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A microblog content credibility 
evaluation model based 
on collaborative key points
Ling Xing*, Jinglong Yao, Honghai Wu & Huahong Ma

The spread of false content on microblogging platforms has created information security threats 
for users and platforms alike. The confusion caused by false content complicates feature selection 
during credibility evaluation. To solve this problem, a collaborative key point-based content credibility 
evaluation model, CECKP, is proposed in this paper. The model obtains the key points of the microblog 
text from the word level to the sentence level, then evaluates the credibility according to the 
semantics of the key points. In addition, a rumor lexicon constructed collaboratively during word-
level coding strengthens the semantics of related words and solves the feature selection problem 
when using deep learning methods for content credibility evaluation. Experimental results show that, 
compared with the Att-BiLSTM model, the F1 score of the proposed model increases by 3.83% and 
3.8% when the evaluation results are true and false respectively. The proposed model accordingly 
improves the performance of content credibility evaluation based on optimized feature selection.

Online social network is a new mean of obtaining information from people. Due to the large volume of user-
generated content, researchers use various techniques, such as content credibility evaluation or data mining to 
evaluate this information  automatically1–4. Microblog is one of the important platforms in onilne social networks. 
The development of microblogging has greatly accelerated the depth and speed of information exchange between 
 users5. However, while microblogging improves convenience for users, it also reduces the cost of disseminating 
false content. The dissemination of false content hurts social stability, disrupts people’s normal lives and endan-
gers network information  security6,7. It is therefore important to evaluate the credibility of microblog content, a 
practice that has numerous  benefits8,9. Related deep learning methods have strong feature learning capabilities 
and can learn deep features from microblogs to achieve better credibility evaluation  results10.

Microblog content is created and disseminated at specific times and via specific channels, which complicates 
research into deep learning-based content credibility  evaluation11. The concept of content semantics began to 
be put forward, and the content semantics after mining are called  features12–15. False content is highly confus-
ing, meaning that analyzing and mining the characteristics of false content can produce a better evaluation 
effect. Therefore, feature selection is of great importance to content credibility  evaluation16. To solve the feature 
selection problem in the content credibility evaluation context, researchers have proposed that deep learning 
be used to mine microblog text  features17. Geng et al.18 use the attention mechanism to obtain the features that 
are most useful for the task in question. Kumar et al.19 developed a multi-head attention mechanism to obtain 
sentence-level key features. The multi-head attention model has achieved outstanding performance in mining 
multiple key point  features20. Sangeetha et al. employ a multi-head attention mechanism to process sentence 
input sequences in  parallel21. Khan et al. introduced a multi-head attention mechanism in a convolutional neural 
network to ensure that the model automatically selects key  features22.

The acquisition of microblog features begins at the word level and moves to the sentence level. The introduc-
tion of the lexicon can add more task-related word information, leading to stronger  semantics23,24. However, no 
lexicon designed for content credibility evaluation has yet been developed.

Based on the above analysis, this paper proposes a microblog content credibility evaluation model based 
on collaborative key points. The main innovations of our work can be summarized as follows: (1) using fake 
microblogs to extract the basic rumor word set, then employing an iterative algorithm based on the Word2Vec 
word vector cosine similarity calculation method to expand the rumor word database; (2) using the improved 
TF-IDF algorithm to calculate the comprehensive rumor value of the words in the rumor lexicon, after which 
the comprehensive rumor value of the words and the words themselves are vectorized, such that the semantics 
are strengthened to a degree that aids in the acquisition of microblog key points; (3) employing the multi-head 

OPEN

College of Information Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China. 
*email: xingling_my@haust.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19444-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15238  | https://doi.org/10.1038/s41598-022-19444-6

www.nature.com/scientificreports/

attention mechanism twice—at the word level and sentence level—to obtain the microblog key points, which 
improves the text self-attention performance and enhances the model’s ability to evaluate the credibility of the 
content.

The rest of this paper is structured as follows. “Related works” section introduces the related works of content 
credibility evaluation based on deep learning. Section “Proposed credibility evaluation model” section describes 
the model proposed in this paper. “Experimental results and evaluation” section discusses our experiments. And 
“Conclusion” section concludes.

Related works
As microblogging has continued to develop, information security issues caused by false information have 
attracted the attention of researchers. To date, researchers have proposed many methods to solve the feature 
selection problem in content credibility evaluation.

