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Resting‑state BOLD temporal 
variability in sensorimotor 
and salience networks underlies 
trait emotional intelligence 
and explains differences in emotion 
regulation strategies
Federico Zanella1, Bianca Monachesi1* & Alessandro Grecucci1,2

A converging body of behavioural findings supports the hypothesis that the dispositional use 
of emotion regulation (ER) strategies depends on trait emotional intelligence (trait EI) levels. 
Unfortunately, neuroscientific investigations of such relationship are missing. To fill this gap, we 
analysed trait measures and resting state data from 79 healthy participants to investigate whether 
trait EI and ER processes are associated to similar neural circuits. An unsupervised machine learning 
approach (independent component analysis) was used to decompose resting‑sate functional networks 
and to assess whether they predict trait EI and specific ER strategies. Individual differences results 
showed that high trait EI significantly predicts and negatively correlates with the frequency of use 
of typical dysfunctional ER strategies. Crucially, we observed that an increased BOLD temporal 
variability within sensorimotor and salience networks was associated with both high trait EI and the 
frequency of use of cognitive reappraisal. By contrast, a decreased variability in salience network 
was associated with the use of suppression. These findings support the tight connection between 
trait EI and individual tendency to use functional ER strategies, and provide the first evidence that 
modulations of BOLD temporal variability in specific brain networks may be pivotal in explaining this 
relationship.

Emotion regulation (ER) is employed to modify current emotional states and adaptively respond to the 
 environment1–4. Not surprisingly, difficulties in ER are involved in compromised well-being and mental  health5,6. 
Namely, the selection of specific strategies and the excessive or rigid usage of them has been associated with 
negative  outcomes7–9 contributing to a general distinction between dysfunctional and functional strategies. For 
example, some studies reported that suppression strategy (i.e., the inhibition of the expressive reactions to the 
emotional events) fails in engendering subjective relief after experiencing negative emotions, and it is associated 
with costs in terms of physiological, cognitive and social  functioning5,10,11, as well as with decreased well-being12 
and several psychopathologies (e.g.13,14). Differently, reappraisal strategy (i.e., the ability of cognitively changing 
the impact of the emotional event) has been generally considered an adaptive strategy, which is associated with 
healthiness and personal  satisfaction5 improving the affective  state15 and successfully modulating the emotion-
related peripheral physiological  indexes16 and the neural  activity17.

The simplistic distinction between functional and dysfunctional strategies, however, risks to conceal the role 
of individual differences in selecting and recurrently using regulation  strategies18. What leads someone to use 
one given strategy or to use it more often than others? Even though individuals’ dispositions may be crucial to 
comprehend the variability behind the selection and usage of emotion regulation  strategies19, investigations in 
this sense are still  scant18,20. Only recently, an interesting line of research suggests a link between ER processes and 
the construct of emotional intelligence  (EI18), with some authors suggesting a theoretical framework to explain 
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such a relationship (e.g.21). In literature, EI can be operationalized both as a set of cognitive abilities, which allows 
the individual to perceive, reason about, and manage emotional information (ability EI—what individuals are able 
to do), and as a set of personal dispositions related to emotional events (trait EI—what individuals typically  do18). 
Especially trait EI has been suggested to play a critical role in the ER  processes19, since personality traits may 
shape individual preferences, interpersonal behaviours, and intents, which are all likely to influence the choice 
of ER strategy (e.g.22). In line with that, behavioural studies reported that individuals with high levels of trait EI 
tend to use contextually appropriate coping strategies, whereas individuals with low levels of EI adopted non-
adaptive  ones18,23–25. Differently, similar levels of ability EI may result in adaptive as well as deviant  responses22,26, 
and there is evidence that the ability EI fails in predicting specific emotion regulation  processes27,28, or when it 
does, it has to be coupled with trait EI to comprehend the beneficial consequences of the adaptive  response29. 
The measure of traits EI, then, not only represent an individual’s predisposition measure itself, but it also seems 
promising to explain how ER processes are selected. However, the relationship between trait EI and specific ER 
strategies, the nature and the extent of their point of connection remain unclear, especially in neural terms. To 
fill this gap, the present study is aimed to investigate whether the link between trait EI and ER relies on a shared 
neural substrate, provided more in deep their relationship in terms of self-reported measures.

So far, the few  functional30,31 and  structural32 neuroimaging studies dealing with trait EI seem to support at 
least a partial neural overlap with findings from neuroimaging studies of  ER33–36. Indeed, both  EI30,31 and ER 
 processes33–38 rely on task-related activity in brain areas subserving emotion processing (limbic system) and 
higher executive functioning (prefrontal regions). Similarly, from a structural neuroimaging perspective, it has 
been shown that grey matter alterations in fronto-limbic brain areas correlates with specific ER  processes39,40 
and traits  EI32.

