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methods and heavy density liquids 
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The ubiquitous occurrence of anthropogenic particles, including microplastics in the marine 
environment, has, over the last years, gained worldwide attention. As a result, many methods 
have been developed to estimate the amount and type of microplastics in the marine environment. 
However, there are still no standardized protocols for how different marine matrices should be 
sampled or how to extract and identify these particles, making meaningful data comparison hard. 
Buoyant microplastics are influenced by winds and currents, and concentrations could hence be 
expected to be highly variable over time. However, since both high density and most of the initially 
buoyant microplastics are known to eventually sink and settle on the seafloor, marine sediments 
are proposed as a suitable matrix for microplastics monitoring. Several principles, apparatuses, and 
protocols for extracting microplastics from marine sediments have been presented, but extensive 
comparison of the different steps in the protocols using real environmental samples is lacking. Thus, 
in this study, different pre-treatment and subsequent density separation protocols for extraction 
of microplastics from replicate samples of marine sediment were compared. Two pre-treatment 
methods, one using inorganic chemicals (NaClO + KOH + Na4P2O7) and one using porcine pancreatic 
enzymes, as well as one with no pre-treatment of the sediment, were compared in combination with 
two commonly used high-density saline solutions used for density separation, sodium chloride (NaCl) 
and zinc chloride (ZnCl2). Both pre-treatment methods effectively removed organic matter, and both 
saline solutions extracted lighter plastic particles such as polyethylene (PE) and polypropylene (PP). 
The most efficient combination, chemical pre-treatment and density separation with ZnCl2, was found 
to extract > 15 times more particles (≥ 100 µm) from the sediment than other treatment combinations, 
which could largely be explained by the high presence and efficient extraction of PVC particles.
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Anthropogenic microparticles, including microplastics, paint particles, tire and road wear particles, are particles 
in size range between 1 and 1000 μm1 that are intentionally or incidentally released into the environment by 
humans2. Land-based activities are the primary source of microplastic particles in the marine environment3. 
Primary microplastics, for intentional inclusion in products and applications, can be detected in the marine envi-
ronment, as well as wear and friction particles, e.g., textile fibers or tire rubber, and the large class of microplastics 
from secondary fragmented macroplastics1. Plastic waste entering the ocean is expected to degrade and fragment 
due to physical, chemical, and biological processes such as UV radiation, wave action, and biodegradation3. Float-
ing particles have been estimated to account for around 1% of the amount of plastic waste entering the oceans 
on a global scale4. Most of these plastic particles, in fact, will sooner or later sink and end up on the seafloor5, 
making sediment a sink for microplastics and thereby also a potential exposure route for these particles to 
marine organisms6,7. From a monitoring perspective, sampling surface water or the water column provides snap-
shot information of microplastic pollution at a specific site7. However, plastic particles floating on the surface 
are highly influenced by wind, tides, and currents at the time of sampling7. In contrast, sediment microplastic 
monitoring can provide a more stable image of long-term accumulation, integrating the local or regional pol-
lution levels on the time scales of years to decades8,9. This is also why monitoring most conventional hazardous 
substances is based on an analysis of sediments10–14.

There is no standard method for the isolation of microplastic particles from sediments. However, the most 
common approach is density separation with different saline solutions; based on the differences in density 
between plastic and sediment particles, light particles such as microplastics float while heavier particles sink. 
Commonly used high-density liquids are sodium chloride (NaCl) with a density of 1.2 g/cm3, zinc chloride 
(ZnCl2) with a density between 1.5 and 1.7 g/cm3, or sodium iodide (NaI) with a density between 1.6 and 1.8 g/
cm315–18. First, the sediment is mixed with the high-density liquid, agitated, and left to settle. The heavier mineral 
particles of the sediment sink to the bottom while the lighter particles, such as microplastics and natural organic 
particles, float to the surface due to their lower relative density. This density separation can be achieved in a 
beaker, separation funnel, or specially designed sediment extractors, e.g., the Munich Plastic Sediment Separator 
(MPSS)19. Next, the supernatant or buoyant fraction is filtered through one or a set of membranes with different 
mesh sizes, sorting the particles into size fractions to facilitate analysis. The membranes are then analyzed visu-
ally and/or spectroscopically20. Protocols can include pre-treatment of the sediments prior to extraction21,22, to 
digest natural organic matter to minimize interference during analysis and dissociate the matrix and thus make 
the microplastic particles more accessible for extraction. However, most protocols use post-extraction sample 
preparation based on elaborate treatment with enzymes or oxidative chemical reagents16,23–25 to facilitate subse-
quent analysis using spectroscopy26–28. The selected treatment should be efficient in removing interfering natural 
particulates while not chemically or physically damaging the plastics29–31.