Common methods of this kind are mainly based on deep  learning25. Unlike classifier-based  methods26,27, deep 
learning methods can mine deep features of the content. Ma et al.28 used Recurrent Neural Networks (RNNs) to 
learn the features of the content. Duong et al.29 used RNN to combine the text and text source characteristics, 
while Chen et al.30 used RNN to learn the features in text and comments. It can be observed from these works 
that the introduction of other effective features in addition to the text boosts the performance of these meth-
ods. Torshizi et al.31 clustered the data, then used a long short-term memory network (LSTM) to analyze each 
cluster and determine whether the content is truthful. To solve the context information acquisition problem, an 
improved bidirectional long short-term memory network (BiLSTM) method is  proposed32,33. Guo et al.34 used 
BiLSTM to process data in two directions and obtained text context information. Recently, substantial work 
has shown that pre-trained models on the large corpus can learn universal language representations, which are 
beneficial for content credibility evaluation tasks and can avoid training a new model from  scratch35. And various 
pre-training tasks are proposed for different purposes, such as  GloVe36 and  BERT37.

When performing collaborative deep learning tasks, establishing or expanding a lexicon based on the charac-
teristics of the task can help neural networks to more efficiently learn relevant information features. Wang et al.38 
proposed an emotional vocabulary expansion method based on word spacing and mutual point information. Jia 
et al.39 added new contents and emotional symbols to the HowNet Emotion Dictionary to analyze the evolution 
of public opinion. Wang et al.40 used an improved dictionary classification method to calculate and label the 
emotional score of the content in the dataset and achieve emotional classification for microblogs. Zhang et al.41 
used the TF-IDF algorithm to extract keywords from comments and construct an emotion dictionary based on 
word similarity. However, due to the wide variety of false information contained in microblogs, it is not possible 
to expand the thesaurus by mining the emotional information of certain words in a similar way to the sentiment 
classification  task42, resulting in the current absence of a content credibility-related lexicon.

Subsequently, the researchers found that introducing the attention mechanism into the model can effectively 
improve the performance of the model. The attention mechanism processes large amounts of information and 
selects the information that is more critical to the goal. Xu et al.43 introduced the content focus mechanism to 
aggregate keywords in original tweets. Ghanem et al.44 focused on the emotional features generated by data to 
identify false information. Wu et al.45 constructed a propagation graph based on the propagation characteristics 
of false information and dynamically adjusted the weight of nodes in the graph using the attention mechanism. 
Fang et al.46 combined the multi-head attention model with Convolutional Neural Networks (CNNs) to select 
words that are more conducive to classification between levels, thereby achieving fake news detection.

Proposed credibility evaluation model
Hierarchical attention networks (HANs) encode from the word level to the sentence level, which is an effec-
tive means of obtaining key  points47. This paper uses a multi-head attention mechanism based on HAN; at the 
same time, it introduces a rumor lexicon to facilitate word coding, and accordingly builds a microblog content 
credibility evaluation model based on collaborative key points (CECKP). The overall structure of the model is 
illustrated in Fig. 1. This model is divided into four parts: data processing, the key points of words, the key points 
of sentences, and content credibility evaluation.

Data processing. Due to the dearth of large, open and complete datasets appropriate for the present task, 
most relevant studies use the application program interface (API) provided by the platform to obtain data 
for their  experiments48. In this paper, 15,000 points of false information and 15,000 of true information were 
extracted, from which an experimental dataset for content credibility assessment based on Sina Weibo (named 
the CECKP-Dataset) was constructed. The false information is derived from the results announcement section 
of the false information report in the Sina Microblog Community Management Center, while the true informa-
tion is made up of verified content posted by well-known official accounts. In the subsequent word vector repre-
sentation, it is necessary to convert the words and the comprehensive rumor value of these words into a vector 
form. It is accordingly necessary to construct a rumor vocabulary based on the characteristics of the words in 
microblogs containing false information. The remainder of this section will explain the construction of the 
rumor lexicon, its acquisition, its expansion, and the calculation of the comprehensive rumor value.

