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Intense atmospheric frontogenesis 
by air–sea coupling processes 
during the passage of Typhoon 
Lingling captured at Ieodo Ocean 
Research Station
Sinil Yang1, Il‑Ju Moon2, Hyo‑Jun Bae1, Baek‑Min Kim1*, Do‑Seong Byun3 & Hwa‑Young Lee3

The Ieodo Ocean Research Station (Ieodo ORS) is a fixed marine observation platform at the boundary 
of the Yellow and East China Seas. In 2019, a Category 4 Typhoon Lingling passed by the Ieodo ORS 
very closely. At that time, the Ieodo ORS observed Sea Surface Temperature (SST) cooling of 4.5 °C by 
vertical mixing and negative turbulent heat flux (i.e., the sum of sensible and latent heat fluxes) due 
to the SST cooling. In this study, uncoupled and coupled simulations were conducted to examine the 
role of air‑sea interactions in changes in atmospheric frontogenesis around the typhoon passage. In 
the coupled simulation, SST cooling up to 6 °C occurred over the dangerous semicircle due to vertical 
mixing induced by wind stress. Strong wind stress also enhanced the SST gradient and, therefore, 
contributed to the formation of a steeper atmospheric frontal zone. Moreover, the comparison with 
reliable datasets supports the physical linkage between SST cooling and atmospheric frontogenesis 
by utilizing the meridional theta‑e gradient and moisture convergence zone. Therefore, from the 
simulation results, we hope to improve our understanding of atmospheric frontogenesis by air–sea 
coupling processes in the future development of a coupled atmosphere–ocean modeling system.

Ocean observation fixed towers are invaluable platforms for exploring various oceanic, meteorological, and 
coastal  phenomena1. In general, the tower-based platform is the preferred choice for direct measurement pres-
ently compared to other oceanic floating platforms such as buoys and  ships2. Fixed observation is useful when 
investigating typhoon  dynamics3,4, regional oceanographic  studies5,6, and air-sea  exchanges7,8. However, ocean 
observation towers are very rare. Few of the towers designed to observe air-sea interactions include the Yongxing 
air-sea flux tower in the South China Sea, Woods Hole Oceanographic Institution (WHOI) air-sea interaction 
tower in the North Atlantic, and the Ieodo Ocean Research Station (hereafter Ieodo ORS) in the Yellow Sea and 
the East China Sea. Among the three platforms, the Ieodo ORS is located in the open ocean, where typhoons 
occur frequently in the East China  Sea9. It is also a unique location to study the vertical mixing of two water 
mass layers of the surface water and Yellow Sea Bottom Cold Water (YSBCW) during the typhoon passage event.

A strong surface wind stress induces significant sea surface temperature (SST) cooling through vertical mix-
ing of upper ocean  waters10–13. Tropical cyclone-induced SST cooling is related to tropical cyclone (TC) proper-
ties, such as intensity, translation speed, and  size14–18. Among these properties, intense and slow TCs interact 
longer with the ocean over the TC  period19. This atmospheric forcing contributes to enhanced vertical mixing 
in the upper  ocean20 and easily triggers strong surface  cooling17–19,21–23. Several studies have reported that this 
instantaneous surface cooling influences the weakening of the TC because of the enhancement of negative SST 
feedback to  TC24–28. In contrast, Lin et al.19 stated that some fast TCs have the potential to intensify over shallow 
waters owing to the relatively weaker amplitude of surface cooling than slow TCs. Nevertheless, few  studies20,29 
have quantified the relationship between air and sea interaction and fast-moving TCs.

In 2019, Typhoon Lingling, a fast-moving TC (translation speed > 10 m/s), categorized as category 4, passed 
straight northward over the YSBCW, passing very close to the Ieodo ORS. Typhoon Lingling formed in the 
east of the Philippine Sea on September 2 and intensified into a severe cyclonic storm on September 4. The 
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maximum wind speed reached approximately 61 m/s at 00 UTC on September 6, the strongest wind observed 
in the Republic of Korea since Typhoon Maemi in 2003. Owing to the interaction between the typhoon and the 
stratified ocean, Ieodo ORS measured a dramatic SST cooling of approximately 4.5 °C just about 6 h after the 
typhoon passed. In addition, turbulent heat fluxes (i.e., the sum of sensible and latent heat fluxes) were observed 
using an eddy covariance system in the Ieodo ORS. Although some flux observations were rejected to reduce 
abnormal information in extreme conditions through their quality control processes, the observations represent 
the impacts of air-sea interaction on typhoons over the Yellow Sea and East China Sea (YECS). Herein, energy 
exchanges in surface heat fluxes are important to TC  intensity30–32. Thus, SST cooling is a key player in the energy 
 exchange33,34, and the surface turbulent heat flux is a thermal mediator between the ocean and  TCs18.