In monitoring recommendations10,14,32, a subset of visually inspected microplastics representative of the 
sample is often proposed to be validated by spectroscopic identification. However, it is not expressed which 
particles should be selected other than that they should be representative of the particles found within the matrix. 
The selection itself may present a potential bias in the microplastic analysis of environmental samples. Visual 
analysis, which includes both visual and tactile identification and sometimes particle heating, i.e., poking the 
particle with a hot needle, has been criticized because of the risk of misidentification, resulting in false negative 
and false positive identification of plastic particles20,33–35. On the other hand, spectroscopy builds on chemical 
spectra interpretation36, and can provide spectroscopic clues on microplastic identification, including specific 
polymer composition2. However, computer-based database match identification can be prone to mismatch37,38, 
and operator bias may also lead to bias in spectroscopic identification39. Furthermore, spectroscopically identify-
ing all particles in a sample manually is time-consuming, and agreement on the criteria for spectral matching has 
not been decided. Automated higher throughput methods are being developed and used, allowing all particles 
to be probed spectroscopically using a fixed computerized instruction considered to minimize operator bias39,40. 
However, from a monitoring perspective, the automated methods are not yet fully established and proven in 
terms of time and cost-efficiency36,40.

The main aim of this study was to evaluate the efficiency of different pre-treatments, density separation 
solutions, and their combinations for the extraction of microplastics from natural muddy marine sediments. 
Moreover, to evaluate the mutual accuracy of identification methods, visual approach followed by chemical 
identification. Thus, we compared three conditions, a non-pre-treatment of the sediment, enzymatic treatment, 
and inorganic chemical treatment in combination with two density separation solutions, NaCl and ZnCl2 (3 
treatments and 2 density separation solutions, n = 3× 2 = 641).

Materials and methods
Sediment sampling.  Ten sediment cores were collected at a station in Askeröfjorden, N58°5′21′′ E11°48′6″ 
(center), outside Stenungsund, Swedish west coast, on 24th October 2018, using a Gemini corer. The sediment 
was characterized following recommendations from the Swedish Geotechnical Society42 as a sandy, silty gyttja-
clay, bioturbation and benthic macrofauna species were identified, with the highest abundance of the species 
Amphiura spp. and Arctica islandica. The top 2 cm from all cores were pooled, homogenized in a 10 L stainless 
steel pot with a stainless-steel spoon, and transferred to 15 glass containers with glass lids, each with a volume of 
200 mL (approximately 314 g) (Table 1). All samples were stored at 8 °C until further analysis.

Sediment treatment.  Sediment samples were weighed before a subsample of 5 mL was retrieved and dried 
at 105 °C for 24 h for analysis of water content. The sediment samples (n = 15) were divided into three groups, 
one group was treated with inorganic chemicals (n = 4), one with enzymes (n = 5), and the third remained 
untreated (n = 6). The treatment with inorganic chemicals is based on a protocol developed by Strand and 
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Tairova 201622 but slightly modified as it consisted of a mixture of 0.67 mol/L NaClO, 0.45 mol/L KOH, and 
0.022 mol/L Na4P2O7. Approximately 400 mL of the chemical treatment (twice the volume of the sediment) was 
added to the glass containers with glass lids with the sediment. The samples were incubated at room temperature 
for 1 h on an oscillating stirring table at 160 rpm. An additional rinsing step was required after the chemical 
treatment to lower the pH and avoid precipitation of zinc hydroxides. Subsequently, the sediment was washed 
by adding Milli-Q water followed by vigorous shaking and centrifugation for 30 min at 1000 rpm. This washing 
procedure was repeated three times. The supernatant was removed between repetitions, and new Milli-Q water 
was added. The supernatant was filtered through a 50 μm filter, which was kept for further analysis. After cen-
trifugation, the sediments were transferred back to the glass containers. Porcine pancreatic enzymes were used 
for the enzymatic digestion of organic matter43. A buffered enzyme working solution was prepared by dissolving 
one capsule of the pharmaceutical enzyme (Creon 40 000, Abbott Laboratories GmbH, Germany, Mylan) per 
10 mL of Tris hydrochloride solution (Trizma, pH 8.0, 1 M, 0.2 μm filtered, Sigma-Aldrich, T3038, USA). Com-
plete dissolution was achieved through gentle warming (30 °C) and shaking at 125 rpm for 30 min on a heated 
incubation shaker (New Brunswick Scientific, Innova 40). Ten mL of the working solution was added per g wet 
weight (WW) of sediment in a prewashed glass jar. The sediment-enzyme solution was mixed, and the pH was 
assessed using a pH indicator stick. The pH was adjusted to 8.0 by adding more Tris hydrochloride solution if 
necessary. The filled glass containers were lidded and placed on vigorous shaking (150 rpm) at 37.5 °C overnight 
on the incubation shaker.