Construction of the rumor lexicon This paper sorts the false content published by the Sina Weibo commu-
nity management center and uses a combination of manual screening and automatic expansion to construct a 
microblog rumor lexicon. The preprocessed lexicon is manually screened to obtain the basic rumor word set 
{B1,B2,B3,…,Bi}. The remaining part is used as the candidate lexicon word set {A1,A2,A3,…,Ai}, after which the 
Word2vec word vector cosine similarity calculation method is employed to calculate the similarity between the 
candidate words and the basic  words49. Words that meet the initial requirements will enter the extended lexicon, 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15238  | https://doi.org/10.1038/s41598-022-19444-6

www.nature.com/scientificreports/

after which some words in the extended lexicon will be put into the basic rumor lexicon again for iterative cal-
culations until no new words can be obtained. The construction process is illustrated in Fig. 2.

Acquisition of basic rumor word set: First, duplicate content removal is carried out on the microblog false infor-
mation corpus; here, we delete "@", "&", and other special symbols that cause interference. The added dictionary 
function of the Jieba word segmentation tool is then employed to integrate the Chinese word segmentation 
dictionary as an added dictionary used to mark the word segmentation and parts of speech on the microblog 
corpus. The dictionary integrates the Baidu and Sogou word banks, as well as some names of individuals and 
popular new terms. True and false content differs minimally in terms of structure and thus needs to be considered 
in combination with the actual situation. Nouns are generally the subject or indicator of the main meaning, and 
are thus better able to represent false information; moreover, “#” or “[]” are often used to mark key nouns and 
thus highlight the theme of the post. The application scenarios of verbs are limited by content and often appear 
in some false information. Related words refer to words that appear together in the text: when these words 
appear together, the text is more likely to be false. In this paper, nouns, verbs, subject words and related words 
are selected to construct a rumor lexicon.

Figure 1.  Microblog content credibility evaluation model based on collaborative key points.

Figure 2.  Flowchart of microblog rumor word database construction.
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Expansion of the rumor lexicon: To efficiently filter the candidate words in the corpus, the Word2Vec word 
vector cosine similarity calculation function is employed to calculate the similarity between each word in the 
candidate vocabulary set and the basic rumor word set. The similarity calculation formula is as shown in Eq. (1):

Here, A and B represent the word vector in the candidate word set and the basic rumor word set, respectively. 
If the similarity exceeds 0.9, the word is added to the extended lexicon {As,…,Ah}; the manually filtered extension 
{Ak} is then added to the basic rumor word set, where s < k < h, after which incremental iterations are performed 
to mine more related words. When the algorithm cannot find new words, the iterations stop, and we can obtain 
the final rumor lexicon {B1,B2,B3,…,Bi,As,…,Ah}. The relevant information regarding the constructed rumor 
lexicon is presented in Table 1.

Calculation of comprehensive rumor value: In this paper, the improved TF-IDF algorithm is used to calculate 
the importance of the words in the rumor word database; these calculated results are then used as the compre-
hensive rumor value of the words in question. Because only part of the noun is modified in the false information, 
the requirements for the text frequency are relatively high, while the requirements for the inverse text frequency 
are relatively low. Accordingly, adjusting the weight in the formula makes TF more powerful than IDF. At the 
same time, to eliminate the influence of different microblog text lengths on the weight of words, the calculation 
formula is subjected to cosine normalization, with the word frequency taken as a logarithm to eliminate the 
influence of different word frequencies on the overall calculation.

The calculation formula of the comprehensive rumor value R is presented in Eq. (2):

Here, N represents the total number of fake microblogs and φ is the weight of TF. The calculated compre-
hensive rumor value of the words in the fake microblog will be transformed into vectors and words, which are 
entered simultaneously into the model for training.

Key points of words. The acquisition of word key points comprises three steps: word vector representation, 
word sequence coding, and word attention.

Word vector representation: The quality of word vector expression has an important influence on both the 
semantic expression of microblog texts and the effectiveness of credibility evaluation tasks. This paper introduces 
the constructed rumor lexicon into the word vector representation layer. The input word vector comprises two 
key parts: the word vector and the comprehensive rumor value of the word. The calculation formula is as shown 
in Eq. (3):

Here, xit represents the word vector of the tth word in the ith sentence, Wewit represents the word vector of 
word wit, Rwit represents the word’s comprehensive rumor value, T represents the length of the sentence, and We 
is a 200-dimensional word vector obtained via pre-training with the Word2Vec tool.