Besides structural and task-related functional evidence, some authors relied on resting-state functional con-
nectivity (RS-FC) to understand the neural signature of ER and EI. RS-FC is a valuable source to understand 
the neural mechanisms behind several psychological  states20,41,42, as well as emotional  processes17,33. In addition, 
altered functional connectivity seems to be associated with many  psychopathologies43,44 as  ER5 and EI also  are45. 
Evidence from resting-state studies showed that higher trait EI scores was associated with the amplitude of low-
frequency fluctuations (ALFFs) in networks related to social emotion processing and cognitive control (Ref.46, but 
 see47 for null results). Moreover, Takeuchi et al.48, showed that trait EI was associated with components of social 
cognition and somatic marker circuitry neural networks. They found the trait EI score positively correlated with 
resting-state activity between medial prefrontal cortex (mPFC) and the precuneus, the intracalcarine cortex, and 
between anterior insula (aIC) and the right portion of the dorsolateral prefrontal cortex (dlPFC). In ER context, 
Pérez et al.49 reported a negative correlation between the connectivity of the right basolateral amygdala, the left 
insula, and the supplementary motor cortex (SMA) with the frequency of use of cognitive reappraisal, and a 
positive correlation between emotion suppression strategy and the activity of the right basolateral amygdala, 
the dorsal anterior cingulate (dACC), the supplementary motor cortex (SMA), and in the left medial portion of 
the amygdala. In contrast, Uchida et al.50 reported a negative correlation between functional connectivity in the 
amygdala and medial prefrontal cortex (mPFC) with the success of applying the cognitive reappraisal strategy. It 
is important to note also that Dörfel et al.51, failed to replicate and extend both the previously mentioned studies. 
Notably, the inconsistencies in ER and EI studies, may derive from some methodological issues.

Indeed, the majority of studies used massive univariate approaches, and a priori selected  regions30,36,46,49,51. 
Widely distributed processes, such as ER or EI, may be better captured using multivariate approaches and a 
network  perspective52. For this reason, in the present study, we adopted a whole brain data-driven approach 
(independent component analysis, ICA) that allows us to identify the variations of BOLD signal activity over 
time within major brain networks rather than considering signals from a priori decided regions of interest. ICA, 
being a blind source separation method, is an unsupervised machine learning approach able to identify non-
overlapping independent neural  circuits53. Such independent circuits represent meaningful naturally separated 
circuits that bypass anatomically and histologically based regions, and have the advantage of reducing brain 
complexity into low dimensional  spaces52. The BOLD temporal variability (SD BOLD) for every resting-state 
network was used to predict trait EI and ER strategies. BOLD variability is defined as a fluctuation in neural 
activity over time, and an increment in this measure reflects greater functional network complexity and is asso-
ciated with more effective information  integration54–56. According to Moreira et al.57, this feature is particularly 
relevant for psychological phenomena that develop over time, such as  ER58,59, or affective  states60 and represents 
an index of the degree of cognitive  flexibility61.

Building on the above considerations, the present study is aimed to support and extend previous findings on 
the role of trait EI in determining ER strategies, and to disclose which overlapping resting-state networks may 
subserve this relationship. We hypothesize that the level of trait EI (measured by the TeiQue-SF  questionnaire62) 
is associated with the use of different ER processes, assessed using two different scales,  ERQ12 and  CERQ63. 
These scales are largely used together in literature since they allow to cover a wide range of emotion regulation 
strategies. Namely, we expect that the higher the trait EI and/or subscales scores, the higher the usage of adap-
tive ER strategies, and/or the lesser the usage of non-adaptive ER strategies. Then, we delineate the networks 
underlying EI using an ICA approach on the resting-state functional connectivity, and we assess whether these 
networks may be associated with the use of different ER strategies. We expect to find that the activity in regions 
responsible for the processing and control of socio-emotional information (e.g., insula, frontal and parietal 
 regions64) underly both the individual differences in EI (as measured by TeiQueSF), and the ER usage (measured 
by ERQ and CERQ).
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Results
Trait measures. The total EI trait index is negatively associated (negative β values) with the frequency 
of use of the following strategies: Suppression (ERQ) (F(1,78) = 9.705, R2 = 0.11, r =  − 0.335; p = 0.003; 
β =  − 0.335; pFDR = 0.022) and Self-blame (CERQ) (F(1,78) = 7.867, R2 = 0.093, r =  − 0.304 p = 0.006; β =  − 0.304, 
pFDR = 0.022). For what concerns the four TEIQue-SF factors, we firstly confirmed that there was no multicol-
linearity between these predictors, as the Pearson’s correlation coefficient (less than 0.965) and the Variance Infla-
tion Factor (VIF, less than  1066) showed (see Table 1). Then, regression results showed that Emotionality (β = − 
0.305, pFDR = 0.04), Well-being (β =  − 0.255, pFDR = 0.01) and female gender (β =  − 0.255, pFDR = 0.04) were 
associated with Suppression (ERQ) (F(4,75) = 4.908  R2 = 0.21; p = 0.001); Self-control (β = -0.366, pFDR = 0.01), 
Emotionality (β = 0.323, pFDR = 0.01), and Well-being (β =  − 0.254, pFDR = 0.03) were associated with Rumi-
nation (CERQ) (F(4,75) = 5.332, R2 = 0.28, p < 0.005); Finally, Self-control (β =  − 0.285, pFDR = 0.05), and Well-
being (β =  − 0.336, pFDR = 0.02) were associated with Catastrophizing (CERQ) (F(4,75) = 4.258, R2 = 0.21, 
p < 0.001). To conclude, as can be noted from the negative β values of the predictors, the lower is the EI, the 
higher is the individual tendency to use non-adaptive ER regulation strategies such as Rumination, Self-blame, 
Catastrophizing, Suppression.