The level of degradation was quantified by TOC analysis using an elemental analyzer coupled to an isotope 
ratio mass spectrometer (20–22, Secron Ltd., Crewe, UK) before and after degradation treatment.

Density separation and filtration.  To compare the efficacy of two different widely used density separa-
tion solutions, NaCl (density 1.2 g/cm3) and ZnCl2 (1.8 g/cm3), the pre-treated samples were divided into two 
groups further processed with ZnCl2 (n = 7) or NaCl (n = 8). The density separation was performed using the 
Kristineberg Microplastic Sediment Separator (KMSS). This separator has been designed in-house with inspira-
tion from the Munich Plastic Separator19, but is smaller, both in height and width, with a steeper incline on the 
standpipe with a glass cylinder above the sediment container to monitor the sedimentation (Fig. 1).

After pre-treatment, the sediment samples were moved to the bottom sediment container of the KMSS, the 
standpipe part of the tower was mounted, and the rotor, positioned in the bottom of the tower, was turned on. The 
saline solution was introduced through the bottom valve and filled to 85% of the tower’s volume. The rotor was 
turned off three hours later, and the sediment was allowed to settle. After 12 h of settling, the dividing chamber 
was mounted on top of the standpipe, and the tower was filled with the density separation fluid, either ZnCl2 or 
NaCl. When filled, the ball valve was closed, the liquid level lowered, and the dividing chamber was removed. 
Next, the dividing chamber was turned upside down, and the solution was filtrated. The sediment exposed to 
the pre-treatment with inorganic chemicals and separated with ZnCl2 was filtrated through a 300 μm polyamide 
(PA) mesh and the remaining top solution was collected, and a second separation with ZnCl2 in a glass beaker 
was performed due to high mineral content. After the second-density separation (agitation and left to settle for 
24 h), the solution was filtered through a PA filter with mesh sizes 100 μm. For the enzymatic and none treated 
samples as well as all samples extracted with NaCl, only one separation was performed since fewer mineral par-
ticles were extracted compared to pre-treated with inorganic chemicals and separation with ZnCl2. The solution 
was filtrated through two PA filters with mesh sizes 300 μm, and 100 μm. After filtration, the filters were rinsed 
with Milli-Q water to remove salt crystals.

Table 1.   Identified microparticles in blank samples and sediment samples treated with inorganic 
chemicals, enzymes and with no treatment for both density separation solutions, ZnCl2 and NaCl. a Includes 
anthropogenic particles identified from the supernatant of washed samples.

Density solution Pre-treatment
Mean number of identified 
microparticles > 300 μm per sample

Mean number of identified microparticles 
300–100 μm per samplea Mean dry weight (g)

ZnCl2

None 30 120 268

Inorganic chemicals 14 1058 380

Enzymatic 29 250 310

ZnCl2

Blank none 1 7 314

Blank inorganic chemicals 0 6 314

Blank Enzymatic 0 5 314

NaCl

None 14 149 324

Inorganic chemicals 3 259 319

Enzymatic 13 254 300

NaCl

Blank none 7 5 314

Blank inorganic chemicals 3 3 314

Blank enzymatic 4 9 314
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QA/QC.  All equipment used during sampling was cleaned and rinsed in the laboratory with Milli-Q water 
before drying in a plastic-free flume hood. For the storage of sediment samples, glass containers with glass lids 
were used, and a stainless-steel pot and a stainless-steel spoon were used for homogenization of the sediment. All 
samples were stored in their glass bottles until processed in the lab. All equipment and lab surfaces were cleaned 
before laboratory work, and only cotton lab coats and clothes were worn. The ZnCl2 was filtrated through three 
membranes 10 μm, 5 μm, and 1 μm. The NaCl was filtrated through 10 μm.

