, y < 0
− log(−y + 1) if � = 2, y < 0

Figure 1.  Proportion of each rockburst grade in the dataset.
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marginal distribution of the corresponding features. From Figs. 3 and 4, it can be seen that the Yeo–Johnson 
transformation can reduce the gap between the clustered area with a large number of samples and the scattered 
area with a small number of samples. It also makes the distribution of points in the clustered area more uniform 
and reduces the influence of outliers on the prediction model.

Figure 2.  Overlaid histograms of each feature in the rockburst dataset.
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Rockburst data balancing based on K‑means SMOTE. The frequencies of different rockburst grades 
are quite different, resulting in unbalanced rockburst data. There are two main approaches to address data 
imbalance: data level (oversampling, undersampling, and mixed sampling) and algorithm  level35. At the data 
level, sampling methods are used to increase or decrease various rockburst samples to balance the dataset. The 
algorithm-level approach employs algorithms that are not sensitive to unbalanced datasets, such as Extra Tree, 
random forest (RF), and CatBoost.

Insufficient attention has been paid to the records of rockburst cases in engineering practice. There are only 
275 rockburst cases in our dataset, of which 33 rockburst cases are grade IV. The under-sampling method can 
easily cause the loss of useful information, which leads to a decrease in the model accuracy. Therefore, over-
sampling method is more suitable. Machine learning algorithms usually require as large a dataset as possible. 
Oversampling methods can be divided into random and informed methods to generate oversampled  samples36. 
Randomly generated oversampling samples can easily destroy the data structure and result in model overfit-
ting. Among the informed generation methods for oversampling, the SMOTE algorithm can avoid overfitting. 
However, it may introduce noise to the  dataset37. The borderline-SMOTE38 algorithm divides the data into three 
types: safety, danger, and noise. Only a few dangerous samples are oversampled, and thus no noise data will be 
generated. However, the algorithm has weaknesses in dealing between the within-class imbalance. Between-class 
means that the imbalance of the data sample numbers between the minority class and the majority class. Within-
class imbalance means that the imbalance of the distribution position or distribution density of the sample.

Therefore, the K-means SMOTE algorithm is proposed to oversample the rockburst dataset after the 
Yeo–Johnson transformation. The K-means SMOTE algorithm consists of three steps: clustering, filtering, and 
oversampling. The clustering step divides the rockburst data into k clusters using the K-means algorithm. The 

Figure 3.  Unscaled data features.

Figure 4.  Data features after the Yeo–Johnson transformation.
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filtering step retains clusters with a high proportion of minority samples, and then synthesizes more minority 
samples in sparse clusters. The oversampling step performs SMOTE oversampling on the clusters with a low 
density of minority samples. The sparser the minority samples in the cluster are, the more minority samples will 
be added. The algorithm identifies a sparse sample area by calculating the average distance of minority samples 
in a cluster, and generates more samples in the sparse sample area, which reduces the within-class  imbalance39.

The calculation steps for K-means clustering are as follows:

(1) Suppose the input dataset is D = {x1, x2, . . . , xm} , and the division of clusters is C = {C1, C2, . . . , Ck} . 
Randomly select k samples from dataset D as the initial k centroid vectors, {µ1, µ2, . . . , µk}.

(2) Calculate the distance dik = �xi − µk�
2
2 between all sample points, xi, and each centroid vector, µk ; divide 

the sample points into the nearest cluster, xi ∈ Cnearest ; and update the cluster, Cnearest = Cnearest ∪ {xi}.
(3) Recalculate all sample points in cluster Ci ; the new centroid is µj =

1
|Ci |

∑

x∈Ci
x.

(4) Repeat calculation steps (2) and (3) until all of the centroid vectors, µk , remain constant; output C.