Word sequence encoding: The forward LSTM layer processes the sequence from left to right by connecting 
two adjacent units, such as the current unit input x1 and the hidden state ht−1 of the previous unit input. For a 
given input sequence x1, x2, …, xit, the forward LSTM layer generates an output sequence “ �h ”. The formula used 
to calculate the forward LSTM layer is presented in Eq. (4):

The reverse LSTM layer processes the sequence from right to left by connecting two adjacent units; for 
example, the hidden state of the input x1 of the current unit and the input of the next unit ht+1. For a given input 
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Table 1.  Information about the rumor lexicon.

Category Number Example

Noun 1687 Health, disaster, elderly

Verb 756 Crash, lead to, provocation

Subject 354 Blast, vacation, plastic

Connective 49 Child…abducted…, forward…free…
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sequence xit, …, x2, x1, the reverse LSTM layer generates the output sequence “ 
←−
h  ”. The formula used to calculate 

the reverse LSTM layer is shown in Eq. (5):

The forward and reverse output are combined in Eq. (6):

Here, 
−→
hit represents the forward LSTM layer output value of the tth word in the ith sentence, 

←−
hit  represents 

the output value of the reverse LSTM layer of the tth word in the ith sentence, and 
←→
hit  represents the BiLSTM 

encoding output value of the tth word in the ith sentence.
Word attention: The multi-head attention model involves stacking several basic units of scaled dot-product 

attention. Here the input matrix is Query(Q), Key(K), Value(V), and Q,K ,V ∈ R
n×d , the scaled Dot-Product 

Attention consists of h layers, and the attention calculation of each layer is as shown in Eq. (7):

Here, d is the number of hidden units in the neural network. Because the attention mechanism used by the 
multi-head attention model is self-attention, the input vector Q = K = V. Linear transformation is required for 
calculation, and the parameters of Q, K and V differ each time. When calculating the weights of Q and all K, the 
point product similarity function is used, and is scaled through dividing by K dimensions to avoid the problem 
of an overlarge internal product value. The softmax function is then used to normalize the weights, which are 
then weighted and summed with the corresponding key values to obtain the attention. The results obtained after 
h iterations of attention reduction are spliced, after which the values obtained via linear transformation are used 
as the results of the multi-head attention model. The calculation equation is as shown in (8) and (9):

Here, Wo represents the weight of linear transformation, while s represents the calculated MultiHead (Q, 
K, V) value, which is used to represent more feature information learned from different positions or spaces, as 
shown in Eq. (10):

The Max pooling layer is then used for compression change to obtain the most influential sequence 
Si , i ∈ [1, L] , where L represents the number of statements.

Key points of sentences. Sentence key points are obtained from the output of word key points. There are 
two steps involved, including sentence sequence coding and sentence attention.

Sentence sequence coding: Because the semantic features of each sentence affect the credibility of the entire 
microblog, BiLSTM is used to mine the semantic features between sentences in text. Its calculation equation is 
shown below in (11):

Here, 
−→
hi  represents the output of the ith statement through forward LSTM coding,

←−
hi  indicates the output of 

the ith statement through reverse LSTM coding, and 
←→
hi  represents the output of the ith statement encoded by 

BiLSTM. The encoded output will then be sent to the sentence attention layer to identify the most important part.
Sentence attention: To identify high-impact sentences in the text, each word must be combined with all other 

words in the sentence weight calculation of the sentence coding sequence using multivalent attention. The char-
acteristic representation v is obtained as shown in Eq. (12):

Following calculation, the Max pooling layer is used to compress and change, after which the sentence 
sequence vi with the most influence is obtained.

Content credibility evaluation. Once the previous steps are complete, the key point vi of a microblog 
represents its semantic features. The microblog content credibility evaluation layer determines the deep-level 
feature information following multi-layer learning by constructing a true and false binary classification decider 
for the semantic features of the microblog text, thereby obtaining the final content credibility evaluation result. 
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In this paper, the softmax function is used to construct the credibility classifier, and the calculation equation is 
as shown in (13):

Here, p represents the probability of the microblog content being true or false. In this paper, the objective 
function uses the negative log-likelihood function as the training loss function, the calculation equation for 
which is as shown in (14):

Here, z represents the true or false label of the text d.