Six blank samples without sediment were processed, one for each combination of pre-treatment and density 
separation solution. All blanks were treated as their corresponding sediment sample from cleaning the bottles 
before sampling, in the field, during storage, treatment, separation, and analysis.

Analysis.  The analysis workflows followed the current consensus guidelines, either published or available as 
working drafts from regional seas conventions and the European Commission10,14,32. All filters were first visu-
ally inspected with a stereomicroscope (Leica M205 C 80–160× Wetzlar, Germany). Subsequently, all particles 
that were visually identified as suspected anthropogenic following Karlsson et al. 202044 were transferred with 

Figure 1.   The Kristineberg microplastic sediment separator (KMSS) designed after the Munich plastic 
separator (Imhof et al., 2012). Part 1, sediment container with a rotor and a bottom valve, part 2, glass cylinder, 
part 3 standpipe, and top part dividing chamber with ball valve and filter holder.
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a tweezer to different aluminum-oxide filters with a pore size of 200 nm (Whatman Anodisk 25). One filter for 
each treatment and size fraction, i.e., the particles collected on the 300 μm mesh were moved to one aluminum-
oxide filter, and the particles from the 100 μm were moved to another. The particles collected from the centrifu-
gation solution were also transferred to one filter. Two filters were used if there were more suspected particles 
than what could fit on one Anodisk filter. The entire area of the Anodisk filters with particles was imaged with 
a light microscope (Zeiss, AxioImager). All particles (collected on the 300 μm filters, 100 μm filters, and from 
the centrifugation solution, 50 μm) were characterized according to their visual appearance, following Karlsson 
et al. 202044 were their 2D shape, 3D shape, solidity, color, and classical visual identification were noted. Sub-
sequently, all particles from the 300 μm filter and all particles on eight randomly chosen 100 μm samples were 
chemically identified with Raman microscopy (Witec, alpha 300R) using a 532 nm laser and 600 g/mm grating. 
The laser power was selected based on the polymer, signal intensity, size of the particles, and magnification. 
Spectra were measured in a wavenumber range of 200 to 3500 cm−1 and were compared to our in-house library 
for identification (HQI minimum 75, majorities above 80). The library consists of spectra we have obtained 
from known plastic particles, including weathered particles, and spectra from the RUFF45 and ST Japan spectral 
databases. For comparison, 300 µm filters from two randomly chosen samples were also chemically identified 
with Fourier-transform infrared spectroscopy, FTIR (Thermo Scientific Nicolet iN10) using transmission mode 
(256 scans, resolution 4 cm−1, spectral range 4000–675 cm−1, detector cooled by liquid nitrogen and correlated 
against 256 background scans). The particles in the supernatant from the centrifugation solution (all inorganic 
pre-treatments and one of the enzymes pre-treated) were first visually characterized before being analyzed with 
Raman microscopy. The remaining particles on the PA filter (300 μm, 100 μm, and 50 μm from centrifugation 
solution) from two random samples, i.e., the particles that were not visually identified as anthropogenic parti-
cles, were analyzed with Raman microscopy to identify false negatives.