The filtering step selects clusters with a high proportion of minority samples.
The oversampling step is performed as follows:

(1) For each filtered cluster, Ci , calculate the Euclidean distance matrix, ignoring the majority samples.
(2) Compute the mean distance, d(Ci), within each cluster by summing all non-diagonal elements of the dis-

tance matrix, and then dividing by the number of non-diagonal elements.
(3) Compute the density of each filtered cluster as density(Ci) =

mc(Ci)
d(Ci)m

 , where mc(Ci) is the number of minority 
samples in the cluster, and m is the number of features.

(4) Calculate the sparsity of each filtered cluster as sparsity(Ci) =
1

density(Ci)
.

(5) Calculate the weight of each filtered cluster as r(Ci) =
sparsity(Ci)

∑k
i=1 sparsity(Ci)

.
(6) Perform SMOTE oversampling for each filtered cluster. New samples are generated by interpolation from 

the minority samples in the cluster: �x = �a+ w × (�b− �a) . In the filtered clusters, based on the sparseness 
of the minority samples, generate r(Ck)×m new samples, where �x is a newly generated sample, �a is a ran-
domly selected minority sample in the cluster, �b is the nearest neighbor minority sample of �a , and m is the 
total number of samples in dataset D.

To compare the sensitivities of different algorithms to imbalanced datasets and the generalization abilities of 
various algorithms, the prediction results of 13 machine learning algorithms are compared for both the original 
rockburst dataset and rockburst dataset preprocessed by the Yeo–Johnson transform and K-Means SMOTE 
oversampling. The 13 machine learning algorithms considered are the support vector classifier (SVC), decision 
tree (DT), K-nearest neighbor (KNN), naive Bayes classifier (NBM), Gaussian processes (GP), multi-layer per-
ceptron (MLP), quadratic discriminant analysis (QDA), random forest (RF), gradient boosting (GB), extreme 
gradient boosting (XgBoost), light boosting (LightBoost), extra tree (ET), and CatBoost. The accuracy, precision, 
recall rate, and F1 values are obtained for the training set and test set prediction results for each rockburst grade. 
Table 3 lists the prediction results obtained with the original rockburst dataset. Table 4 lists the prediction results 
obtained with the rockburst dataset after preprocessing. Stratified sampling of the dataset is used to divide the 
training and test sets such that the proportion of rockburst samples of each grade is consistent in the training 
and test sets. Three-quarters of the dataset is used as the training set to train the model, and the remaining 1/4 
is used as the test set to evaluate the reliability and generalization ability of the model. In the model training 
process, grid search with cross-validation is used to obtain the optimal parameters with the highest accuracy.

As can be seen from Tables 3 and 4, the test set of the original rockburst dataset has average precision, recall 
rate, and F1 values for grade I rockbursts of 0.7112, 0.6745, and 0.6855, respectively. The average precision, recall 
rate, and F1 values for the grade II rockbursts are 0.5443, 0.4737, and 0.5002, respectively. The average precision, 
recall rate, and F1 values for the grade III rockbursts are 0.6323, 0.7138, and 0.6686, respectively. The average 
precision, recall rate, and F1 values for the grade IV rockbursts are 0.4366, 0.4038, and 0.4082, respectively. 
The test set of the preprocessed rockburst dataset has average precision, recall rate, and F1 values for grade I 
rockbursts of 0.8965, 0.9205, and 0.9156, respectively. The average precision, recall rate, and F1 values of the 
grade II rockbursts are 0.7344, 0.6616, and 0.6923, respectively. The average precision, recall rate, and F1 values 
of the grade III rockbursts are 0.6397, 0.7135, and 0.6733, respectively. The average precision, recall rate, and F1 
values of the grade IV rockbursts are 0.8384, 0.7931, and 0.8144, respectively. The results show that the rockburst 
dataset without data preprocessing has poor overall prediction results. In particular, the prediction results are 
lowest for the most hazardous grade IV rockbursts. After the Yeo–Johnson transformation and K-means SMOTE 
oversampling, the data structure is significantly improved, and a large number of outliers and data imbalance 
problems in the datasets for each rockburst grade are effectively addressed, thus improving the generalization 
ability of the model.