For the numerical investigation of the air-sea coupling, earlier studies used a fully coupled atmosphere–ocean 
model for TCs via a model coupling  toolkit27,35–37. They mainly employed the Coupled-Ocean–Atmosphere-
Wave-Sediment Transport (COAWST)35 modeling system. The COAWST includes Regional Ocean Modeling 
System (ROMS) and Weather Research and Forecast Model (WRF)38, even wave and sediment components. In 
the WRF model, there is a main traditional scheme for the surface layer parameterization of the revised MM5 
Monin–Obukhov surface layer  scheme39. Despite the importance of TC-induced changes in surface turbulent heat 
flux, the effect on the evolution of warm fronts (i.e., atmospheric frontogenesis) has not yet been studied based 
on the previous coupled simulations. Of note, a new extratropical cyclone with a warm front moved northward 
in the East China Sea after the landfall of Typhoon Lingling at 09–10 UTC on September 7. In the cyclone, the 
warm front is a boundary between air masses of different equivalent potential temperatures (hereafter theta-
e). That is, atmospheric frontogenesis is a measure of how this front strengthens or weakens with time and is 
important for forecasting the development of precipitation.

The present study examines the understanding of the air–sea coupling process and its effect on atmospheric 
frontogenesis in the coupled atmosphere–ocean modeling system. To isolate the importance of air-sea coupling, 
we provide a quantitative comparison of the negative SST feedback to the atmospheric layer up to 200 hPa dur-
ing the typhoon passage. In this study, we designed uncoupled and coupled experiments, NOCPL and CPL, to 
investigate the air–sea coupling effect using the WRF and ROMS model. The remainder of this paper is organized 
as follows. We discuss the ocean response to typhoons in the coupled model and the atmospheric response to 
the cold pool over the analysis domain. In particular, we highlight the impact of temperature gradient changes 
by cooling the low-level atmospheric layer on the atmospheric frontogenesis in the coupled simulation. A brief 
description of the coupled model, model configuration, and experimental design is provided in the “Methods” 
section.

Results
Comparison with results at the Ieodo ORS. The Ieodo ORS observed an extreme cold wake with an 
intense SST cooling of 4.5 °C by vertical mixing in the subsurface water column (see Fig. 1). In the CPL simula-
tion, SST gradually decreased during the first 12 h, reached its minimum value of 25.5 °C, and then continued 
to maintain cold state features after 0000 UTC on September 7. As the sea surface cooled, subsurface water 
temperatures at 38 m depth increased until 0000 UTC on September 7. Simultaneously, the subsurface water 
temperature peaked at approximately 24 °C at 0000 UTC on September 7 and slowly declined. The sea-surface 
cooling of the coupled simulations was consistent with the observations, but the cooling was weak and slow. Not 

Figure 1.  Time series of the (a) sea surface temperature (SST), (b) latent heat flux, and (c) sensible heat flux 
for observation in Ieodo ORS (black) and simulation results in NOCPL (blue) and CPL (red). The vertical thick 
green line denotes when the TC center was closest to the Ieodo ORS at 15Z on September 6, 2019. The  T38m 
was the bottom water temperature at a depth of 38 m. The yellow lines in the right panels were from ERA5 
reanalysis.
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surprisingly, the NOCPL simulation did not capture any abrupt surface cooling because it used the FNL skin 
temperature for SST forcing.