Experimental results and evaluation
Experimental environment and related settings. In this paper, the experimental hardware plat-
form is Intel Xeon(2.20 GHz), 12G memory, NVIDIA Tesla P100 16 GB. The experimental software platform is 
Ubuntu 18.04 operating system and development environment is Python3.6 programming language.

Ten-fold cross validation was used in the  experiments50, with the average score of ten-fold cross validation 
being used to indicate the final model performance. The evaluation indexes were accuracy, precision, recall and 
F1 score. The adjustable parameter settings of CECKP are listed in Table 2.

There are many deep learning-based models at this stage. These novel models have different emphases for dif-
ferent processing objects. When comparing experiments with the model proposed in this paper, a lot of problems 
may arise. Therefore, it is a good choice to choose baseline models when comparing. To test the performance 
of the CECKP model, a comparative experiment was conducted with the relevant baseline models, including a 
classifier method  (SVM51) and several deep learning methods  (CNN52, R-CNN53, H-BLSTM34, Att-BILSTM54). 
The parameter settings of the comparison experimental models are set according to the relevant settings in the 
reference papers, while ten-fold cross validation is also adopted for the data division method.

Experimental results and analysis. In this paper, several models are used to verify the validity of the 
CECKP model. The total accuracy, precision, recall and F1 score for each model in the CECKP-Dataset were 
obtained and presented in Table 3. To visually illustrate the differences in the obtained values, a bar chart is 
used to compare the results. A comparison of “true” evaluation results is plotted in Fig. 3, while a comparison of 
“false” evaluation results is shown in Fig. 4.

(13)p = softmax(Wcvi + bc)

(14)L = −
∑

d

log
(

pdz
)

Table 2.  Adjustable parameter settings.

Adjustable parameters Value

Vector embedding dimension 200

Learning_rate 0.001

Optimizer Adam

Batch_size 64

Dropout 0.3

Number of layers for multi-head attention 8

Table 3.  Experimental results for CECKP model and comparison models.

Model Classification Accuracy Precision Recall F1 Score

SVM
False

0.7082
0.7052 0.7153 0.7102

True 0.7119 0.7010 0.7061

CNN
False

0.8280
0.8222 0.8370 0.8295

True 0.8340 0.8190 0.8264

R-CNN
False

0.8452
0.8348 0.8607 0.8475

True 0.8562 0.8297 0.8427

H-BLSTM
False

0.8475
0.8428 0.8543 0.8485

True 0.8523 0.8407 0.8465

Att- BiLSTM
False

0.8607
0.8585 0.8637 0.8611

True 0.8628 0.8577 0.8602

CECKP
False

0.8988
0.8966 0.9017 0.8991

True 0.9011 0.8960 0.8985
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The CECKP model obtains the key points of words and sentences through multi-part processing of micro-
blogs, composes the important words contained in a sentence into a representation of the sentence, then com-
poses the important sentences in the text into a representation of the text, and subsequently obtains the final key 
points of the microblog; the obtained key points reflect the semantic features of the microblog text to the greatest 
extent, and were thus found to yield good evaluation results. Compared with other models, our approach enables 
more accurate microblog semantics to be obtained, so that good evaluation results can be achieved. Att-BiLSTM 
can learn top-down and down-top data features, while also adding an attention mechanism to focus the model 
on more important data, meaning that the overall effect is better. The difference between Att-BiLSTM and the 
model proposed in this paper lies in the attention mechanism in Att-BiLSTM being calculated only once, while 
in CECKP, multiple attentions are calculated several times to get the key points of the microblog; this indicates 
that the attention mechanism plays an important role in content credibility assessment-related research.

Model simplification test. To further verify the effectiveness of the CECKP model, the following mod-
els were constructed: (1) the CECKP-NT model, in which only the multi-head attention model is used, while 
the collaboration with the rumor word database is not introduced when acquiring the word encoding; (2) the 
CECKP-NK model, which represents the use of two-way LSTM to encode text content. When this encoding is 
performed, it is coordinated with the rumor vocabulary, and the multi-head attention model is not used. The 
experimental results of the model simplification test are presented in Table 4.