Results and discussion
Particle identification, sizes, and concentrations.  The anthropogenic particles extracted from the 
sediment were first categorized using a stereomicroscope according to their visual and tactile appearance44,46. 
The categories used were semi-transparent microplastics, white microplastics, black firm elastomer, paint parti-
cles, synthetic fibers, and other anthropogenic microparticles (Fig. 2). On the 300 μm filter, most of the plastic 
particles were semi-transparent (59% of 277 particles) and visually divided into three subclasses based on appar-
ent differences in morphology. Subclass 1 had a stripe pattern, subclass 2 was built up by spherical patterns, 
and subclass 3 was the semi-transparent particles that had neither stripes nor a spherical pattern. All particles 
within visual subclass 1 were confirmed to be PE (n = 106), and all particles within subclass 2 were confirmed 
to be PP (n = 15) (Fig. 3). In subclass 3, polymers such as PS and PMMA were identified. This implies that, in 
this case, visual identification could be used to separate the semi-transparent particles into subclasses with dif-
ferent polymer compositions. The specific surface patterns of the semi-transparent PP and PE particles indicate 
that they both derive from distinct sources. In total, 66% of the semi-transparent particles on the 300 μm filter 
were identified as PE and 10% as PP (Fig. 4A). As expected, more anthropogenic particles were collected on the 
100 μm filter, in total, 4329 particles (Fig. 4B, Table 1). On the 100 µm filters, there were two main categories of 
plastic particles, semi-transparent and white, representing 46% and 38% of the total number, respectively. All 
spectroscopy analyzed particles (n = 335) were confirmed to be PE, PP, and PVC, as identified visually. From 
the supernatant of the centrifugation samples, the majority of the particles (64%) were categorized as semi-
transparent and spectroscopically identified as PE (n = 47) and PP (n = 9).

The highest concentration, 2.82 microplastic particles per g dry weight (DW) of sediment, was found in the 
samples exposed to the inorganic chemical pre-treatment and extracted with ZnCl2. Most of these particles 
(74%) were identified as PVC (Fig. 4). The number of PVC particles was distinctly higher in the combination 
of inorganic chemical pre-treatment and ZnCl2 compared to the other treatments, 1.81 to 2.29 PVC particles/g 
DW sediment compared to 0–0.12 PVC particles/g DW sediment (Fig. 4C).

White (PVC) Paint Black elastomers Fiber Other microparticlesSemi-transparent

Figure 2.   Categories of typical particles, semi-transparent plastic particles, white (PVC particles), paint 
particles, black elastomers, synthetic fibers, and other anthropogenic microparticles.
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The concentration of semi-transparent plastic particles, i.e., mainly PP and PE particles, ranged from 0.25 to 
0.76 particles per g DW sediment. The highest concentrations of semi-transparent microplastics were found in 
samples pre-treated with enzymes and extracted with NaCl. The lowest concentration was identified in samples 
which had not been treated to remove labile organic matter, independent of density separation solution. How-
ever, a certain difference in particle distribution could be expected, regardless of treatment or density separation 
solution, since it is not possible to obtain sediment samples that are perfectly identical.

Blank samples.  From the blanks, only between 5 and 13 particles per sample were extracted, including only 
the categories semi-transparent microplastics, synthetic fibers, and other anthropogenic microparticles. In the 
blank samples extracted with ZnCl2, most anthropogenic particles belonged to the category of other anthropo-
genic microparticles, while in those extracted with NaCl, semi-transparent plastic particles dominated, followed 
by synthetic fibers and other anthropogenic microparticles. White microplastic particles were not extracted 
from any of the blank samples. The blank sample with the highest number of extracted microplastics was from 
the pre-treatment with enzymes and extracted with NaCl, where 13 particles were identified, and 10 of these 
were categorized as semi-transparent microplastics, subclass 3. All particles visually identified as anthropogenic 
in the blank samples are shown in Fig. 4.

PP

PP

PE

PE

Subclass 1 Subclass 2

Figure 3.   Semi-transparent plastic particles in subclass 1 (PP) and subclass 2 (PE).

None Chemical Enzymatic Blank None Chemical Enzymatic Blank None Chemical Enzymatic Blank None Chemical Enzymatic Blank

A B

C

NaClZnCl2 NaClZnCl2

NaClZnCl2

A

NaClZnCl2

B

NaClZnCl2

Figure 4.   Particle concentration of anthropogenic microparticles for particles (A) larger than 300 μm, (B) 
between 100 and 300 μm, and (C) larger than 100 μm.
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Comparing the extracted particles from the blank with the particles in the sediment samples show a sig-
nificant difference in plastic concentrations between the blanks and the sediment samples, p < 0.001 (2 sample 
T-test) (Fig. 4).