Ieodo ORS also showed sensible and latent heat fluxes using an eddy covariance system during the typhoon 
period. As the SSTs continued to decrease below approximately 26 °C, the turbulent heat flux (i.e., the sum of 
sensible and latent heat fluxes) decreased based on the Monin–Obukhov similarity  theory40 (see Fig. 1b, c and 
Eq. 2). Although the flux observations of the Ieodo ORS were massively rejected when Typhoon Lingling was 
closest to the Ieodo‐ORS site at 1500 UTC on September 6, the Ieodo ORS provided some evidence of reversed 
heat transfer from the atmosphere to the ocean when colder SST of 24 °C persisted after the typhoon passage. 
Here, the surface heat fluxes in the CPL simulation were mostly closer to the observations than in the NOCPL. 
Moreover, Figs. 1 and S3 show additional comparisons of spatial and temporal information for the surface latent 
and sensible heat fluxes between simulation results and ERA5 reanalysis. The ERA5 is a reliable reanalysis dataset 
for weather and climate investigation wherein the observations are relatively sparse. These figures confirm that 
the surface heat flux in the CPL simulation was reliable, which is more consistent with the ERA5 relative to the 
NOCPL simulation in the absence of air-sea interactions.

Impact of the air‑sea interaction on TC activity. According to the JTWC report, Typhoon Lingling 
passed straight northward over the YSBCW. Two simulated TC tracks and JTWC data are shown in Fig. 2a. All 
simulated tracks were similar to the JTWC track before passing the YSBCW at 0000 UTC on September 7. After 
passing through the Yellow Sea, the two simulated tracks revealed a slight northward deviation compared to the 
JTWC track approaching the northern Yellow Sea and traveling parallelly, and made landfall in North Korea at 
the same time. There was no significant difference in the intensity between the CPL and NOCPL simulations 
(see Supplementary Fig. S2a, b online). The simulated typhoon was a faster-moving TC with a higher translation 
speed than approximately 10 m/s. The translation speed of the TC was consistently faster than the JTWC report 
before landfall (Fig. 2a). This result suggests that the fast translation speed in all simulations was significantly 
influenced by the weakening of the atmosphere–ocean interactions.

Figure 2.  (a) Simulated typhoon tracks from different model configurations in the NOCPL (blue circle) and 
CPL (red cross) along with the JTWC reported best-track (black square) for Typhoon Lingling (2019). The 
meridional green line indicates the cross-line in 28–37° N at 125.18° E. The black star indicates the location 
of the Ieodo ORS. (b) The latitude-depth profile of the initial water temperature (°C; shaded) and OML depth 
(thick white line) at 00Z on September 6.
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Oceanic response in the coupled model. This section focuses on understanding the oceanic response 
to typhoons in CPL simulation. Despite the fast translation speed, the most apparent effect along the TC passage 
was the remarkable SST cooling of 1–6 °C on the right side of the simulated track in Fig. 3. The TC-induced 
wind stress over the dangerous semicircle of the TC caused vertical mixing with a lagged response of at least 
6 h in the upper ocean. For example, after the TC passed through the Ieodo ORS, the ocean mixed-layer (OML) 
depth increased (Fig. 3c). The OML depth, a subsurface proxy of ocean–atmosphere variability, was computed 
from the ocean model results using the potential density and curvature-based algorithm in Lorbacher et al.41. 
Meyers et al.42 reported that entrainment mixing typically accounts for most of the observed cooling of the SSTs 
and OML deepening due to divergent near-surface currents caused by wind stress. Most of the OML deepen-
ing occurs in the dangerous semicircle region behind the TC center, as shown in Fig. 3. The horizontal pattern 
of the SST changes was also consistent with that of the OML deepening. Over the YSBCW on September 7, a 
substantial deepening of OML that reached the closest depths to the bottom occurred (see Fig. 3d–f). In Fig. 2b, 
we show meridional section at 28–34° N latitude versus water depths at a 125.18° E longitude of the Ieodo ORS 
to identify the vertical structure of the YSBCW. The YSBCW with a minimum water temperature of less than 
10 °C corresponds to 34° N to 37° N in the latitudes. This region plays an important role in SST cooling through 
entrainment into the upper ocean via vertical mixing. Thus, the TC-induced wind stress affects variations in the 
OML deepening by increasing the positive current shear along the TC passage.