Functional connectivity results. Multiple Regression analyses (stepwise) showed that the BOLD varia-
bility of IC20 (β = 0.302, pFDR = 0.008) significantly predicts total EI index (F(21,76) = 0.07, R2 = 0.08, p = 0.008); 
IC18 (β = 0.360, pFDR = 0.04) and IC16 (β = 0.239, pFDR = 0.05) predict Sociability (F(4,74) = 6.02, R2 = 0.250, 
p < 0.001); Finally, IC20 (β = 0.380, pFDR = 0.03), IC1 (β = − 0.309, pFDR = 0.01), and IC7 (β = 0.234, pFDR = 0.03) 
predict Well-being (F(3,75) = 5.734, R2 = 0.18, p = 0.001). To summarise, the ICs associated with the total index 
and the subscale of the TEIQue-SF questionnaire were the IC1, IC7, IC16, IC18, and IC20. These IC’s include 
clusters of cortical and subcortical regions at a cluster significance level p < 0.05 (pFDR corrected) and voxel 
significance p < 0.001 (pFDR corrected). Based on CONN’s correlational spatial match to template approach, the 
identified ICs are attributable to known resting state networks: IC20 (r = 0.46) and IC16 (r = 0.36) = sensorimo-
tor network; IC1 (r = 0.49) = cerebellar network; IC18 (r = 0.58) = visual network, and IC7 (r = 0.10) = salience 
network.

Among the IC’s associated with trait EI, the BOLD variability of IC20 (β = 0.492, pFDR = 0.005) was also 
associated with cognitive reappraisal (ERQ) (F(6,72) = 3.151, R2 = 0.21, p = 0.008). The BOLD variability of IC20 
(β = 0.345, pFDR = 0.01), IC16 (β =  − 0.275, pFDR = 0.02) and IC7 (β = 0.299, pFDR = 0.01), was also associated 
with Positive Reappraisal (CERQ) (F(7,71) = 3.544, R2 = 0.22, p = 0.004). Finally, the BOLD variability of IC7 
(β =  − 0.335, pFDR = 0.006) and female gender (β =  − 0.360, pFDR = 0.006) was associated with Suppression 
(ERQ) (F(6,72) = 4.271, R2 = 0.26, p = 0.001) (see Table 2).

Table 1.  Multi-collinearity tests (Pearson’s correlation and VIF) among the four TEIQue-SF total index and 
factors. **p < 0.005.

TEIQue_SF Pearsons’ correlations Multicollinearity diagnostic

Total EI Self-control Emotionality Sociability Well-being VIF

Total EI 1 –

Self-control 0.629** 1 1.167

Emotionality 0.696** 0.280* 1 1.189

Sociability 0.482** 0.149 0.305** 1 1.128

Well-being 0.720** 0.308** 0.220 0.203 1 1.115

Table 2.  Summary of the main neural results. Beta (β) and corrected p-value (pFDR) for the significant 
relationships between the BOLD temporal variability in the ICs (IC20, IC16, IC7) and both ER strategies and 
EI subscales.

ICs ER and trait EI β pFDR

IC20 (sensorymotor)

Cognitive reappraisal (ERQ) 0.492 0.005

Positive reappraisal (CERQ) 0.345 0.01

Total EI (TeiQue-SF) 0.302 0.008

Wellbeing (TeiQue-SF) 0.380 0.03

IC16 (sensorymotor)
Positive reappraisal (CERQ)  − 0.275 0.02

Sociability (TeiQue-SF) 0.239 0.05

IC7 (salience)

Suppression (ERQ)  − 0.335 0.006

Positive reappraisal (CERQ) 0.299 0.01

Wellbeing (TeiQue-SF) 0.234 0.03
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To sum up, the higher is the BOLD variability the higher is the frequency of use of cognitive reappraisal and 
positive reappraisal (with the exception of IC16). Whereas, the lower is the BOLD variability the higher is the 
frequency of use of Suppression.

