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Shear strength deterioration 
effect of rock mass joint surface 
under cyclic shear load
Heng Zhang1,2, Shan Dong1,2*, Zhichun Lu3, Yulin Peng1,2 & Weihua Hou1,2

Understanding the shear strength degradation mechanism of a rock mass joint surface under 
cyclic shear load and determining a corresponding analytical model is an important foundation for 
accurately evaluating the safety of rock mass engineering under seismic loads. It is worth noting 
that, to date, there has been a dearth of studies on the strength characteristics of joint surfaces 
that consider the number of loading cycles, normal load, and initial undulant angle of the structural 
plane. In this study, focused on the behaviour of sandstone, the particle flow code (PFC) modelling 
framework was used to simulate a joint surface cyclic shear test considering first- and second-order 
undulations. Based on the experimental results, the comprehensive effects of the number of cyclic 
shear cycles, the normal stress, first- and second-order undulation and the dilatancy angle on shear 
stress during cyclic shear were analysed. Formulas for the joint surface shear basic friction angle 
and dilatancy angle under cyclic shear were proposed, and a method for calculating the joint surface 
peak shear strength under cyclic shear considering the deterioration of the dilatancy angle and basic 
friction angle was established. The peak shear strength of a sample after five cycles of shearing was 
calculated using the proposed formula and compared with the results of numerical simulations, 
the Barton method, and the Homand method. The results showed that the calculated values have 
good consistency with the results of the numerical simulations, demonstrating the effectiveness 
and accuracy of the proposed formula. However, under a low normal stress, there could be errors in 
estimating the cyclic shear strength of the joint surface.

List of symbols
αn  Dilatancy angle of the n-th cyclic shear
n  Number of shear cycles
B  A constant related to the normal stress
σn  Normal stress
τ  Peak shear stress
JRC  Joint roughness coefficient
JCS  Intact rock strength
αd  Dilatancy angle
ϕb  Basic friction angle
τn  Shear stress of the joint surface after n shear cycles
ϕr  Residual basic friction angle
ϕn  Basic friction angle of the surface of the nth cyclic shear
ϕ0  Basic friction angle of the surface of the joint without shear
τr  Residual shear stress
α0  Initial undulant angle of the joint surface
αr  Residual dilatancy angle
αa  Average dilatancy angle
αp  Peak dilatancy angle
θ0s   Initial three-dimensional average angle before the cutting process
b  A constant that depends on the uniaxial compressive strength of the intact specimen
σc  Uniaxial compressive strength of the intact specimen
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DR0
r  Initial roughness

ka  Apparent surface anisotropy
umax  Maximum shear displacement
a0  Maximum amplitude of the serrated joint surface
u0  Maximum positive shear displacement

Jointed rock masses are often observed in rock-mass engineering. The primary difference between a rock mass 
and intact rock is that the rock mass has many discontinuous surfaces (or structural surfaces), including faults, 
joints, and weak interlayers—and the existence of these discontinuities largely controls the properties of the rock 
 mass1–3. Furthermore, the stability of rock slopes and other rock engineering projects is directly related to the 
shear strength of the joint surface, such as the bedding rock  slope4,5. Under the action of a strong seismic load, a 
cyclic shear phenomenon across the peak shear strength appears on the interlayer structural plane, resulting in 
the degradation of the initial morphological characteristics of the interlayer structural plane and a decrease in the 
shear strength, directly affecting the stability of the slope. Generally, deep underground engineering rock mass 
has joints, fissures, weak layers and other structural planes, which often weaken its strength and stability; which 
are highly important for engineering  safety6,7. On the one hand, under the action of tectonic stress, the rock will 
undergo relative dislocation along the joint surface, that is, shear action; on the other hand, under the seismic 
load or mining condition of the coal seam working face, the rock will undergo cyclic shear along the joint surface, 
further weakening the mechanical strength of the rock mass. Therefore, the study of the deterioration mechanism 
of the shear strength of rock mass joint surfaces under cyclic loading is a crucial issue to be solved to precisely 
evaluate the dynamic stability of a slope or deep underground engineering rock mass under seismic loads.

Most former indoor laboratory tests on the mechanical characteristics of rock mass joint surfaces have 
focused on defining the peak shear strength and stress–displacement relationship under uniaxial shear  load8–13. 
However, there have been few studies on the cyclic shear of rock joint surfaces, with previous studies on the shear 
characteristics of joint surfaces being based primarily on indoor joint surface cyclic shear tests. Huang et al.14 
tested sawtooth-molded joint surfaces under cyclic shear loading and proved the wear degradation law of joint 
undulations proposed by  Plesha15. Based on the shear test results of 50 concrete samples of rock joints, Jing et al.16 
put forward a conceptual model for the action of rock joints during cyclic shear and under a constant normal 
load. Divoux et al.17 summarized the results of multiple cyclic shear tests and proposed a cyclic shear mechanical 
constitutive model for a joint surface. Homand et al.18 conducted cyclic direct shear tests on an undulated manual 
structural plane and proposed a formula to forecast the degradation of anisotropic structural planes and cyclic 
shearing modes. Lee et al.19 conducted a series of cyclic shear tests on sawing and split tensile joint surfaces and 
put forward an elastic–plastic constitutive model that considered the degradation of second-order undulations. 
Jafari et al.20 carried out a research on the shear strength of a cubic sawtooth rock joint surface under cyclic 
shear loading and put forward a shear strength formula for a joint surface sample under the condition of a large 
cyclic shear displacement. Fathi et al.21 conducted a set of cyclic shear tests on artificially replicated crude granite 
joint surfaces and found that with an increase in the number of shear cycles, the roughness of the joint surface 
and shear parameters of the joint surface continued to decrease. Through a joint surface cyclic shear test, Mroz 
et al.22 analyzed the degradation of undulations during the structural plane shearing process and put forward a 
constitutive model that could effectively reflect the softening of the shear stress curve after the first cyclic shear. 
Although there have been some relevant studies, there have been few reports focused on the comprehensive 
physical and mechanical characteristics of rock mass joint surfaces under cyclic loading with repeated changes 
in the shear load direction.