Notably, the downward turbulent heat flux (i.e., negative heat flux) increased owing to SST cooling in the 
CPL simulation, wherein the sum of sensible and latent heat flux was defined as shown in Eq. (2) based on the 
Monin–Obukhov similarity  theory40 in the “Methods” section. In Fig. 3, the spatial pattern of the downward 
turbulent heat flux was consistent with that of the SST cooling and OML deepening over the Yellow Sea because it 

Figure 3.  Horizontal distribution of sea surface temperature (SST) changes (shaded) relative to initial condition 
for the CPL simulation at 00Z on September 6 for the analysis domain every 6 h. The contours and unfilled 
circles denote downward (positive) turbulent heat fluxes only and OML deepening exceeding 20 m, respectively. 
Grey arrows denote wind stress vector (N/m2). Red lines and typhoon symbols indicate TC tracks and TC center 
location. The black star indicates the location of the Ieodo ORS.
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was a function of the air-sea moisture difference (Δq in Eq. (2), respectively). As seen in the comparison between 
NOCPL and CPL (Fig. 4), the differences in wind stress mainly occurred on both sides of the TC center along 
its trajectory over the YSBCW. These results suggested that SST cooling in the coupled simulation affected the 
wind-stress differences, consistent with previous  findings43–45. This feedback could be attributed to the differences 
in the turbulent heat flux. Thus, the air–sea coupling could be attributed not only to the changes in wind stress 
due to sea surface cooling but also to vertical structural variations in the TC center amplified by the changes in 
surface turbulent heat flux.

Atmospheric response in the coupled model. To better understand the vertical structural variations 
in the TC center, we presented a time series of the theta-e and vertical velocity ω along the TC passage for the 
difference between the uncoupled and coupled experiments (Fig. 5). The vertical velocity differences were rep-
resented by weakening (negative values) and strengthening (positive values) in the CPL compared to those in 
the NOCPL. Supplementary Fig. S4 shows the vertical velocity from the simulations. In the CPL simulation, the 
surface turbulent heat flux has an impact on the thermal structure up to 200 hPa of the region within a radius of 
50 km from the TC center. The CPL simulation made the intense warm-core structure of the typhoon at the low-
level atmospheric layer up to 700 hPa over the East China Sea until 1800 UTC on September 6. Following that, 
the SST cooling over the YSBCW was accompanied by an intense downward turbulent heat flux difference of up 
to approximately 561 W/m2 (see Fig. 4d). This change was associated with the potential temperature difference 
�θ = θs − θa and specific humidity difference �q = qs − qa in Eq. (2). It affected the cooling to approximately 
1 K up to the low-level atmospheric layer of 900 hPa after 1800 UTC on September 6. As the TC passed the 
YSBCW at 0000 UTC on September 7, the upward movement in the TC center was intensified, sending warmer 

Figure 4.  Horizontal distribution of surface turbulent heat flux differences (shaded) between CPL and NOCPL 
for the analysis domain every 6 h. The black contours denote sea surface temperature (SST) differences from − 6 
to 6 by 2 °C. Grey arrows denote difference in wind stress (N/m2). Red lines and typhoon symbols indicate TC 
tracks and TC center location for the CPL simulation, respectively. The black star indicates the location of the 
Ieodo ORS.
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and moister air than in the NOCPL simulation (see Figs. 5 and S4). The CPL simulation also showed abruptly 
colder air at an upper-level layer of 600–300 hPa than that in the NOCPL simulation. The cold and dry air 
around the TC central core abruptly spread out near the upper-level atmospheric layer of 300 hPa until 06 UTC 
on September 7, before landfall. Eventually, the CPL simulation supported that the upper-level atmospheric layer 
of 600–300 hPa resulted in cooler air with intensified downward vertical velocity than in the NOCPL simulation 
until the transformation of tropical to an extratropical cyclone (see Figs. 5 and S4).