Rockburst data feature analysis and determination of the optimal rockburst feature 
dimensions
Rockburst data feature analysis. Breiman40 noted that an improvement in accuracy requires a more 
complex prediction model. It is usually difficult to achieve the best prediction accuracy using simple and inter-
pretable models. However, complex machine learning algorithms inevitably have black box properties. To pro-
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Table 3.  Prediction results with the original rockburst dataset.

Model Rockburst grades

Training set Test set

Precision Recall rate F1 Accuracy Precision Recall rate F1 Accuracy

SVC

I 0.7353 0.6579 0.6944

0.6262

0.6667 0.7692 0.7143

0.5507
II 0.5854 0.4364 0.5000 0.4167 0.2632 0.3226

III 0.6107 0.9091 0.7306 0.5476 0.7931 0.6479

IV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DT

I 1.0000 1.0000 1.0000

1.0000

0.7273 0.6154 0.6667

0.6667
II 1.0000 1.0000 1.0000 0.6842 0.6842 0.6842

III 1.0000 1.0000 1.0000 0.6875 0.7586 0.7213

IV 1.0000 1.0000 1.0000 0.4286 0.3750 0.4000

KNN

I 1.0000 1.0000 1.0000

1.0000

0.8182 0.6923 0.7500

0.6377
II 1.0000 1.0000 1.0000 0.6667 0.6316 0.6486

III 1.0000 1.0000 1.0000 0.6207 0.6207 0.6207

IV 1.0000 1.0000 1.0000 0.4545 0.6250 0.5363

NBM

I 0.5952 0.6579 0.6250

0.5680

0.5000 0.7692 0.6061

0.4493
II 0.5250 0.3818 0.4421 0.3077 0.2105 0.2500

III 0.6058 0.7159 0.6562 0.5457 0.5172 0.5263

IV 0.4000 0.3200 0.3556 0.2500 0.2500 0.2500

GP

I 0.7500 0.7105 0.7297

0.7524

0.5714 0.6154 0.5926

0.4928
II 0.6809 0.5818 0.6275 0.2308 0.1579 0.1875

III 0.7727 0.9659 0.8586 0.5385 0.7241 0.6176

IV 0.8462 0.4400 0.5789 0.6667 0.2500 0.3636

MLP

I 0.7812 0.6579 0.7143

0.6942

0.7500 0.4615 0.5714

0.5217
II 0.6304 0.5273 0.5743 0.4118 0.3684 0.3889

III 0.7182 0.8977 0.7980 0.5500 0.7586 0.6377

IV 0.5556 0.4000 0.4651 0.2500 0.1250 0.1667

QDA

I 0.7742 0.6316 0.6957

0.6117

0.7143 0.7692 0.7407

0.5362
II 0.5660 0.5455 0.5556 0.4375 0.3684 0.4000

III 0.6747 0.6364 0.6550 0.5926 0.5517 0.5714

IV 0.4103 0.6400 0.5000 0.3333 0.5000 0.4000

GB

I 1.0000 1.0000 1.0000

1.0000

0.6667 0.6154 0.6400

0.6377
II 1.0000 1.0000 1.0000 0.6000 0.6316 0.6154

III 1.0000 1.0000 1.0000 0.6774 0.7241 0.7000

IV 1.0000 1.0000 1.0000 0.5000 0.3750 0.4286

XgBoost

I 1.0000 1.0000 1.0000

1.0000

0.7692 0.7692 0.7692

0.6522
II 1.0000 1.0000 1.0000 0.6429 0.4737 0.5455

III 1.0000 1.0000 1.0000 0.6875 0.7586 0.7213

IV 1.0000 1.0000 1.0000 0.4000 0.5000 0.4444

LightBoost

I 1.0000 1.0000 1.0000

0.9951

0.6923 0.6923 0.6923

0.6377
II 1.0000 1.0000 1.0000 0.6000 0.4737 0.5294

III 1.0000 0.9886 0.9943 0.6471 0.7586 0.6984

IV 0.9615 1.0000 0.9804 0.5714 0.5000 0.5333

RF

I 1.0000 1.0000 1.0000

1.0000

0.8182 0.6923 0.7500

0.6957
II 1.0000 1.0000 1.0000 0.6316 0.6316 0.6316

III 1.0000 1.0000 1.0000 0.7097 0.7586 0.7333

IV 1.0000 1.0000 1.0000 0.6250 0.6250 0.6250

ET

I 1.0000 1.0000 1.0000

1.0000

0.8000 0.6154 0.6957

0.6957
II 1.0000 1.0000 1.0000 0.6316 0.6316 0.6316

III 1.0000 1.0000 1.0000 0.7188 0.7931 0.7541

IV 1.0000 1.0000 1.0000 0.6250 0.6250 0.6250

CatBoost

I 1.0000 1.0000 1.0000

1.0000

0.7500 0.6923 0.7200

0.6957
II 1.0000 1.0000 1.0000 0.7059 0.6316 0.6667

III 1.0000 1.0000 1.0000 0.6970 0.7931 0.7419

IV 1.0000 1.0000 1.0000 0.5714 0.5000 0.5333
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Table 4.  Prediction results with the rockburst dataset after preprocessing.