Moreover, it is highly important to obtain the in-situ mechanical properties of rocks; however, in-situ mechan-
ical tests are often hard to  conduct23. Owing to the difficulty in sampling natural joint surfaces, it can be difficult 
to guarantee the consistency of each sample during testing. However, it has been proved that it is feasible to 
prepare rock structural plane samples with similar materials—in particular, the artificial serrated regular joint 
surface can quantitatively reflect the influence of the undulant angle on the mechanical properties of a joint 
 surface24–28. Nevertheless, the physical model test can be expensive and time-consuming, and the deformation 
and failure processes in the shear process of the joint surface can be tough to  view29–31. Consequently, numerical 
simulations offer a promising method to complement or even substitute physical tests. The particle flow code 
(PFC) model proposed by Cundall could simulate the adhesion and friction between rock mineral particles on 
a mesoscale, thereby avoiding the use of empirical parameters to set the macroscopic constitutive model. Today, 
it is extensively applied to the analysis of the mechanical properties of rocks as well as the shear test of rock joint 
 surfaces32–36.

Several scholars have carried out particle flow numerical simulation tests on joint surface cyclic shear. Based 
on physical experiments, Xu et al.37 used a two-dimensional particle flow (PFC2D) model to conduct cyclic shear 
numerical simulations, studied the macroscopic and microscopic fatigue damage mechanisms of multi-scale 
micro-convex rock-joint surfaces under constant normal stress, and simulated the meso-fatigue damage evolution 
process of a serrated rock structural plane. Kou et al.38 conducted a particle discrete element numerical simulation 
to deeply understand the mechanical response of multi-scale triangular micro-convex (first- and second-order 
undulation) rock joint surfaces under pre-peak cyclic shear tests. Liu et al.39 used a PFC2D program to realize a 
pre-peak numerical test of cyclic direct shear of rock joint surfaces with second-order undulation and analysed 
the change law of joint cumulative damage characteristics and shear strength in the pre-peak cyclic direct shear 
test of joints from both a macroscopic and microscopic perspective.

In this study, numerical simulation tests of joint surface cyclic shear considering first-order and second-order 
undulations using a PFC2D model were carried out, and the shear stress–displacement curve was analyzed. 
Starting with the deterioration of the dilatancy angle and the basic friction angle, a formula for calculating the 
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peak shear strength of a rock mass joint surface under cyclic shear load was proposed. It was then compared 
with the research methods of Barton and  Choubey40 and Homand et al.18. It is hoped that this study will provide 
a fundamental theoretical basis for obtaining the shear strength of joints more precisely, benefiting the develop-
ment of stability analyses of rock slopes or deep underground engineering under seismic loads.

Methods: cyclic shear test of rock mass joint surface
The real joint surface is composed of randomly distributed undulations. According to the different geometric 
characteristics of undulations, rock joints are composed of rough surfaces, and there are many micro-convex 
bodies from the macro-scale to the micro-scale. Lee et al.19 proposed that the morphology of a joint surface 
could be approximated using the superposition of first- and second-order undulations, as shown in Fig. 1. The 
first-order undulation is a large undulation (sawtooth and step) on the joint surface, which represents the undu-
lating trend of the joint surface, and it is often used to represent the common peak valley undulating contour 
on the surface of the joint surface. The second-order undulation is the undulation with small size on the joint 
surface and represents the roughness of the joint surface. It mainly represents the secondary micro-geometric 
characteristics of the undulation on the joint surface. The size of the first-order undulation is approximately one 
order of magnitude larger than that of the second-order undulation.

Several important results have been obtained pertaining to the study of the cyclic load shear strength of joint 
surfaces considering only first-order  undulations41–44. However, Belem et al.45 highlighted that the classic rock 
mass shear strength model did not consider the influence of second-order undulations, and underestimated the 
shear strength when the normal stress was low. Through cyclic shear tests of rock mass structural planes,  Liu46 
inferred that second-order undulations had a considerable impact on the shear characteristics of rock mass struc-
tural planes, particularly when the normal stress is small. Consequently, ignoring the second-order undulation 
significantly underestimates the peak shear strength of the joint surface.