As can be seen from the above results, the collaborative key points-based method for the credibility evaluation 
of microblog content is significantly more effective. When the multi-attention model is not used, the key points 
in the microblog cannot be obtained and the text is not fully mined, resulting in the F1 score for fake microblog 
detection decreasing by 0.0288. When acquiring the word encoding, there is no coordination of the lexicon, and 
the semantic enhancement of part of the known rumor words is lost, resulting in a decrease of 0.0252 in the false 

Figure 3.  Performance comparison of models on the CECKP-dataset when evaluation results are true.

Figure 4.  Performance comparison of models on the CECKP-dataset when evaluation results are false.
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microblog detection F1 score. According to the experimental results, the acquisition of key points has a slightly 
greater influence on the credibility evaluation task than the rumor lexicon. However, if the rumor lexicon was 
to be further expanded in subsequent research, its effect may be improved.

Visualized analysis. To further verify the validity of the CECKP model proposed in this paper in terms of 
word attention, three fake microblog messages are selected for more in-depth visual analysis. In Fig. 5, the color 
depth is used to represent the weight of words following key point calculation: the larger the weight, the darker 
the color. Combine these words as the key points of the text.

It can be seen that the model proposed in this paper is able to select words with a certain comprehensive 
rumor value, and can also select words that appear repeatedly in the text and have significant meaning; examples 
include nouns such as experts, novel coronavirus, epidemic, etc. The key points can better represent the text 
semantics and improve the evaluation effect. However, because these words appear more frequently in both 
false and true microblogs, it is necessary to get the key points of the full text in conjunction with other words 
and sentences composed of keywords in the full text, then jointly evaluate the content credibility; otherwise, 
assessment errors may arise.

Pre-trained language models analysis. Pre-trained language models were very important in the task of 
credibility evaluation.We analyzed several commonly used pre-trained language models early in our research, 
including Word2Vec, BERT, and random embeddings.

Among them, Word2Vec was suitable for non-context-related word vectors. Under this model, similar words 
will have similar vectors. Bert applied to context-based word vectors, and obtained word vectors for each token 
based on the input sentence and context. Random embeddings were more advantageous in saving training time 
and computing resources, but its capabilities were limited.

Bert was better at analyzing sentences with complex structures or ambiguous words in sentences, but it 
required a long training time, and BERT has a great influence on the distribution of the corpus. When the length 
of the text we want to represent changes, it will have an impact on model training.

Although Word2Vec cannot obtain the context vector, it can obtain a stable vector training result, and the 
word vector of the same word can be directly used. The difference is that the word vectors obtained with Bert 
will change with the context, resulting in a large increase in computational time.

Considering these factors, we choose the Word2Vec model as the pre-trained language model, and the rumor 
lexicon we build can complement the Word2Vec model to a certain extent.

Conclusion
To solve the problem of feature selection in content credibility evaluation, this paper proposes a microblog 
content credibility evaluation model based on collaborative key points (CECKP). In this model, the key points 
of words and sentences in the text are acquired by means of a multi-attention mechanism, while a rumor lexis is 
jointly constructed during the acquisition of the key points of words to strengthen the word semantics; subse-
quently, the credibility of the microblog content is evaluated through the obtained microblog key points. Ten-fold 
cross validation experiments prove that the proposed model has high accuracy, precision, recall, and F1 score 
when evaluating the credibility of microblog content. In addition to the text semantic features, microblogs also 

Table 4.  Experimental results of model simplification test.

Model Classification Accuracy Precision Recall F1 Score

CECKP-NT
False

0.8752
0.8827 0.8653 0.8739

True 0.8679 0.8850 0.8764

CECKP-NK
False

0.8683
0.8576 0.8833 0.8703

True 0.8797 0.8533 0.8633

CECKP
False

0.8988
0.8966 0.9017 0.8991

True 0.9011 0.8960 0.8985

Figure 5.  Visual analysis of the weights of key points for rumor words.
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have many other related features. Currently, multi-modal feature fusion is being increasingly applied in various 
classification  tasks55,56. In future work, we will focus on the application of attention mechanisms in multi-modal 
feature fusion to automatically distinguish various modal features according to weight. A more convenient and 
efficient assessment of content credibility can be achieved through the use of a relevant attention mechanism.

Data availability
The data used to support the findings of this study are available from the corresponding author upon reasonable 
request.
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