Model Rockburst grades

Training set Test set

Precision Recall rate F1 Accuracy Precision Recall rate F1 Accuracy

SVC

I 0.9888 1.0000 0.9944

0.9802

0.9333 0.9333 0.9333

0.8051
II 0.9888 0.9778 0.9832 0.7143 0.6667 0.6897

III 0.9767 0.9546 0.9655 0.6765 0.7931 0.7302

IV 0.9667 0.9886 0.9775 0.9231 0.8276 0.8727

DT

I 1.0000 1.0000 1.0000

1.0000

0.8710 0.9000 0.8852

0.7966
II 1.0000 1.0000 1.0000 0.6765 0.7677 0.7188

III 1.0000 1.0000 1.0000 0.7407 0.6897 0.7143

IV 1.0000 1.0000 1.0000 0.9231 0.8276 0.8727

KNN

I 1.0000 1.0000 1.0000

1.0000

0.9355 0.9667 0.9508

0.8136
II 1.0000 1.0000 1.0000 0.778 0.7000 0.7368

III 1.0000 1.0000 1.0000 0.7097 0.7586 0.7333

IV 1.0000 1.0000 1.0000 0.8276 0.8276 0.8276

NBM

I 0.7300 0.8295 0.7766

0.6808

0.7714 0.9000 0.8308

0.6949
II 0.6441 0.4222 0.5101 0.7059 0.4000 0.5105

III 0.5795 0.5795 0.5795 0.5714 0.6897 0.6250

IV 0.7383 0.8977 0.8103 0.7419 0.7931 0.7667

GP

I 0.9556 0.9773 0.9663

0.9379

0.9333 0.9333 0.9333

0.7797
II 0.9556 0.9556 0.9556 0.6667 0.6667 0.6667

III 0.9195 0.9091 0.9143 0.6562 0.7241 0.6885

IV 0.9295 0.9091 0.9143 0.8846 0.7931 0.8364

MLP

I 1.0000 1.0000 1.0000

0.9972

0.8750 0.9333 0.9032

0.7627
II 1.0000 1.0000 1.0000 0.6774 0.7000 0.6885

III 1.0000 0.9886 0.9943 0.6786 0.6552 0.6667

IV 0.9888 1.0000 0.9944 0.8148 0.7586 0.7857

QDA

I 0.8049 0.7500 0.7765

0.6780

0.7586 0.7333 0.7458

0.6356
II 0.6377 0.4889 0.5535 0.5833 0.4667 0.5185

III 0.5568 0.5568 0.5568 0.4722 0.5862 0.5231

IV 0.7043 0.9205 0.7980 0.7586 0.7586 0.7586

GB

I 1.0000 1.0000 1.0000

1.0000

0.9032 0.9333 0.9180

0.7881
II 1.0000 1.0000 1.0000 0.8400 0.7000 0.7636

III 1.0000 1.0000 1.0000 0.6364 0.7241 0.6774

IV 1.0000 1.0000 1.0000 0.7931 0.7931 0.7931

XgBoost

I 1.0000 1.0000 1.0000

1.0000

0.9333 0.9333 0.9333

0.7797
II 1.0000 1.0000 1.0000 0.7692 0.6667 0.7143

III 1.0000 1.0000 1.0000 0.6111 0.7586 0.6769

IV 1.0000 1.0000 1.0000 0.8462 0.7586 0.8000

LightBoost

I 1.0000 1.0000 1.0000

0.9972

0.9655 0.9333 0.9492

0.7797
II 1.0000 1.0000 1.0000 0.7857 0.7333 0.7586

III 1.0000 0.9886 0.9943 0.5938 0.6552 0.6230

IV 0.9888 1.0000 0.9944 0.7931 0.7931 0.7931

RF

I 1.0000 1.0000 1.0000

1.0000

0.9333 0.9333 0.9333

0.7966
II 1.0000 1.0000 1.0000 0.7500 0.7000 0.7241

III 1.0000 1.0000 1.0000 0.6667 0.7586 0.7079

IV 1.0000 1.0000 1.0000 0.8519 0.7931 0.8214

ET

I 1.0000 1.0000 1.0000

1.0000

0.9355 0.9667 0.9508

0.8136
II 1.0000 1.0000 1.0000 0.7586 0.7333 0.7458

III 1.0000 1.0000 1.0000 0.6667 0.7586 0.7097

IV 1.0000 1.0000 1.0000 0.9200 0.7931 0.8519

CatBoost

I 1.0000 1.0000 1.0000

1.0000