Parameter calibration. The meso-level parameters involved in PFC2D possess internal randomness and 
a complicated relationship with macro-mechanical properties. By simulating basic mechanical tests, it can be 
ensured that the macroscopic mechanical properties are consistent with the actual experimental results, and that 
the calibrated parameters can be considered  reasonably47–51.

In this study, the sandstone of Suining Formation  (J2sn) in the Middle Jurassic system, which was collected 
at a depth of 10 m below the surface of a typical seismic crack slope peanut landslide in Yiliang County, Yun-
nan Province, was taken as the research object. The tensile stress is concentrated in the sandstone rock layer 
of the Huashengdi landslide, and the tensile strength of the rock layer is considerably less than its compressive 
strength, resulting in the fracture of the rock under stress. Rocks on both the sides are slightly displaced along 
the fracture surface, forming a fracture structure called joints. The joints are developed in the sandstone layer, 
and the fracture surface is rough, with few scratches, large joint spacing, and uneven distribution. The shear 
stress-displacement curves of a Jurassic red-bed sandstone intact rock sample of dimensions 100 × 100 × 100 mm 
[length × width × height] (Fig. 2) and a rock specimen with a flat joint surface of dimensions 100 × 100 × 50 mm 

Figure 1.  Conceptual model of first- and second-order undulation (diagram from Lee et al.19).

Figure 2.  Sample without a joint.
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(of both the upper and lower parts) (Fig. 3) were obtained through the direct shear test when the normal stress 
was 1, 2, and 3 MPa, respectively. The device used was a portable rock mechanical performance multifunctional 
instrument self-developed by Chengdu University of Technology (Fig. 4).

During the shearing process, the normal load remained unchanged and the shear load was gradually applied. 
Simultaneously, the shear and normal displacements under each shear load level were measured and recorded. 
Figures 5 and 6 show the shear stress-displacement curves obtained from the physical direct shear tests performed 
on the two rock samples. In the simulation test, the curves of the shear stress-displacement obtained from the 
physical direct shear tests were implemented as a calibration benchmark. By trial and error method, simulation 
results that were quite close to the actual test results were finally obtained (Figs. 5 and 6), the calibration param-
eters of which are shown in Tables 1, 2, 3.

Experimental design and model building. In this study, a joint surface with regular undulations was 
selected. The first- and second-order undulations were considered simultaneously. In view of the undulant 
angles of the undulations between rock mass joint faces in nature being mostly small angles, the first-order ini-
tial undulant angle was set to be 10° and 20°, respectively, and the second-order undulant angle to be 10° (Fig. 7). 
The normal stress of the cyclic shear test was set to be 0.5, 1, 2, and 3 MPa, respectively. Based on the results of a 
string of joint surface shear tests carried out by Barton and  Choubey40, the peak shear strength of the joint sur-
face corresponds to a shear displacement of approximately 1% of the length of the joint surface. Additionally, the 
shear displacement corresponding to the residual strength is approximately 10% of the structural plane length. 
Thus, the shear target displacement was set to ± 10 mm—that is, 10% of the plane length. Each cycle of the cyclic 
shear test was divided into four steps. In the experiment, the lower shear box was stationary and the cyclic shear 
route was divided based on the shear displacement of the upper shear box. Route 1 shows that the upper shear 
box moved 10 mm to the left from the origin (0 mm). Route 2 shows that the upper shear box moved 10 mm 
from the maximum shear displacement on the left-hand side to the origin. Route 3 shows that the upper shear 

Figure 3.  Sample with a flat joint.

Figure 4.  Portable rock mechanical property multifunctional test device (Chengdu University of Technology, 
 200452). (1) Bottom frame baffle; (2) Lower shear box; (3) Upper shear box; (4) Horizontal jack loading; 
(5) Vertical frame baffle; (6) Force transmission device; (7) Vertical jack loading; (8) Top frame baffle; (9) 
Skateboards; (10) Ball bearings; (11) Magnetic stand; (12) Dial gauge.
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Figure 5.  Comparison of the shear stress–displacement curves of the physical and numerical simulation tests 
on sandstone without a joint surface.

Figure 6.  Comparison of the shear stress–displacement curves of the physical and numerical simulation tests 
on the flat joint surface of sandstone.

Table 1.  Numerical simulation test particle microscopic parameters.

Lithology
Minimum particle radius 
(mm)

Maximum particle 
radius (mm) Particle density (g/cm3)

Particle contact modulus 
(GPa)

Normal and tangential 
stiffness ratio of particles

Particle friction 
coefficient

Sandstone 0.15 0.3 2.65 1.0 2.0 0.5

Table 2.  Meso parameters of parallel bonding model in numerical simulation test.

Linear or parallel 
connection elastic 
modulus (GPa)

Linear or parallel 
bond stiffness ratio

Bonding distance/
mm

Contact friction 
coefficient

Average contact 
tensile strength 
(MPa)

Standard deviation 
of contact tensile 
strength (MPa)

Standard deviation 
of contact cohesion 
(MPa)

Average value of 
contact cohesion 
(MPa)

1.0 2.0 0.5 0.5 10 5 5 10

Table 3.  Meso parameters of smooth joint model in numerical simulation test.