The brain networks identified by the IC7, IC20, and IC16 include clusters of cortical and subcortical regions 
(see Table 3 for details) at a cluster significance level p < 0.05 (pFDR corrected) and voxel significance p < 0.001 
(pFDR corrected) (see Fig. 1).

Discussion
ER processes are daily employed by individuals to modify the emotional states they are experiencing. However, 
the individuals’ variability to use one or other strategy is still poorly understood. How can such variability be 
explained? In the present study, we investigated the relationship between trait EI and ER abilities, on the basis of 
previous evidence that trait EI may represent a suitable measure for the individual predisposition to the choice 
of specific ER strategy (e.g.18,25). Namely, we were interested in finding the neural bases associated with trait EI 
by analysing the functional connectivity of naturally grouping circuits decomposed by an unsupervised machine 
learning approach (ICA). One intriguing question was whether EI and ER share at least some neural bases. This 
would be an additional proof of their intimate relationship.

In terms of trait measures, we found that individuals with low levels of trait EI are associated with the use of 
non-adaptive ER processes (i.e., suppression, and self-blame). This result is complementary to past  evidence18,25,67 
showing a relationship between high trait EI and adaptive coping strategies. The different, still complementary 
result can be explained by the fact that the previous studies (e.g.25) focused mostly on coping abilities and not 
on typical emotion regulation strategies. Instead, by the wide range of strategies considered, we found that low 
scores in the trait EI subscale of self-control are associated with blaming others and rumination, whereas low 
scores in the well-being subscale are associated with the use of suppression, rumination, and catastrophizing. 
Finally, low scores in emotionality are associated to the use of suppression and rumination.

In literature, rumination and suppression strategies have been usually related to negative outcomes and 
 psychopathologies5. Likewise, low level of traits EI are also associated with psychopathological  disorders68,69, 
making reasonable the strong link we found between low trait EI and maladaptive strategies. The specific associa-
tion between rumination and self-control, which is associated with difficulties in managing stressful situations 
and impulsive behaviours, is supported by recent evidence suggesting that impulsivity plays a critical role in 
 rumination70. Low self-esteem—a relevant aspect in the trait EI subscale of well-being, already emerged as an 
important predictor of  rumination71, and it has been indirectly linked to suppression since it is involved in shame 
emotion, which has been already coupled with this regulation  strategy56,72. In addition, low emotionality and the 
related difficulty in emotions recognition and  expression62, may lead individuals to use suppression that occurs 
late in the process of emotion  generation73. In our study, that trait EI subscale of sociability did not predict any 
emotion regulation strategy, can be explained by evidence showing that low sociability is not associated with 
indexes of emotion dysregulation (e.g., high psychological reactivity, negative emotional intensity, dispositional 
negative affect, and personal distress). Low sociability is rather associated with low social support  seeking74, 

Table 3.  Regions identified in the independent component IC7, IC20, and IC16. Clustering indicates the 
spatial distribution of ROIs at the cortical and subcortical levels. Cluster threshold at p < 0.05 (pFDR corrected) 
and voxel threshold p < 0.001 (pFDR corrected, two sided). For each cluster we selected the brain regions with 
the highest covering proportion (%) of Harvard–Oxford Atlas ROI. Peak are reported in MNI coordinates. L 
left, R right, BA Brodmann area.

IC Peak ROI (Harvard, Oxford Atlas) p-valueFDR

IC7

 + 02 + 12 + 46 L/R Amygdala  < 0.005

 + 02 + 12 + 46 Cingulate gyrus  < 0.005

 − 64 − 30 + 14 L/R putamen  < 0.005

 + 02 + 12 + 46 L/R insular cortex right  < 0.005

 + 40 + 16 + 52 Superior frontal gyrus  < 0.005

 + 02 + 12 + 46 Cerebellum (3–7)  < 0.005

IC20

 − 18 + 30 + 60 Supplementary motor cortex  < 0.005

 − 58 − 18 + 32 R supramarginal gyrus  < 0.005

 − 60 − 20 + 30 L supramarginal gyrus  < 0.005

 + 34 − 22 + 20 R hippocampus  < 0.005

 + 48 + 04 + 26 R inferior frontal gyrus  < 0.005

 − 42 − 02 − 08 Insular cortex  < 0.005

 + 34 − 22 + 20 L cerebellum (BA 4–5)  < 0.005

IC16

 − 56 − 04 + 24 Supplementary motor cortex  < 0.005

 − 64 − 36 + 44 Supramarginal gyrus  < 0.005

 + 18 + 18 − 12 L middle temporal gyrus  < 0.005

 + 20 − 66 − 38 Cerebellum (BA 8)  < 0.005

 − 22 − 68 − 40 Cerebellum (BA 7)  < 0.005
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strategy which may have escaped the taxonomy used in the ERQ and CERQ. In support of that, trait EI predicts 
social sharing when this latter is included in the set of regulation  strategies28. Our result also showed that women 
are more likely to use suppression with respect to men. Although also previous studies reported gender difference 
in the use of  suppression75–77), this result is not consistent in literature  (see6,78), suggesting that gender difference 
possibly depend on other factors such as the situation  itself79 Further researches are needed to better understand 
the role of gender in the trait EI-ER relationship.