0.9062 0.9667 0.9355

0.7966
II 1.0000 1.0000 1.0000 0.8400 0.7000 0.7636

III 1.0000 1.0000 1.0000 0.6364 0.7241 0.6774

IV 1.0000 1.0000 1.0000 0.8214 0.7931 0.8070
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vide complex black box models with some interpretability, it is convenient to analyze the role of each feature in 
the prediction process.

The ET and KNN models with the highest accuracy are used to evaluate the importance of features, and the 
importance of features is measured by the method of mean decrease accuracy. The method of reducing the aver-
age accuracy rate directly measures the impact of each feature on the accuracy of the model, by disrupting the 
order of the feature values of each feature, and measuring the impact of sequence changes on the accuracy of the 
model. For unimportant features, shuffling the order has little effect on the accuracy of the model. But for impor-
tant features, disrupting the order will significantly reduce the accuracy of the model. Figure 5 shows the degree 
of mean decrease accuracy of the ET and KNN models, and the lines indicate the fluctuation range of the error.

In Fig. 5, the mean decrease accuracy of ET model features σθ , σc , σt , Wet , SR, BR are respectively: 0.2044, 
0.0061, 0.0222, 0.0739, 0.0345, 0.0458. The average accuracy reduction of KNN model features σθ , σc , σt , Wet , SR, 
BR are respectively: 0.3398, 0.2538, 0.2470, 0.3339, 0.2898, 0.3144. Only feature σθ have a greater impact on ET 
model, while each feature has a greater impact on KNN model. This shows that different models have different 
degrees of dependence on features, and the role of features in the model will be quite different.

Correlation analysis of the features is performed to calculate the degree of correlation between two variables 
and analyze the degree of information redundancy contained in rockburst  features41. Completely correlated 
variables represent truly redundant information, and adding completely correlated variables will not introduce 
additional information. Therefore, most scholars believe that redundant information contained in rockburst 
features will lead to poor model prediction  results42,43. The PCA dimensionality reduction method is used to 
eliminate the correlations between rockburst features, which can eliminate features that contain less information. 
The Pearson correlation coefficient evaluates the linear relationship between two variables as follows:

where xi is the i-th sample value of a certain rockburst feature, yi is the i-th sample value of another rockburst 
feature, and N is the total number of samples.