Normal stiffness 
(GPa)

Normal and 
tangential stiffness 
ratio

Contact friction 
coefficient Dilatancy angle (°)

Average contact 
tensile strength (Pa)

Standard deviation 
of contact tensile 
strength (Pa)

Average value of 
contact cohesion 
(Pa)

Standard 
deviation of 
contact cohesion 
(Pa)

1.0 2.0 0.5 0.0 0.0 0.0 0.0 0.0
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box moved 10 mm from the origin to the right. Route 4 shows that the upper shear box moved 10 mm from the 
maximum shear displacement on the right to the origin. (Fig. 8).

Based on the direct shear model of the upper and lower shear boxes established by  Fu54 and Zhang et al.55 
on a two-dimensional plane, eight walls were established to simulate the shear box. Walls 1#, 2#, and 3# formed 
the lower shear box, and walls 4#, 5#, and 6# formed the upper shear box. The upper and lower shear boxes 
were 50 × 100 mm in height and width, respectively. Additionally, walls 7# and 8# acted as wing walls on both 
sides so that the particles could not overflow (Fig. 9). The debris formed by shearing did not fall off and fill the 
undulations of the joint surface. The parallel bond contact model was utilized as the contact constitutive model 
between the rock particles in the PFC simulation—this model having the properties of tensile resistance, shear 
and moment effects, bond failure, and material macroscopic stiffness degradation, being more suitable for simu-
lating rock  materials56–59.

In addition, the smooth joint contact model could simulate a regular sawtooth rock mass joint surface. A total 
of 50,964 particles were randomly generated in this model, using a radius of 0.15–0.3 mm, evenly distributed, 
with a density of 2650 kg/m3, and a porosity of 0.16 (corresponding data in Table 1). Wall 5# was controlled by a 
servo control, a constant normal load being applied to the sample. A displacement control method was utilised 
to apply the shear load. The walls below the shear plane were fixed, the walls above the shear plane moving peri-
odically at a uniform velocity of 0.5 mm/min, with an amplitude of 10 mm, stopping after five cycles.

Analysis of evolution characteristics of shear stress. It can be seen from Fig. 10 that when the first- 
and the second-order initial undulant angles are both 10° (Undulation Scenario 1 as shown in Fig. 7a) for the 
structural plane, and the normal stress is 0.5 MPa and 1.0 MPa, separately, the shear stress–displacement curves 
of the joint surface under five cycles of shear all appear as slip curves, reflecting that the major shearing mecha-

(a) 

(b) 

Figure 7.  Numerical simulation model of the joint surface. (a) Undulation Scenario 1: the first-order initial 
undulant angle and the second-order undulant angle are both 10°. (b) Undulation Scenario 2: the first-order 
initial undulant angle and the second-order undulant angle are 20° and 10°, respectively.

Figure 8.  Route divisions of a single shear cycle (diagram from Dong et al.53).
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nism during cyclic shear slides along the undulations on the joint surface under low normal stress—that is, 
sliding failure.

A schematic of the sliding failure mode is shown in Fig. 11a. During the sliding process, second-order and 
first-order undulations may degenerate and destroy, causing the shear plane to tend to be smooth, forming a 
smooth shear surface. After each shear cycle, the shear strength of the joint specimen decreases, there being 
little change after two or three cycles. When the normal stress is 2 and 3 MPa in Route 1 of Cycle 1, the shear 
stress-displacement curves of the joint surface were a peak curve, and the failure of the joint surface was mostly 
shear failure.

A schematic of the shear failure mode is shown in Fig. 11b. In the subsequent shear process, the main failure 
mode is slip failure. For the joint surface with a first-order undulant angle of 20° and a second-order undulant 
angle of 10° (Undulation Scenario 2 as shown in Fig. 7b), when the normal stress is 0.5 MPa, the shear process of 
the joint surface is dominated by slip failure, accompanied by local shear failure. Under high normal stress (1, 2, 
and 3 MPa), in Route 1 of Cycle 1, the shear stress–displacement curves of the joint surface are all peak curves, 
and the failure of the joint surface is mostly shear failure. However, under 1 MPa normal stress, Route 1 of the 
shear stress–displacement curve of the joint surface basically shows a peak curve, but the whole curve fluctuates 
greatly. The shear failure is mainly manifested by the shear along the middle and lower parts of the undulations, 
the residual undulations continuing to shear with increases in the shear displacement, shear rock debris filling 
the undulation grooves of the joint surface.

During the subsequent cyclic displacement, the degradation of second- and predominantly first-order undula-
tions continued, but second-order undulations did not have any significant influence on the shear behavior of the 
joint surfaces, as they decreased after several cycles. In cycles that follow, the joint surface exhibits mainly sliding 
failure. Additionally, regardless of the first-order undulant angle, when the normal stress is small (0.5 MPa) for 
the shear failure model of Route 1 of Cycle 1, the shear curve fluctuates considerably owing to the influence of 
second-order undulations. This shows that when the normal stress is low, the influence of second-order undula-
tions cannot be ignored, and its influence can be reflected in the shear curve.