Besides trait measures, functional connectivity results showed that modulations of BOLD temporal variability 
in sensorimotor (IC20 and IC16), visual (IC18), salience (IC7) and cerebellar (IC1) networks is associated with 
the total traits EI index and the four subscales. Most importantly for the present study, we found that increased 
BOLD variability especially in sensorimotor (when identified by the IC20 but not IC16) and salience networks 
also predicted the use of reappraisal strategy (in ERQ and CERQ), whereas decreased BOLD variability in sali-
ence network predicted the use of emotion suppression. These results suggest that BOLD temporal variability in 
sensorimotor and salience networks underlies trait EI and at the same time explains differences in ER strategies. 
Namely, this finding enriches our understanding of the relationship between trait EI and ER, by showing for the 
first time that different networks involved in the former, are also involved in the latter.

The brain areas belonging to IC20 have been already related to the sensorimotor  network80. Among these 
areas, the inferior frontal gyrus also emerged in previous resting-state study on trait  EI46 and it was interpreted 

Figure 1.  Representation of the ICs shared by trait EI and ER. (a) IC7; (b) IC20 and (c) IC16. Left of the 
panel: 2D (above) and 3D inflated (below) brain model for the three ICs (cluster significance pFDR < 0.05 and 
voxel significance pFDR < 0.001). Colour bar represents positive t-values in orange and negative t-values in 
blue. Right of the panel: Relation between the ICs and the subscales of trait EI and ER questionnaires. In red, 
the positive relation; In blue, the negative relation. C. Reappraisal cognitive reappraisal, P. Reappraisal positive 
reappraisal.
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as a part of a circuit related to social and emotional processing. Similarly, a positive correlation between r-state 
connectivity involving frontal regions and trait EI was reported by Takeuchi et al.48. On the other hand, the sup-
plementary motor cortex (SMA) and the cerebellum positively correlated with trait  EI46, playing a critical role 
in cognitive control mechanisms. In particular, the somatosensory cortex, and its portion of the supramarginal 
gyrus (SMG) are involved in the recognition of emotions, the understanding of the emotional states of  others81, 
and are more generally part of the mirror neuron  system82,83. In addition, other studies provided evidence that 
the somatosensory cortex is associated with emotion  generation84 and interoceptive  awareness85. The insula, 
instead, is deemed to facilitate social interaction, and decision making by integrating sensory, affective, and 
bodily information, and it has been traditionally reported as neural correlate of trait EI. The implications of these 
areas in socio-emotional processing and cognitive  control46,86 make intuitive their involvement also in reap-
praisal strategy, which involve cognitive abilities (e.g., attention and memory) to control emotional  responses87. 
Consistently, there is evidence of a correlation between the frequency of use of reappraisal and the functional 
connectivity of the left insula, supplementary motor cortex (SMA)49, and inferior frontal  gyrus88. These areas, 
more generally, represent a well-established network underlying cognitive control of emotions by  reappraisal34,38. 
Our result concerning the negative correlation between the BOLD variability in the IC16-related sensorimotor 
network and the positive reappraisal seems apparently incongruent, then. However, this incongruency may 
be better interpreted in line with our trait measures results, which show no association between the trait EI-
sociability scale and ER strategies. Similarly, indeed, that the IC16 (but not the IC20) is associated with the 
sociability scale may explain why this component yield a negative correlation with reappraisal. In addition, it is 
worth mentioning that the spatial match to template approach reports the IC20 (vs the IC16), as the best match 
for the sensorimotor network (see correlations in the Results section), and, yet, the two sensorimotor-related 
components involve overlapping, but still different brain regions, such as the middle temporal gyrus. Since this 
is the first attempt showing common neural substrates between trait EI and ER, further researchers are needed 
to better identify the specific involved brain areas.

Along the sensorimotor network, our study showed the involvement of the salience network, the BOLD 
variability of which positively correlates and predicts adaptive (reappraisal) strategy, and negatively correlates 
with maladaptive (suppression) strategy. In line with our results, previous studies reported the link between a 
similar component and the salience  network89, as well as the relationship between the key nodes of this network 
and trait EI and  ER90. Especially the amygdala and the basal ganglia (i.e., putamen), allowing the organism to 
adaptively respond to the emotional context, are strictly related to the emotion  processing91 and as a such to 
the two  constructs48,49. In addition, there is evidence that emotion suppression is associated with activation of 
anterior cingulate, ventrolateral prefrontal  cortex92, inferior frontal gyrus, putamen, pre-supplementary motor 
area and supramarginal  gyrus93.