The feature Pearson correlation coefficients are calculated for the preprocessed rockburst dataset, and the 
results are shown in Fig. 6. In general, if the absolute value of the Pearson’s correlation coefficient is within 
0.8–1.0, the two variables are considered very strongly correlated; if the Pearson’s correlation coefficient is within 
0.6–0.8, 0.4–0.6, 0.2–0.4, and 0–0.2, the two variables are considered strongly correlated, moderately correlated, 
weakly correlated, and very weakly/not correlated, respectively. Figure 6 shows that there are no extremely strong 
correlations between rockburst features. There are strong correlations between σθ and SR, σc and σt , σc and Wet , 
and σt and BR. Therefore, the rockburst features have partial information redundancy. In general, there is not 
an excessive amount of redundancy in the rockburst dataset, and each feature carries some unique information.

Determination of the optimal rockburst feature dimension. In engineering practice, there are 
many factors affecting rockbursts, and there are more than ten corresponding indexes. However, in engineer-
ing practice, the record of rockburst cases has not received sufficient attention or it is difficult to obtain some 
features, which leads to a lack of some rockburst indicators in the available rockburst statistics, such as the point 
load strength of rock ( Is ), deformation before the peak strength of rock ( U ), and stiffness of the loading process 
on the stress–strain curve ( Km ). Relying only on six rockburst indicators ( σθ , σc , σt , Wet , SR, and BR) may have 
problems that cannot fully reflect the rockburst phenomenon. In general, before the curse of dimensionality, the 
more features are considered, the easier it is for the decision boundaries of the model to distinguish different 
categories, and the better the classification effect will be. If all features are predictive to a certain extent and the 
features are not completely correlated, then an appropriate increase in the number of features can improve the 
prediction  ability44,45. Vong et al.46 noted that when the classified features resemble a family structure, the dataset 
will have a certain immunity to the curse of dimensionality, and an appropriate increase in the number of fea-
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xi
∑

yi
√

N
∑
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∑

xi
)2
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N
∑
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(
∑
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Figure 5.  The mean decrease accuracy graph of ET and KNN models.
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tures is beneficial. However, the curse of dimensionality problem occurs when the data are high-dimensional47. 
It affects the learning process and reduces the accuracy.

To determine whether the rockburst dataset follows a family structure and the optimal number of classifica-
tion features, first, on the basis of the six rockburst features, the PolynomialFeatures function in Sklearn is used 
to generate 21 new polynomial features. The method used to generate 21 new features is {a, b, a2, ab, b2} , 
where a is any feature of the original rockburst features, b is another arbitrary feature of the original rockburst 
features, and a2, ab, and b2 are newly generated features. Second, new features are generated from the original 
rockburst features, and these features inevitably have a strong correlation and excessive redundant information. 
Hence, PCA dimensionality reduction is used to process these 27 features, and the 27 principal components 
after PCA processing are retained. Finally, according to the amount of information contained in the principal 
components, principal components with less information are sequentially eliminated, and 26 rockburst datasets 
are constructed. These rockburst datasets contain two principal components, three principal components, etc., up 
to 27 principal components. Thirteen machine learning algorithms, SVC, DT, KNN, NBM, GP, MLP, QDA, RF, 
GB, XgBoost, LightBoost, ET, and CatBoost, are used to classify and predict the 26 rockburst datasets, resulting 
in a total of 26× 13 = 338 classification prediction models.

PCA has three main functions. (1) When the number of samples is fixed and the features of the samples 
increase, the spatial distribution of samples becomes increasingly sparse, which leads to model overfitting. The 
PCA algorithm increases the sample density by discarding part of the information and alleviates the curse of 
dimensionality. (2) When the rockburst dataset is affected by noise, features with less information are often related 
to the noise, and eliminating features with little information can reduce noise. (3) In the rockburst dataset after 
PCA dimensionality reduction, each rockburst feature is independent of the others.