Furthermore, as the normal stress increases, the slope of the elastic deformation stage increases before the 
shear stress reaches its peak value, that is, the shear modulus increases. After its peak value, the rate of decrease 
in the shear stress also increases, illustrating that the shear failure characteristics of the joint surface become 
increasingly evident. Additionally, under the same normal stress, the larger the undulant angle of the joint surface, 
the less evident the sliding failure effect of the rock mass in the shear process, the more evident the shear failure 
effect, and the worse the deterioration of the joint surface.

Overall, the deterioration of the joint surface shear strength under cyclic shear is mostly reflected in the first 
cyclic shear. In the subsequent shearing process, the shear stress-displacement curves of the joint surface are 
slip curves and the shear stress remains constant. This is because the joint surface is relatively straight after the 
undulation is sheared. During the shearing process, the sheared cuttings are filled between the structural planes 
as fillers, leading to friction in the structural plane in the subsequent shear process, mainly generated in three 
parts—that is, between the two structural planes, between the structural planes and the cuttings, and between 
the two sets of cuttings.

Analysis of variation trend of dilatancy angle. The variation trend of the average dilatancy angle of 
the joint surface under different normal stresses with an increase in the number of cyclic shear cycles is shown 
in Fig. 12. The results indicate that under the same normal stress, the dilatancy angle decreases with an increase 
in the number of cyclic shear cycles, and when the number of cyclic shear cycles increases to a certain value, the 
average dilatancy angle of the joint surface increasingly became steady. Moreover, in Cycle 1, when the normal 
stress increases the decreasing speed of the average dilatancy angle also increases, indicating that the main shear 

Figure 9.  PFC numerical simulation model establishment diagram.
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strength deterioration under cyclic shear occurs during the first cyclic shear, and that the shear deterioration 
phenomenon is more evident when the normal stress increases.

The dilatancy angle can directly affect the shear strength—that is, when the dilatancy angle decreases, the 
shear strength decreases. Furthermore, the influence of the wear effect between structural planes should also 
be considered to better evaluate the changes in shear strength during cyclic shear. The first- and second-order 
undulation failures during cyclic shear are mainly reflected in the reduction of the dilatancy angle.

(a)

(b)

Figure 10.  Shear stress–displacement curves of two joint surfaces under different normal stresses. (a) 
Undulation Scenario 1. (b) Undulation Scenario 2.
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Based on the fitting results of the joint surface cyclic shear numerical simulation test, it was found that the 
variation trend of the dilatancy angle could be expressed by the following equation with an increase in the 
number of cyclic shear cycles (Fig. 13):

where αn denotes the average dilatancy angle of the joint surface after n cycles of shear, n denotes the number of 
cycles, and B denotes a constant related to the normal stress, which can be obtained by fitting the average dila-
tancy angle value of each cycle. It can be seen from Fig. 13 that the dilatancy angle of each shear cycle calculated 
using Eq. (1) is close to that of the entire joint surface.

The relationship between parameter B of the joint surfaces in the two different undulation scenarios and the 
normal stress is shown in Fig. 14.

As shown in Fig. 14, the B value of the joint surface in the same undulation scenario decreases linearly with an 
increase in the normal stress σn . Simultaneously, the linear downward trend of parameter B in different undula-
tion scenarios differs. The expression for B in Undulation Scenario 1 can be expressed as follows:

The expression of B in Undulation Scenario 2 can be expressed as follows:

The mechanical properties of the rock joint surface have the characteristics of size effect. Under complex 
geological conditions, large-scale rock structural plane tests are often difficult to carry out owing to factors such 
as capital, site, instrument, and time. Therefore, the laboratory mostly conducts small-scale joint surface physical 
tests, which have the advantages of simple sampling and sample preparation, convenient test operation, short 

(1)αn = α0e
−Bn,

(2)B = −0.2233 · σn + 1.2939.

(3)B = −0.3219 · σn + 1.7428.

Figure 11.  Schematic diagram of the sliding failure and shear failure modes of the shear Route 1 in first cycle 
of the joint surface. (a) Sliding failure, (b) shear failure. (The main difference between the two is the height at 
which the undulation is worn and sheared).

Figure 12.  Changes in the average dilatancy angle with the number of cyclic shear cycles under different 
normal stresses.
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cycle, and relatively low  cost60. Based on the test results obtained from the small-scale test in the laboratory, it 
can reflect the large-scale situation of the project and lay a theoretical foundation for the project construction. 
The shear-strength deterioration formula established in this study by simulating the indoor joint surface shear 
test is universal to a certain extent and can be applied to a laboratory-scale test. For large-scale rock joint cyclic 
shear in deep underground rock mass engineering, some parameters in the calculation formula in this paper 
need to be re-determined, such as parameter B in the calculation formula of dilatancy angle.

Shear strength of joint surface under cyclic shear
Barton and  Choubey40 obtained a joint surface strength model by conducting numerous joint surface shear tests 
(not considering cyclic shear), as follows:

It was also found that:

where JRC denotes the roughness coefficient, JCS denotes the intact rock strength, and αd denotes the dilatancy 
angle, ϕb being the basic friction angle, and τ being the peak shear stress. The dilatancy-angle parameter in the 
formula can reflect the change of joint surface roughness, and, subsequently, reflect the size effect of the joint 
surface.

(4)τ = σn · tg

(

JRC · lg
JCS

σ
+ ϕb

)

.