The relation between BOLD variability, trait EI and adaptive vs maladaptive emotion regulation strategies, 
however, can be better understood coming back to what the BOLD variability means. Several studies point out 
that greater BOLD variability positively influences cognitive  performance94, fluid  intelligence95 and most impor-
tantly for our results, interoceptive  awareness96, adaptability, flexibility and efficiency of neural system in response 
to the multiplicity and uncertainty of environmental  stimuli54,56,97,98. As a such, it is reasonable that cognitive and 
affective mechanisms related to the functionally connected regions are better implemented by individuals show-
ing increased temporal variability in the  network96. Accordingly, our findings suggest that the increased BOLD 
variability in the sensorimotor and salience networks play a critical role in predicting both high level of trait EI 
and adaptive emotion regulation strategy, in terms of a better social and emotional information integration, self-
awareness along with a more efficient cognitive control. That temporal variability in these networks significantly 
predicts high traits EI and the frequency of use of Cognitive Reappraisal strategy is explained as an adaptive 
feature of the neural response, allowing the brain to easily access different “states”, required to complete cognitive 
 tasks55,99. By the same token, we could also infer that less variability in salience network could imply a difficulty of 
the subjects to process emotional information resulting in the maladaptive emotion suppression strategy. Then, 
greater temporal variability may represent a neural predisposition marker which facilitates individuals in the 
stages underlying the dynamic process of emotional regulation, identification, selection, and  implementation100. 
This finding provides a context for and corroborates the hypothesis that regulation strategies and their outcome 
may depend on factors such as the individual differences. Neural flexibility and adaptability increase perception 
and control of the emotional event determining at the same time the success of an emotion regulation  process7. 
Importantly, resting-state functional connectivity may be helpful to investigate task-independent  constructs101 
such as those related to personal traits.

Besides these new findings, the study has some limitations to point out. While the data-driven approach 
allowed us to consider the activity of the whole brain and the role of naturally grouping circuits, theory driven 
analyses (i.e., dynamic causal model) that may facilitate inferences with respect to specific brain regions, or to 
identify causal relationships between them, may be a valuable and complementary alternative. Moreover, we 
acknowledge that a larger sample size (including thousands of participants) would have been ideal for increasing 
reproducibility and statistical power, as a recent paper  suggested102. For what concerns the discussed networks 
as identified by the spatial match, they also included portions of executive networks. Future studies are needed 
to explore the contributions of such networks to both EI and ER. Finally, building on the existing literature, we 
focused on trait EI. However, it would be worthy not only to investigate other aspects of  EI18, but also to extend 
the knowledge on the interaction between affective mechanisms and personality, considering the variability this 
latter may show across different  situations103.

To conclude, the present findings reveal that the role of trait EI in predicting adaptive ER strategies relies 
on a shared and more efficient functional connectivity network involved in social and emotional information 
processing to understand self and others’ affective states, and in higher cognitive mechanisms which contribute 
to the control of emotions. Consequently, our study not only further strengthened the association between low 
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traits EI and maladaptive ER strategies but is also represents a first step to understand the neural mechanisms 
able to explain this relationship. Increased variability of the BOLD signal within a sensorimotor and salience 
network is a mainstay for the neural structure of high traits EI and at the same time predisposes to the use of 
adaptive emotional regulation strategy. By contrast, a decreased variability in salience network predisposed to 
the use of a maladaptive emotion regulation strategy.

Methods
Participants. The data analysed in this study were selected from the open-source dataset “Max Planck Insti-
tute Leipzig Mind-Brain-Body Dataset LEMON”104. All subjects were recruited by researchers at the University 
of Leipzig, in Germany, between 2013 and 2015, and data were collected in accordance with the Declaration of 
Helsinki for a study which protocol was approved by the ethics committee at the medical faculty of the Univer-
sity of Leipzig. For the present study, we extracted a subset of participants representing a young adult healthy 
population. Based on the information provided by the authors, indeed, we defined the sample by the following 
inclusion criteria: no substance use or abuse (negative at the Multi 8/2 Drogen-Tauchtest)104, and no past or pre-
sent psychopathologies diagnosis, screened by the SCID-I, and by the Hamilton Depression Scale (HAM-D105). 
The final subset was composed of 79 subjects (23 females; age range: 20–35 years; mean education: 12.39 years). 
For each participant, we extracted raw data from structural MRI scans (T1 Weighted-MP2RAGE) and func-
tional MRI scans (rs-fMRI). With regards to trait measures, the scores of the following self-administered ques-
tionnaires were selected: TeiQUE-SF (Trait EI Questionnaire-Short Form), ERQ (ER Questionnaire) and CERQ 
(Cognitive ER Questionnaire).