The PCA calculation steps are as follows:

(1) Assume that the input dataset is D = {x
′

1, x
′

2, . . . , x
′

m} , centralize each sample x′

i , and replace the original 
data with the centralized data as xi = x

′

i −
1
m

∑m
j=1 x

′

j.
(2) Calculate the covariance matrix of the sample, cov(xi , xj) , with i, j = 1, 2, . . . , m.
(3) Use the eigenvalue decomposition method to obtain the eigenvalues and eigenvectors of the covariance 

matrix.
(4) Sort the eigenvalues from large to small, select the eigenvectors corresponding to the k largest eigenvalues, 

and normalize the eigenvectors to create the eigenvector matrix W.
(5) Convert each sample xi to a new sample zi = WTxi and then obtain the output dataset, D′ = (z1, z2, . . . , zm).

Because the classification performance of the 13 machine learning models is inconsistent, the model predic-
tion ability will be the best for different numbers of principal components. Moreover, when using the stacking 
algorithm to integrate multiple models, the number of principal components must be consistent for all models. 
The quality of the model and the generalization ability are reflected in the test set. Therefore, the average pre-
diction accuracy of 13 models in 26 datasets for the statistical test set is used as the basis for determining the 
optimal number of classification features. The results are shown in Fig. 7. In this figure, the numbers 2 to 27 on 
the abscissa represent datasets containing 2 to 27 principal components, and the ordinate represents the average 
prediction accuracy of the 13 models for the test set.

As shown in Fig. 7, the dataset with 14 retained principal components had the highest average prediction 
accuracy of 0.7790. The prediction accuracy rates of SVC, DT, KNN, NBM, GP, MLP, QDA, GB, XgBoost, 

Figure 6.  Heat map of the Pearson correlation coefficients of rockburst features.
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LightBoost, RF, ET, and CatBoost for the test set were 0.7034, 0.7627, 0.8220, 0.6525, 0.7797, 0.7627, 0.7373, 
0.8136, 0.8305, 0.8136, 0.8220, 0.8220, and 0.8051, respectively. Among them, the XgBoost model (0.8305) had 
the highest prediction accuracy, which was higher than that of the ET and KNN models (0.8136) that had the 
highest accuracy for the dataset after prediction processing (Table 4). To illustrate the relationship between the 
average prediction accuracy and the number of retained principal components, Fig. 7 shows two auxiliary lines 
with dashed arrows. In this figure, the accuracy with less than 14 retained principal components exhibits a fluctu-
ating and gradually increasing trend, and the accuracy with greater than 14 retained principal components exhib-
its a fluctuating gradual decline. An appropriate increase in the number of independent principal components can 
improve the accuracy of rockburst prediction, and the rockburst dataset has certain characteristics of mitigating 
dimensional problems. This shows that the rockburst dataset conforms to the family structure described by Vong 
et al.46, and an appropriate increase in the number of rockburst features can improve the rockburst prediction.

Rockburst prediction based on ensemble stacking
After the original rockburst dataset has undergone the Yeo–Johnson transformation, K-means SMOTE over-
sampling, and rockburst feature combinations to derive new features, the learning capabilities of the 13 machine 
learning models are improved to varying degrees. To further improve the accuracy of the rockburst prediction, 
stacking technology in ensemble learning is used to combine multiple machine learning methods to improve 
the model learning  performance48. The ensemble stacking is divided into two layers. The first layer is fitted with 
multiple base models to output new features. The second layer uses the output of the first layer as the input. This 
stacking method for combining multiple learners is a type of meta-learning, which means learning to learn.

The stacking calculation process is divided into three steps, and the flowchart is shown in Fig. 8.
Step 1: First, select n machine learning models as the base model. The dataset with 14 rockburst features is 

divided into a training set (75%) and a test set (25%), and the training set is divided into five parts that are not 
crossed. Second, one of Train 1, Train 2, Train 3, Train 4, and Train 5 in the training set is used as the validation 
set, and the remaining four datasets are used as the training set. Third, the base model performs five-fold cross-
validation training on 75% of the training set and makes predictions based on the test set. Therefore, each set 
of Train data in the training set has a corresponding Predict value. Finally, each set of Train data in the training 
set is stacked, and new features generated by the base model are obtained from the training set; n base models 
generate n new features.