False negatives using visual identification.  There is a scientific concern regarding the visual identi-
fication of microplastic particles because of the risk of bias between operators and the risk of both false posi-
tive and false negative identifications20,33–35. The particles remaining on the PA membranes after removal of all 
particles identified with stereomicroscopy as being composed of plastic, i.e., all particles visually considered 
to be non-anthropogenic, were analyzed with Raman microscopy. On the membranes from the pre-treatment 
with enzymes and extracted with NaCl, 3 particles on the 300 μm and 11 particles on the 100 μm were identi-
fied as plastics, representing 2% and 13%, respectively. On membranes from the pre-treatment with inorganic 
chemicals and extracted with ZnCl2, there were 5 particles remaining and later identified as plastic on each of 
the membranes, representing 1% of the total amount of particles. This shows that, at least in the present study, a 
skilled operator was able to identify plastic particles down to 100 μm with few false negatives, using visual and 
tactile identification techniques.

Effects of pre‑treatment steps.  The two pre-treatments (inorganic chemicals and enzymatic) that 
served to reduce the organic matters stickiness in the sample, thus breaking microplastics-matrix adhesion, was 
functionally evaluated with TOC analysis. The inorganic chemical pre-treatment had a TOC content of 1.55%, 
whereas the untreated sample had 2.89%. On the other hand, the enzymatic treatment showed a higher TOC 
level, 4.02%, most likely since enzymes add carbons to the sample. However, from the recovery rates, it is clear 
that for particles > 300 μm, the identified concentrations of particles from the different pre-treatment methods 
were similar to the untreated samples showing that if only > 300 μm particles are of interest, a pre-treatment is 
not necessary. However, for smaller lighter particles (PVC excluded) between 100 and 300 μm, a significant dif-
ference in concentrations between pre-treated and untreated samples was found (p = 0.00116). Moreover, there is 
a significant difference (p < 0.001) in plastic concentrations found in the sediment samples pre-treated with inor-
ganic chemicals and extracted with ZnCl2, mainly due to this combination’s high extraction of PVC particles.

Our results are in agreement with Enders et al. (2017), who tested KOH in combination with NaClO for 
digestion of fish stomach and showed that this treatment effectively digested the tissue. Moreover, they tested 
if the treatment affected the Raman spectra of 12 common polymers and only found a low peak alternation 
for acrylonitrile butadiene styrene (ABS) particles; however, they were still able to identify this polymer30. The 
enzymatic treatment has also been shown to effectively digest tissue43 without harming common plastics47.

Density separation solution.  There was a higher extraction efficiency of plastic particles with ZnCl2 than 
with NaCl. Heavier polymers such as PVC were recovered with ZnCl2 (Fig. 4) but not with NaCl, as is expected 
based on the lower density of the NaCl saline solution. From a monitoring perspective, NaCl is an attractive 
alternative since it is non-toxic and has a lower cost than ZnCl2 (technical grade ZnCl2 is ~ 4 euros per kg). 
However, NaCl is not recommended when aiming to target particles with a higher density than 1.2 g/cm3, e.g., 
Polyethylene terephthalate (PET) or PVC. For a comprehensive polymer extraction, a higher density solution 
(> 1.5 g/cm3) should be recommended since it can extract the majority of polymers also including PET and 
PVC. A density of at least 1.6 g/cm3 for saline density separation solutions was recently recommended for Arctic 
microplastic monitoring programs14.

Conclusions
Higher concentrations of microplastic particles were identified in samples pre-treated with either inorganic 
chemicals or enzymes to remove labile organic matter, as compared to non-pre-treated samples, showing that 
a pre-treatment step improves the extraction of microplastics. However, if only particles > 300 μm are consid-
ered, the pre-treatment step was not necessary. Both density separation solutions, NaCl and ZnCl2, successfully 
extracted lighter microplastic particles such as PE and PP. In addition, the combination of the inorganic pre-
treatment with ZnCl2 successfully extracted PVC particles. From a monitoring perspective, our results are in 
agreement with the Arctic Monitoring and Assessment Program (AMAP)14, which recommends a density of 
at least 1.6 g/cm3 to achieve a comprehensive polymer extraction which also includes PET and PVC particles.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able requests.

Received: 19 April 2022; Accepted: 31 August 2022

References
	 1.	 Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for 

plastic debris. Environ. Sci. Technol. 53(3), 1039–1047 (2019).
	 2.	 Mattsson, K. et al. Monitoring anthropogenic particles in the environment: Recent developments and remaining challenges at the 

forefront of analytical methods. Curr. Opin. Colloid Interface Sci. 56, 101513 (2021).
	 3.	 Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62(8), 1596–1605 (2011).
	 4.	 van Sebille, E. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10(12), 124006 (2015).
	 5.	 Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1(4), 140317 (2014).