Trait measures. The trait EI questionnaire short-form (TEIQue—SF) is used to measure EI as a personality 
 trait62. The questionnaire was administered in the German validated  version106 and assessed four factors: well-
being (α = 0.94), self-control (α = 0.86), emotionality (α = 0.90), sociability (α = 0.88), plus a total index of trait EI, 
which consists of the average of the above factors (α = 0.96). As reported by the authors, reliability of the model-
fit of the German validated version was acceptable to good: χ2 (54, N = 352) = 147.78, CFI = 0.95, SRMR = 0.049 
and RMSEA = 0.07) and the test validity was reliable (0.88 ≤ α ≤ 0.96)106.

The emotion regulation questionnaire (ERQ) is adopted to measure the interindividual differences in the 
frequency of use of ER  strategies12. The ERQ questionnaire was administered in the German validated  version107, 
and consists of 10 items evaluating the tendency to use cognitive reappraisal (6 items, α = 0.73) and suppression 
of emotions (4 items, α = 0.76). The German version showed a good internal validity (0.73 ≤ α ≤ 0.76) and a good 
reliability (RMSEA = 0.068, CFI = 0.94, SRMR = 0.056)107.

The cognitive emotion regulation questionnaire  (CERQ108) was administered in German validated  version63 
and consists of 36 items divided into 9 scales that measure nine strategies defined as adaptive: acceptance 
(α = 0.75), positive refocusing (α = 0.86), refocus on planning (α = 0.77), focus on positivity (α = 0.78), putting 
into perspective (α = 0.77); and four non-adaptive strategies: self-blame (α = 0.73), blaming others (α = 0.67), 
rumination (α = 0.66), catastrophizing (α = 0.73) . The German version of the scale showed good reliabil-
ity (0.66 ≤ α ≤ 0.84) and a good model-fit factorial validity (χ2 = 482,267, df = 288, p < 0.01; RMSEA = 0.066; 
CFI = 0.922; TLI = 0.905)63 (see Table 4 for a summary of sample’s descriptive statistics for each scale and subscale).

Table 4.  Descriptive statistics of TEIQue-SF, ERQ and CERQ questionnaires, included their subscales for 
N = 79. M mean, SD standard deviation, Min and Max minimum and maximum scores for each subscale.

Descriptive statistics

Score range

M SDMin Max

ERQ-reappraisal 2.50 6.83 4.67 0.91

ERQ-suppression 1.25 5.75 3.64 1.12

CERQ-SelfBlame 0 11 4.05 2.25

CERQ-Acceptance 0 12 7.09 3.03

CERQ-Rumination 0 12 5.49 2.85

CERQ-positiveRefocusing 0 12 4.96 2.72

CERQ-RefocusOnPlanning 3 12 8.38 2.51

CERQ-PositiveReappraisal 0 12 7.00 2.68

CERQ-PuttingIntoPerspective 1 12 7.27 2.69

CERQ-Catastrophizing 0 10 2.04 2.16

CERQ-BlamingOthers 0 9 2.38 1.92

TEIQue-SF-totalEI 124 186 156.90 13.73

TeiQue-SF-selfControl 3.33 6.66 5.10 0.78

TeiQueSF-emotionality 3.50 6.75 5.16 0.76

TeiQueSF-sociability 3.33 6.50 5.08 0.62

TeiQueSF-well-being 3.00 7.00 5.87 0.75
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MRI data acquisition. Structural and functional MRI data in the LEMON dataset were acquired with a 3 
Tesla MRI scanner (Verio, Siemens Healthcare GmbH). During the acquisition, subjects were asked to remain 
awake with open eyes while looking at a low-contrast fixation cross. For our analyses we considered a BOLD 
rs-fMRI scan, using T2-weighted multiband EPI* sequence (TR = 1400 ms, TE = 30 ms, flip angle = 69°, echo 
spacing = 0.67 ms number of volumes = 657, voxel size = 2.3 mm, total acquisition time was 15 min 30 s) and 
T1-weighted structural volumes acquired using MP2RAGE sequence (TR = 5000 ms, TE = 2.92 ms, TI1 = 700 ms, 
TI2 = 2500 ms, FOV = 256 mm, voxel size = 1 mm isotropic) The structural volumes were acquired with 176 slices 
interspersed during 8 min 22 s of  scanning104.

Trait measures analyses. To test whether trait EI predicts ER processes, we implemented two different 
analyses using SPSS Statistics for Windows, version 25.0 (SPSS Inc., Chicago, Ill., USA). In the first analysis we 
implemented a multivariate linear regression (MLR) with ERQ and CERQ questionnaires as dependent vari-
ables, while the total trait EI was included as a predictor. Moreover, to assess the effect of every subscale of trait 
EI, we next implemented a multivariate multiple linear regression (MMLR) with each subscale of the ERQ and 
CERQ questionnaires as dependent variables, and the four factors of the TeiQue-SF as predictors. Variance 
inflation factor (VIF) and Pearson’s correlation among the TEIQue-SF subscales were used in order to examine 
multi-collinearity and relative association in the regression model. Gender was used as a categorical fixed factor 
to test its effect in the regression model. The type I error was controlled by applying false discovery rate (FDR) 
correction to p-values.