(5)αd =
JRC

2
lg
JCS

σn
,

Figure 13.  The variation trend of the dilatancy angle.

Figure 14.  Relationship between parameter B and normal stress σn.
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The dilatancy angles αd and αn have the same meaning, so they can be calculated using Eq. (1). According 
to Barton and  Choubey40, the shear stress of the structural plane of nth cyclic shear can be defined as follows:

where τn denotes the peak shear stress of the joint surface after n shear cycles, αn denotes the average dilatancy 
angle of the joint surface after n shear cycles, and ϕn denotes the basic friction angle of the joint surface after n 
shear cycles.

Based on Eq. (6), when a rock mass shears along the joint surface under a constant normal stress, the shear 
stress of the structural plane is mainly determined by the dilatancy angle and basic friction angle. While in the 
process of cyclic shear of the joint surface, the dilatancy angle and basic friction angle change dynamically with 
an increase in the number of cycles.

Through a cyclic shear test of a joint surface, Dong et al.53 found that the change trends of the basic friction 
angle and dilatancy angle are basically the same, and proposed a calculation method for the basic friction angle 
of a joint surface under cyclic shear load, which can be expressed as follows:

Based on Eq. (6), the expression for the residual basic friction angle can be expressed as follows:

Based on Eqs. (7) and (8), the expression for the basic friction angle can be expressed as follows:

In Eqs. (7), (8), and (9), ϕn denotes the basic friction angle of the surface of the nth cyclic shear, ϕ0 denotes the 
basic friction angle of the surface of the joint without shear, αn denotes the dilatancy angle of the nth cyclic shear, 
τr denotes the residual shear stress, σn denotes the normal stress applied during the shear process, α0 denotes the 
initial undulant angle of the joint surface, and αr denotes the residual dilatancy angle.

Based on the above analysis, the final equation for calculating the peak shear strength of the joint surface 
after n cycles under cyclic shear can be expressed as follows:

If this study is applied to cyclic shear of deep underground rock mass, the normal stress can be obtained by 
calculating the in-situ stress of the underground depth, the friction angle parameter can be obtained by the joint 
surface shear test of the borehole core sampling, and the dilatancy angle of the joint surface can be obtained by 
analysing the borehole photography  image61. Therefore, they can be substituted into the Eq. (10) to analyse and 
predict the deterioration of shear strength of deep underground rock mass under cyclic shear load.

Results: verification
To verify the feasibility of the proposed method, the shear stresses calculated using the proposed method were 
compared with those obtained from numerical simulations. Based on the test analysis results, the deterioration 
in the peak shear strength of the joint surface under cyclic shear was mostly reflected in the first cyclic shear. 
Consequently, the calculations in this study primarily considered the verification of degraded strength after the 
first cyclic shear.

The dilatancy angle, basic friction angle, and peak shear strength after the first cyclic shear were calculated 
using Eq. (10). The calculation parameters, calculation results, and simulation test results of the proposed method 
after the first cyclic shear are listed in Table 4, and the simulation test and calculation results of the proposed 
method are shown in Fig. 15. For the structural plane in Undulation Scenario 1, when the normal stress is 0.5, 
1.0, 2, and 3 MPa, the peak shear strength of simulation results is 0.40, 0.62, 1.15, and 1.56 MPa, separately; the 
peak shear strength of the proposed method being 0.33, 0.61, 1.13, and 1.54 MPa, separately. The errors between 
the simulation results and the proposed method are 17.50, 1.61, 1.74, and 1.28%, separately.

For the joint surface in Undulation Scenario 2, when the normal stress is 0.5, 1.0, 2, and 3 MPa, the peak 
shear strength of the simulation results is 0.40, 0.63, 1.06, and 1.42 MPa, separately; the peak shear strength of 
the proposed method results being 0.35, 0.63, 1.04, and 1.39 MPa, separately; The errors between the simula-
tion results and the proposed method are 12.50, 0.00, 1.89, and 2.11%, respectively. When the normal stress is 
0.5 MPa, the calculation errors of the joint surface in Undulation Scenario 2 are greater than 3%, and the error 
is a little large. The reason for this is explained in detail in “Comparisons”. Furthermore, the error in the other 
calculation results is within 3%, which demonstrates the feasibility of the proposed method.

Discussion
Previous studies. In order to prove the effectiveness of the peak shear strength models proposed in this 
article, the numerical simulation results were compared with the values calculated by the proposed model as well 
as the models of Barton and  Choubey40 and Homand et al.18. The calculation method for peak shear strength by 
Barton and  Choubey40 is discussed in “Shear strength of joint surface under cyclic shear”. In this paper, when 

(6)τn = σntg(2αn + ϕn),

(7)
α0 − αn

α0 − αr
=

ϕ0 − ϕn

ϕ0 − ϕr
.

(8)ϕr = arctan(τr/σn)− 2αr .

(9)ϕn =
(α0 − αn)[arctan(τr/σn)− 2αr]+ (αn − αr)ϕ0

α0 − αr
.

(10)







τ = σ tg(2αn + ϕn).
αn = α0e

−Bn.