As shown in Fig. 5, the TC led to landfall at approximately 0900–1000 UTC on September 7 and turned into an 
extratropical cyclone at 1200 UTC on September 7. After the landfall, a new extratropical cyclone was observed 
through the East China Sea on September 8. It was accompanied by heavy precipitation up to approximately 
100 mm for 12 h ahead of the warm front. In the present study, these simulation results are compared with both 
the Korea Meteorological Administration (KMA)’s weather radar and the ERA5 reanalysis. In the CPL simulation, 
SST in the YSBCW basin is decreased due to the passage of Typhoon Lingling. In addition, the CPL simulation 
clearly shows the relative position of the high SST gradient, which is consistent with the enhanced meridional 
gradient of theta-e (Figs. 6 and 7). These distributions in the CPL are more consistent with those in the ERA5. 
With the absence of air-sea interaction in NOCPL simulation, the baroclinic region with a weaker meridional 
gradient of theta-e is formed and the degree of the temperature gradient is much weaker than that of CPL simula-
tion (Fig. 7). Moreover, Fig. S5 shows the horizontal distribution of surface turbulent heat flux for the simulation 
results and ERA5 reanalysis. On September 8th, the horizontal distribution of the surface turbulent heat flux was 
related to TC-induced SST cooling around the Ieodo ORS station. In the CPL, the surface turbulent heat flux 
(positive upward) was weaker than that in the NOCPL and was more consistent with that based on the ERA5 
(see Fig. S5). These results indicate that the TC-induced SST cooling can support enhancement of the low-level 
tropospheric theta-e gradient through changes in surface turbulent heat fluxes on the ocean surface. Moreover, 
in the CPL simulation, moisture convergence also dominates in the region with a steep temperature gradient, 
which can increase rainfall amounts across the frontal zone (Fig. 8).

Furthermore, once the convergence zone is formed in this way, its effect can be amplified by surface heat 
fluxes on the ocean surface. Specifically, we analyzed the temporal evolution of 1-h cumulative precipitation and 
surface frontogenesis. Here, the frontogenesis was calculated as the 2D kinematic frontogenesis of a potential 
temperature field based on the formula outlined by  Bluestein46. The formula is as follows:

where F is the 2D kinematic frontogenesis, θ is the potential temperature, D is the total deformation, β is the angle 
between the axis dilatation and the isentropes, and δ is the divergence. Note that the sharp meridional gradient 
of theta-e supports the intensified frontogenesis simulated by CPL (Figs. 7 and 9). Differences in the location 
and strength of surface frontogenesis between NOCPL and CPL are identified (Fig. 9). From the comparison 
with ERA5, frontogenesis in CPL expanding from southwest to northeast south of Jeju Island is much similar to 
those in ERA5 compared to NOCPL (Fig. 9). Note that temperature gradient changes are related to the potential 
for developing not only the frontogenesis but also the band-shaped precipitation. Unfortunately, ERA5 does not 
capture the precipitation amounts due to its coarser grid (Fig. 10). Thus, a real radar image in KMA is used for 
the comparison. Whereas the NOCPL exhibited a much broader precipitation area than the Korea Strait, the CPL 
produces a sharper band-shaped precipitation zone around the location of frontogenesis. With the presence of 
the air-sea interaction in CPL, the temporal evolution of frontogenesis results in a narrow-banded precipitation 
zone being more similar to the real radar observation around the location of frontogenesis (Figs. 9 and 10). All 

(1)F =
1

2
|∇θ |[D cos (2β)− δ],

Figure 5.  Differences of circular area-averaged equivalent potential temperature θe (K; shaded) and the vertical 
velocity (omega, Pa/s; contours) along the storm trajectory for CPL minus NOCPL. Radius of the area is 50 km 
from the TC center position in each simulation. Supplementary Fig. S4 includes the vertical velocity from both 
simulations.
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these pieces of evidence support ocean coupling have a positive effect on the intensified frontogenesis close to 
the observed feature.

Contrasting characteristics of frontal structure between CPL and NOCPL were examined in detail along a 
cross-line from (35° N, 123° E) to (31° N, 129° E) on September 8 at 1200 UTC (Fig. 11a). Across the front, the 
strengthened northwestward moist advection and ascending motion occurred through the mid-level tropo-
sphere up to 500 hPa at 125–126° E longitude. As the warm front passed over the colder air masses at the low-
level troposphere up to 850 hPa, this condition allowed warmer air to rise and spread more than the NOCPL. 