Neuroimaging analyses. Pre-processing and functional connectivity analysis were conducted using 
CONN MATLAB Toolbox (version 18b)109. Firstly, we implemented CONN’s default pre-processing pipeline 
using SMP12 default parameters which includes the following steps: functional realignment and unwarping, 
translation and centering, functional outlier detection (conservative settings), functional direct segmentation 
and normalization (1 mm resolution), structural translation, and centering, structural segmentation and nor-
malization (2.4 mm resolution), functional and structural smoothing (spatial convolution with Gaussian ker-
nel 8 mm). Next, the denoising phase was implemented. The objective of this phase is the identification and 
elimination of confounding variables and artefacts from the estimated BOLD signal. Briefly, these factors are 
derived from three different sources (BOLD signal coming from white matter or cerebrospinal fluid masks, 
parameters and outliers defined in the pre-processing step, and an estimate of the pre-processing the subjects’ 
motion parameters)110. Once identified, the factors are entered into a regression model (Ordinary Least Squares) 
as covariates. Finally, a 0.0008–0.09 Hz temporal band-pass filter standard for resting-state connectivity analyses 
was applied to the time series. Next, the functional connectivity analysis has been implemented. For this study, 
we chose to use a data-driven approach by implementing a group-independent component analysis (group-
ICA). The group-ICA implemented by CONN includes the following steps: pre-conditioning variance normali-
zation, concatenation of the BOLD signal along the temporal dimension, dimensionality reduction at the group 
level, fast-ICA for spatial component estimation, and the back-projection for spatial estimation on the individual 
 subject110. The number of independent components to be identified was set to 20 as software CONN suggests 
as default, and in line with previous studies using low model order  analysis111–113. In order to separate noise 
components from the underlying resting-state networks, every identified IC were visually inspected and com-
pared with CONN’s networks atlas using spatial match-to-template function. This feature measures the overlap 
between eight brain networks (Default Mode Network, Sensorimotor, Visual, Salience, Dorsal Attention, Fron-
toparietal, Language, Cerebellar; defined from CONN’s ICA analyses of HCP dataset/497 subjects) and the IC’s 
spatial map associated with each individual network component. One out of 20 ICs (IC17) did not allow for the 
delineation of specific areas due to its extent and it was discarded from the following analyses. We then extracted 
the temporal variability of each remaining IC’s, calculated in CONN as SD of each BOLD time-series110. Type I 
error was controlled using cluster-size-based false discovery rate (FDR) correction (p < 0.05, voxel thresholded 
at p < 0.001114 tab, within each analysis). Next, to assess the relationship between IC’s temporal variability and 
both trait EI and ER, we implemented 2 different analysis by using SPSS Statistics for Windows, version 25.0 
(SPSS Inc., Chicago, Ill., USA). Firstly, to address which of the 20 identified IC’s predicted the trait EI, we tested 
the individual explanatory variables effect (IC’s BOLD variability values) on the TEIQue-SF factors and total 
index by using a Multiple Linear Regression model (Ordinary Least Squares) with a stepwise method (forward) 
for each dependent variable, and gender as a categorical fixed factor in order to test its effect in the regression 
model. Since we do not expect that all the identified components were related to the investigated construct, we 
chose a method of fitting regression models in which the choice of predictor variables is made by an automatic 
procedure. This methodology consists of testing the incremental predictivity of the model: starting from a model 
with no predictor, each explanatory variable is added to the model and compared to the inclusion or exclusion 
threshold criterion (in our case predictor’s p-value ≤ 0.05 for inclusion) until the model reaches its maximum 
predictivity. Finally, the BOLD temporal variability of IC’s that resulted to be significant predictors of trait EI 
in the previous analysis were entered a Multivariate Multiple Regression (MMR) as independent variables to 
predict ER scores (ERQ and CERQ subscales) and gender as a categorical fixed factor in order to test its effect in 
the regression model. To avoid multiple comparisons issues, type I error was controlled applying false discovery 
rate correction (FDR) within each analysis.

Data availability
The complete LEMON Data can be accessed via Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göt-
tingen (GWDG) https:// www. gwdg. de/. Raw and preprocessed data at this location is accessible through web 
browser https:// ftp. gwdg. de/ pub/ misc/ MPI- Leipz ig_ Mind- Brain- Body- LEMON/ and a fast FTP connection 

https://www.gwdg.de/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/
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(ftp:// ftp. gwdg. de/ pub/ misc/ MPI- Leipz ig_ Mind- Brain- Body- LEMON/). In the case the location of the data 
changes in the future, the location of the dataset can be resolved with PID 21.11101/0000-0007-C379-5 (e.g. 
http:// hdl. handle. net/ 21. 11101/ 0000- 0007- C379-5).
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