Step 2: Stack the n new features generated in Step 1 vertically for the training set and test set to obtain a new 
rockburst dataset.

Step 3: To prevent model overfitting, a logistic regression learner is used to train and predict the rockburst 
dataset with new features.

The XgBoost model has the highest accuracy in section “Determination of the optimal rockburst feature 
dimension”. Therefore, to demonstrate the advantages of rockburst prediction based on stacking, the confusion 
matrixes of the XgBoost model and stacking model for the test set are shown in Fig. 9. The abscissa in this figure 
represents the predicted result for each rockburst grade, and the ordinate represents the true result for each 
rockburst grade. The diagonal position of the XgBoost model confusion matrix shows that the correct prediction 
numbers for no rockburst, weak rockburst, moderate rockburst, and strong rockburst events are 29, 23, 22, and 
24, respectively. The diagonal position of the stacking model confusion matrix shows that the correct prediction 
numbers for no rockburst, weak rockburst, moderate rockburst, and strong rockburst events are 30, 23, 22, and 
26, respectively. The results show that the stacking model has a stronger generalization ability for no rockbursts 
and strong rockbursts, and its accuracy is higher than that of the highest accuracy XgBoost model.

Figure 7.  Average prediction accuracy of 26 datasets.
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Conclusion

(1) Using literature review methods, 275 sets of domestic rockburst data are collected to construct the original 
rockburst dataset. The proportion of each grade of rockburst, overlaid histograms of each feature in the 
rockburst dataset, and statistical parameters of different rockburst grades show that there are outliers and 
data imbalance phenomena in the dataset. The sparse outlier points are far from the dense point area. The 

Figure 8.  Ensemble stacking flow chart.
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ratio of the rockburst samples of grades I, II, III, and IV is 1.8:2.7:4.3:1.2, and the rockburst samples in each 
grade are unbalanced.

(2) To address the phenomena of outliers and data imbalance in the rockburst dataset, the Yeo–Johnson 
transformation is proposed to normalize the data distribution and reduce the interval between outliers 
and the cluster area, thereby reducing the impact of outliers on the forecast results. The K-means SMOTE 
algorithm is used to oversample the rockburst data set after the Yeo–Johnson transformation to ensure 
the rockburst samples attain both within-class balance and between-class balance. After data processing 
through the Yeo–Johnson transform and K-means SMOTE oversampling, the prediction accuracy of 13 
single machine learning algorithm models is increased by an average of 0.1638.

(3) Rockburst data has a family resemblance structure. Therefore, an appropriate increase in the number of 
features can improve or maintain the prediction ability. A method of multiplying two-by-two based on six 
original features and squaring a single original feature is adopted to generate 21 new features and construct 
a dataset with 27 rockburst features. Then, PCA technology is used to eliminate the correlations between 
features, ensuring each feature is independent of the others. The exhaustive method selects the number of 
features that produces the highest average accuracy of the 13 machine learning algorithms, and the average 
accuracy of the rockburst dataset with 14 features is 0.7790.

(4) After the Yeo–Johnson transformation, K-means SMOTE oversampling, and determination of the optimal 
rockburst feature dimension of the original rockburst dataset, the rockburst data structure is significantly 
improved. To further improve the accuracy of rockburst prediction, the prediction ability is improved at the 
algorithm level. Fourteen rockburst features are used as the input for stacking; multiple machine learning 
algorithms are used as the first-level base model, and a logistic regression classifier is used as the second-
level output model. Compared with 13 single machine learning models optimized for the data structure, 
the ensemble stacking model has an average prediction accuracy improvement of 0.0769.

Data availability
All data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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