Figure 6.  Horizontal distribution of sea surface temperature (°C; contour) and its gradient  (10–4 K/m; shaded) 
for (top) ERA5, (middle) NOCPL, and (bottom) CPL every 1 h. The uncoupled and coupled results are 
regridded to 0.25° resolution of the ERA5 grid. The black star indicates the location of the Ieodo ORS.

Figure 7.  Same as Fig. 6 but for meridional gradient of 1000-hPa equivalent potential temperature  (10–4 K/m; 
shaded) and sea surface temperature (°C; contour).
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In addition, the synoptic weather chart of the KMA confirmed the low-level tropospheric inflow of warm and 
moist air via the low-level jet stream toward the cold air over the Yellow Sea (Fig. 11b, c). Similarly, areas rich 
in moisture (i.e., positive theta-e) help to destabilize the atmosphere, which supports the generation of strong 
updrafts. The change in vertical motion can lead to a steeper frontal slope with an increased thermal gradient in 
the CPL. The steeper slope implies a greater rise and better potential for narrow banded precipitation. Thus, the 
surface turbulent heat flux is an essential mediator of heat and moisture, which plays a role in developing the 
banded precipitation over the frontal zone as well as lower-level atmospheric cooling.

Figure 8.  Same as Fig. 6 but for moisture convergence  (10–6/s; shaded). The shaded regions indicate moisture 
convergence (positive) and moisture divergence (negative), respectively.

Figure 9.  Same as Fig. 6 but for 1000-hPa frontogenesis  (10–10 K/m s; shaded). All frontogenesis quantities are 
calculated by Eq. (1).
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Discussion and conclusions
In this study, we first examined how TC triggers interesting air-sea interaction phenomena over the Yellow and 
the East China Seas where particularly cold water exists below the mixed layer. The air-sea interaction eventu-
ally weakens TC itself in the cold basin through the downward turbulent heat  flux31,32. Indeed, the Ieodo ORS 
captured the SST cooling of 4.5 °C and changes in the surface turbulent heat flux after the passage of Typhoon 
Lingling near the Ieodo ORS. We discussed the role of air-sea interaction in the ocean–atmosphere coupled model 
and how this was linked to the intensity, trajectory, and vertical thermal structure of Typhoon Lingling. Through 
uncoupled and coupled simulations, we confirmed: (1) the lagged oceanic response of SST cooling of 1–6 °C in 
the dangerous semicircle regions due to the TC-induced atmospheric forcing of wind stress and (2) changes in 
the vertical thermal structure of the typhoon caused by changes in surface turbulent heat fluxes.

Secondly, we highlighted the latter of our findings, which is associated with the low-level atmospheric cool-
ing and increases in frontogenesis after the passage of TC landfall in the coupled simulation. As the typhoon 
passed through the YSBCW, the low-level atmospheric layer up to 900 hPa became relatively cold and dry air 
and greater the low-level horizontal temperature gradient. After the landfall, a new cyclone with a warm front 
passed through the YSBCW. In the coupled simulation, the low-level temperature gradient and moisture con-
vergence contributed to steepening the frontal slope and causing narrow banded precipitation. Moreover, the 
comparison with reanalysis and observed dataset (i.e., ERA5 and weather radar image) supports the physical 
linkage between SST cooling and surface frontogenesis by utilizing not only the frontogenesis and precipitation 
but also the meridional theta-e gradient and moisture convergence zone. This analysis reveals that the coupling 
process indeed helps intensify the frontogenesis after the passage of Typhoon Lingling in this case study.

This research, however, is subject to several limitations. First of all, we inevitably rejected many flux obser-
vations through strict quality control to reduce anomalous information under extreme conditions. After the 
typhoon passage, there were large differences between observation and simulations, although a few observations 
were obtained as high-quality as possible. Nevertheless, it is worth noting that the differences between surface 
heat fluxes retrieved from observation and simulations are larger than those between the coupled and uncoupled 
simulations, which is not straightforward. We believe that the SST cooling in the coupled simulation was not as 
strong as the observation during the typhoon passage, which caused downward fluxes. Although limited, the 
air–sea coupling was advantageous in confirming the existence of the downward flux. Therefore, this could be 