ϕn =
(α0−αn)[arctan(τr/σn)−2αr ]+(αn−αr )ϕ0

α0−αr
.
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the Barton method was applied, the basic friction angle was the residual friction angle of the joint surface after n 
cycles of shear, and the dilatancy angle was the average dilatancy angle of the joint surface after n cycles of shear, 
used to calculate the deteriorated shear strength after each cyclic shear. The average dilatancy angle ( αa ) and 
residual friction angle ( ϕr ) of the joint surface after n cycles of shearing were obtained by numerical simulation 
shear tests, which differed from the parameters calculated using the proposed method.

Here, the Homand shear strength  model18 is introduced briefly. Homand et al.18 used cement as a similar 
material to prepare regular undulating joints and carried out ten shear cycle tests. The step length of the serrated 
undulation of the joint surface was 25 mm, the height of the first-order undulation was 2 mm, the maximum 
displacement in one direction of each cycle was 10 mm, and the total shear displacement was 400 mm. A new 
computer-controlled three-dimensional shear apparatus (CC3DSM) was used for the test. The tests were con-
ducted at six normal stress levels of 0.5–5 MPa. The surface wear characteristics of artificial regular wavy joints 
before and after shearing were studied. Using the defined surface roughness degradation index, the changes in 
the surface wear characteristics and degradation index of the joints with the number of shear cycles and their 
relationship with the normal stress were analysed. Based on these theoretical analyses, Homand et al.18 proposed 
a constitutive model for predicting the peak shear strength of joint surfaces under cyclic shear conditions, based 
on Barton’s formula, as follows:

Table 4.  Calculation parameters, calculation and simulation test results of proposed method.

Joint surface type Normal stress (MPa)
Basic friction angle 
ϕn (°) Dilatancy angle αn (°)

Simulation test results 
(MPa)

Calculation results of 
the proposed method 
(MPa)

Errors between the two 
methods (%)

Undulation Scenario 1

0.5 21.72 5.03 0.40 0.33 17.5

1.0 26.32 4.72 0.62 0.61 1.61

2.0 26.41 3.50 1.15 1.13 1.74

3.0 25.33 2.90 1.56 1.54 1.28

Undulation Scenario 2

0.5 24.66 8.23 0.40 0.35 12.5

1.0 25.72 8.08 0.63 0.63 0.00

2.0 25.16 4.71 1.06 1.04 1.89

3.0 23.31 3.88 1.42 1.39 2.11

(a)

(b) 

Figure 15.  The results obtained using the simulation test and proposed method. (a) Undulation Scenario 1. (b) 
Undulation Scenario 2.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15034  | https://doi.org/10.1038/s41598-022-19385-0

www.nature.com/scientificreports/

where σn denotes the normal stress, ϕb denotes the basic friction angle, αp denotes the peak dilatancy angle, and 
θ0s  denotes the initial three-dimensional average angle before the cutting process. For the regular serrated joint 
surface, θ0s = α0 , b is a constant that depends on the uniaxial compressive strength of the intact specimen ( σc ), 
the initial roughness ( DR0

r ), the apparent surface anisotropy ( ka ), and the maximum shear displacement ( umax ), 
related to the number of cycles. The constant b can be expressed as follows:

where a0 denotes the maximum amplitude of the serrated joint surface, and u0 denotes the maximum positive 
shear displacement (or the maximum displacement of monotonic shear displacement). For surfaces with a ser-
rated plane, ka = 0 . The values of the calculation parameters in the formula used in this study (when using the 
Homand method) are listed in Table 5.

Comparisons. Comparison of the peak shear strength results obtained using the numerical simulation 
method, the method proposed in this study, the Barton method, and the Homand method for five cycles of shear 
is shown in Fig. 16.

It can be seen from Fig. 16 that under higher normal stress (1, 2, and 3 MPa), the calculated peak shear 
strength of the joint surfaces with different undulant angles gradually decreases with an increase in the number of 
cycles, the decreasing trend slowing down step by step, which is in fine agreement with the numerical simulation 
results. A large number of shear-test results indicate that the difference of undulating characteristics in different 
directions and the size of normal stress on the joint surface are the main factors that make the shear mechanical 
behaviour of the joint surface  anisotropic62. Zhou et al.63 demonstrated that there is a positive correlation between 
the anisotropy of joint surface roughness and peak shear strength, and the increase of normal stress weakens 
the anisotropy of shear mechanical behaviour of the joint surface. The morphological characteristics of joint 
surfaces are important factors affecting the shear behaviour of joint surfaces, and there is a certain relationship 
between the anisotropy of shear mechanical behaviour of joint surfaces and the anisotropy of morphological 
characteristics. With the increase of cyclic-shear times, the undulations of sandstone joint surface are sheared 
during the shear process, and the debris fills the voids between the undulations. The sliding surface becomes 
smooth, reducing the roughness of the joint surface, weakening the anisotropy, and slowing down the decline 
of shear strength.