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15459  | https://doi.org/10.1038/s41598-022-19623-5

www.nature.com/scientificreports/

	 6.	 Verla, A. W. et al. Microplastic-toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN 
Appl. Sci. 1(11), 1–30 (2019).

	 7.	 Miller, E. et al. Recommended best practices for collecting, analyzing, and reporting microplastics in environmental media: Les-
sons learned from comprehensive monitoring of San Francisco Bay. J. Hazard. Mater. 409, 124770 (2021).

	 8.	 Harris, P. T. The fate of microplastic in marine sedimentary environments: A review and synthesis. Mar. Pollut. Bull. 158, 111398 
(2020).

	 9.	 Dahl, M. et al. A temporal record of microplastic pollution in Mediterranean seagrass soils. Environ. Pollut. 273, 116451 (2021).
	10.	 GESAMP, Guidleines or Guidelines or the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean. (Kershaw 

P.J., Turra A., & Galgani, F. eds.) (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts 
on the Scientific Aspects of Marine Environmental Protection). in Rep. Stud. GESAMP No. 99. 130 (2019).

	11.	 Bosker, T., Guaita, L. & Behrens, P. Microplastic pollution on Caribbean beaches in the Lesser Antilles. Mar. Pollut. Bull. 133, 
442–447 (2018).

	12.	 Lots, F. A. E. et al. A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in 
European beach sediment. Mar. Pollut. Bull. 123(1–2), 219–226 (2017).

	13.	 Pinon-Colin, T. J. et al. Microplastics on sandy beaches of the Baja California Peninsula, Mexico. Mar. Pollut. Bull. 131(Pt A), 
63–71 (2018).

	14.	 AMAP. AMAP Litter and Microplastics Monitoring Guideline. Version 1.0. 257. (Arctic Monitoring and Assessment Programme 
(AMAP), Tromsø, 2021). 

	15.	 Bellasi, A. et al. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and 
green alternative. Chemosphere 278, 130357 (2021).

	16.	 Prata, J. C. et al. Methods for sampling and detection of microplastics in water and sediment: A critical review. Trac-Trends Anal. 
Chem. 110, 150–159 (2019).

	17.	 Van Cauwenberghe, L. et al. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013).
	18.	 Cutroneo, L. et al. Considerations on salts used for density separation in the extraction of microplastics from sediments. Mar. 

Pollut. Bull. 166, 112216 (2021).
	19.	 Imhof, H. K. et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic 

environments. Limnol. Oceanogr.-Methods 10, 524–537 (2012).
	20.	 Hidalgo-Ruz, V. et al. Microplastics in the marine environment: A review of the methods used for identification and quantification. 

Environ. Sci. Technol. 46(6), 3060–3075 (2012).
	21.	 Jiang, C. et al. Microplastic pollution in the rivers of the Tibet Plateau. Environ. Pollut. 249, 91–98 (2019).
	22.	 Strand, J. & Tairova, Z. Microplastics particles in North Sea sediments 2015. in Scientific Report from DCE-Danish Center for 

Environment and Energy 2016. No. 178 (2016).
	23.	 Loder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51(24), 14283–14292 

(2017).
	24.	 Nuelle, M. T. et al. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 184, 161–169 

(2014).
	25.	 Duan, J. et al. Development of a digestion method for determining microplastic pollution in vegetal-rich clayey mangrove sedi-

ments. Sci. Total Environ. 707, 136030 (2020).
	26.	 Bordos, G. et al. Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. 

Chemosphere 216, 110–116 (2019).
	27.	 Su, L. et al. Microplastics in Taihu Lake, China. Environ. Pollut. 216, 711–719 (2016).
	28.	 Haave, M. et al. Different stories told by small and large microplastics in sediment—First report of microplastic concentrations in 

an urban recipient in Norway. Mar. Pollut. Bull. 141, 501–513 (2019).
	29.	 Pfeiffer, F. & Fischer, E. K. Various digestion protocols within microplastic sample processing-evaluating the resistance of different 

synthetic polymers and the efficiency of biogenic organic matter destruction. Front. Environ. Sci. 8, 572424 (2020).
	30.	 Enders, K. et al. Extraction of microplastic from biota: Recommended acidic digestion destroys common plastic polymers. ICES 