Additionally, the calculated values of the proposed method are close to those of the Barton method. However, 
the degree of fitting of the simulation results to the calculation results obtained using the proposed method is 
better than those obtained using the Barton method. At the same time, the calculated values of the proposed 
method are lower than those of the numerical simulation. This is because the proposed method considers the 
ideal state—that is, it does not consider the influence of rock cutting fillings on the shear strength of the joint 
surface in the cyclic shear process. In fact, during the shearing process, because of the wing walls on both sides 
of the model, the sheared rock cuttings cannot fall off and are filled between the joint surfaces as fillers, causing 
friction in the joint surfaces in the subsequent shearing processes, which occurs in three parts—that is, between 
the two joint surfaces, between the joint surface and the rock cuttings, and between the two groups of rock cut-
tings—resulting in a large basic friction angle between the joint surfaces. Consequently, the numerical simulation 
results are slightly larger than those calculated using the proposed method.

Under a lower normal stress (0.5 MPa), there is a large deviation between the calculated value of the proposed 
method and the numerical simulation results. Huang et al.14 carried out a cyclic shear test of joint surfaces in 
nature and concluded that second-order undulations cause the peak shear stress in the first cycle to be consid-
erably higher than that in the subsequent cycles under low normal stress. However, the undulation is sheared 
along the middle and lower parts during the first shear cycle under high normal stress, and the subsequent shear 
is dominated by friction and sliding between the joint surface and rock debris, which is hardly affected by the 
second-order undulation. Consequently, because the influence of second-order undulation is not considered 
in the proposed method under low normal stress, there may be some deviation in the results of the cyclic shear 
strength of low normal stress joints using the proposed method.

Based on Fig. 16, the results of the Homand method are greater than those of the numerical results and the 
other two methods. This is because when calculating the cyclic shear strength degradation of the serrated joint 
surface, the value of the apparent surface anisotropy ( ka ) in the Homand method is 0. The degradation effect of 
the joint anisotropy and roughness with cyclic shear cannot be considered, and the Homand method does not 

(11)τ = σntan
(

ϕb + αp
)

,

(12)αp = 2θ0s exp(−bσn),

(13)b =
1

σc

(

u20
a0umax

+
ka

DR0
r

)

,

Table 5.  Calculation parameters in the Homand formula for cyclic shear strength of joints. *n is the number 
of cyclic shear cycles.

σn (MPa) ϕb σc (MPa) a0 (mm) u0 (mm) ka θ0s umax (mm)

0.5/1.0/2.0/3.0 25.3° 40.6 1.76 10 0 10°/20° (n + 1)*u0 − 3/4u0
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consider the degradation effect of the basic friction angle with cyclic shear. Consequently, the results using the 
Homand method are slightly greater. Only the maximum shear displacement ( umax ) in the parameters that affect 
the peak dilatancy angle ( αp ) in the formula is related to the number of cycles, and the umax that varies with the 
number of cycles has a weak effect on the peak shear dilatancy angle αp . This results in a slight change in the peak 
dilatancy angle ( αp ) with the number of cycles, indicating that the peak shear strength does not change much 
with an increase in the number of cycles.

The shear strength varies significantly owing to different rock  materials64. This paper mainly focuses on the 
mechanical behaviour of sandstone, and the proposed formula is only based on the cyclic shear test and verifica-
tion of the joint surface of sandstone rock mass. Therefore, the coefficients of the proposed formula may only 
be applicable to the calculation of sandstone or mudstone rock mass. For other types of rock mass, the values of 
relevant parameters must be determined again through tests. In the subsequent research, it is necessary to study 
the degradation law of peak shear strength in the process of cyclic shear of the joint surface of different lithologic 
rock masses, study and analyse as many test data as possible, and improve the proposed formula, especially the 
relevant parameters in the formula, so as to adapt to the joint surface of a wide range of rock materials as much 
as possible.

(a)

(b)

Figure 16.  Comparison of calculation results of cyclic shear strength using four methods. (a) Undulation 
Scenario 1. (b) Undulation Scenario 2.
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Conclusions
In this study, based on the numerical simulation test results of cyclic shear using PFC numerical simulation 
software considering the first- and second-order undulations, the variation laws of the dilatancy angle and shear 
stress with changes in the number of cyclic shear cycles were obtained. A calculation formula for the peak shear 
strength of the joint surface under cyclic shear load considering the degradation of the dilatancy angle and basic 
friction angle was determined. The following conclusions could be drawn:

(1) The greater the normal stress and undulant angle, the more serious the deterioration of the joint surface 
under cyclic shear load, the deterioration of the peak shear strength of the joint surface being mainly 
reflected in the first cyclic shear. The dilatancy angle decreased with an increase in the number of cyclic 
shear cycles. When the number of cyclic shear cycles increased to a certain value, the average dilatancy 
angle of the joint surface tended to gradually stabilize.

(2) To verify the effectiveness and accuracy of the method proposed in this study, the peak shear strength of 
the specimen under five cycles of cyclic shear was calculated using the established cyclic shear strength 
formula and compared with the results of the numerical simulation, Barton method, and Homand method. 
The results showed that the proposed method generated results close to those of the numerical simulation 
and could predict the degradation law of the joint surface peak shear strength in the process of cyclic shear. 
The coefficient of the proposed formula may only be applicable to sandstone, and the relevant parameters 
for other rock masses must be re-determined through tests.

Data availability
The data that support the findings of this study are available on request from the corresponding author.
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