J. Mar. Sci. 74(1), 326–331 (2017).
	31.	 Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).
	32.	 Hanke, G., et al. Guidance on Monitoring of Marine Litter in European Seas. EUR 26113. JRC83985 (Publications Office of the 

European Union; Luxembourg, 2013).
	33.	 Lenz, R. et al. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improve-

ment. Mar. Pollut. Bull. 100(1), 82–91 (2015).
	34.	 Löder, M.G.J. & Gerdts, G. Methodology used for the detection and identification of microplastics—A critical appraisal. in (Berg-

mann M., Gutow L., Klages M. eds.) Marine Anthropogenic Litter. (Springer, 2015).
	35.	 Renner, K.O., et al. A comparison of different approaches for characterizing microplastics in selected personal care products. 

Environ. Toxicol. Chem. (2021).
	36.	 Xu, J. L. et al. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. Trac-Trends Anal. 

Chem. 119, 115629 (2019).
	37.	 Fernandez-Gonzalez, V. et al. Impact of weathering on the chemical identification of microplastics from usual packaging polymers 

in the marine environment. Anal. Chim Acta 1142, 179–188 (2021).
	38.	 Renner, G., Schmidt, T. C. & Schram, J. A new chemometric approach for automatic identification of microplastics from environ-

mental compartments based on FT-IR spectroscopy. Anal. Chem. 89(22), 12045–12053 (2017).
	39.	 Primpke, S. et al. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared 

(FTIR) spectroscopy. Anal. Bioanal. Chem. 410(21), 5131–5141 (2018).
	40.	 Primpke, S. et al. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image 

analysis. Anal. Methods 9(9), 1499–1511 (2017).
	41.	 Beveridge, C. Basic Maths for Dummies. 378. (Wiley, 2011).
	42.	 Eriksson, L.G. Jordarternas indelning och benämning. in Svenska Geotekniska Föreningen 2016. SGF Rapport 1 (2016).
	43.	 von Friesen, L. W. et al. An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. 

Mar. Pollut. Bull. 142, 129–134 (2019).
	44.	 Karlsson, T. M. et al. Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification 

of microplastics in surface waters. Environ. Sci. Pollut. Res. Int. 27(5), 5559–5571 (2020).
	45.	 Armbruster, T., & Danisi, R.M. Highlights in Mineralogical Crystallography. 201. (Walter de Gruyter GmbH, 2016).
	46.	 Jarlskog, I. et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total 

Environ. 729, 138950 (2020).
	47.	 Piarulli, S. et al. Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of 

extraction methods, including microfibres. Environ. Pollut. 251, 117–127 (2019).



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15459  | https://doi.org/10.1038/s41598-022-19623-5

www.nature.com/scientificreports/

Acknowledgements
We want to thank Kjell Nordberg and the R/V Oscar von Sydow crew, Kalle Haikonen for a significant contribu-
tion to the construction of the density separation tower, and Chiranart Petchpromsorn for the graphical drawing 
of the density separation tower.

Author contributions
Ka.M., Ke.M., M.G. and M.H. developed the idea for this research, the conception and design of the work. 
Ke.M. and M.H. designed the separator, KMSS E.E. and M.G. performed the extraction of the particles. Ke.M. 
visually identified the anthropogenic particles. Ka.M. measured and identified the particles with LM, Raman 
microscopy and FTIR and was a major contributor in writing the manuscript. Ka.M., Ke.M. and M.H. analyzed 
and interpreted the data. All authors read and approved the final manuscript.

Funding
Open access funding provided by University of Gothenburg. This study was funded by the Nordic Council of 
Ministers, Harmic project, the Swedish EPA, JPI Oceans project BASEMAN, JPI Ocean project ANDROMEDA, 
and JPI Ocean project FACTS.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Comparison of pre-treatment methods and heavy density liquids to optimize microplastic extraction from natural marine sediments
	Materials and methods
	Sediment sampling. 
	Sediment treatment. 
	Density separation and filtration. 
	QAQC. 
	Analysis. 

	Results and discussion
	Particle identification, sizes, and concentrations. 
	Blank samples. 
	False negatives using visual identification. 
	Effects of pre-treatment steps. 
	Density separation solution. 

	Conclusions
	References
	Acknowledgements