Figure 10.  Horizontal distribution of 1 h cumulative precipitation (mm/h; shaded) for (a–c) Korea 
Meteorological Administration (KMA) weather radar, (d–f) ERA5, (g–i) NOCPL, and (j–l) CPL every 1 h. The 
solid black line on the lower-right panel (l) is the reference line for the cross-section of Fig. 11.
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a future direction for a fully coupled atmosphere–ocean model development. Second, we use a Charnock con-
stant to calculate the drag coefficient through the friction velocity-dependent surface roughness by using a bulk 
formula. According to the existing field and laboratory  observations47,48, the drag coefficient does not increase 
linearly with increasing wind speed under high wind conditions. That is, the wave state such as wave age (i.e., 
a fraction of wave phase speed and friction velocity) has an important influence on the air-sea momentum flux 
(i.e., wind stress)49,50. Another important issue is the absence of the sea spray-mediated heat flux in this study. 
Mainly, the air–sea coupling significantly weakens the typhoon intensity via negative SST  feedback14,51. On the 
other hand, Liu et al.27 found that the atmosphere-wave coupling intensifies typhoon systems. This can balance 
the wave-related positive feedback and the negative SST feedback on typhoon intensity.

Finally, from the simulation results, we hope to enhance our understanding of atmospheric frontogenesis by 
air–sea coupling processes in the future development of a coupled atmosphere–ocean modeling system. However, 
this study deals with one typhoon, which is too limited to support a more general conclusion. Further modeling 
studies are needed to investigate different typhoons (e.g., slow-moving TCs such as Typhoon Soulik in  201818) 
using a fully coupled atmosphere-wave-ocean model that includes the effect of wave and sea spray.

Methods
Model configuration. The COAWST modeling system was employed for this study. This coupled model 
consists of only the WRF and the ROMS without wave and sediment transport components in the present 
study. The model coupling toolkit is also utilized to interact with the WRF and ROMS in the coupled model as 
a coupler for every coupling time step. The coupler allows the exchange of several physical parameters among 

Figure 11.  (a) Interpolated cross-section along the reference line on the lower-right panel of Fig. 10, (b) surface 
weather chart, and (c) 925 hPa synoptic weather chart on 8 Sep 2019, 12Z. The cross-section shows differences 
in equivalent potential temperature (shaded), vertical velocity (contours; intervals every 1 Pa/s), and moisture 
flux vectors. Positive shading denotes warmer air in the CPL simulation than that of the NOCPL simulation. The 
two weather charts in the lower panel were officially generated from the Digital Forecast System (DFS) in Korea 
Meteorological Administration.
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the component models. The atmospheric model transfers various atmospheric information (e.g., surface wind 
stress, heat flux, radiation, 10 m wind velocity, and precipitation) to the oceanic model, and the updated SST in 
the oceanic model is then sent back to the atmospheric model.

All simulations are carried out for the typhoon period from 0000 UTC September 6 to 12 UTC September 8. 
Its domain is shown with solid red lines, including the bathymetry in shades, extending from 26° to 42° N, 116° 
to 136° E. The analysis domain (shown in Fig. 12) covers the passage of Typhoon Lingling over the Yellow Sea 
and the East China Sea. The selected domain is suitable for resolving the air-sea interaction processes caused 
by typhoons in the present study. The WRF model selected two-way nested domains with an outer domain of 
12 km and two inner domains of 3 km and 1 km. In the vertical direction, 34 sigma levels were used to discretize 
all domains. The WRF was initialized on September 6 at 00 UTC with the National Centre for Environmental 
Prediction (NCEP) Final Analysis (FNL) data using the TC initialization  method52. We used the Monin–Obukhov 
similarity scheme for surface layer  parameterization40,53 with the Yonsei University (YSU) planetary boundary 
layer (PBL)  scheme54. The physics options and model configurations used in the WRF simulation are listed in 
Table 1.

Figure 12.  Computational model domains for WRF and ROMS. ROMS shares a mother domain of the WRF. 
Bathymetry under 500 m marked with contours of 50 m. Analysis region is shown by green dashed lines. The 
blue star indicates the location of the Ieodo ORS.

Table 1.  WRF configurations used in this study. a National Centers for Environmental Prediction. b Fifth-
Generation Penn State/NCAR Mesoscale Model. c Rapid Radiative Transfer Model.

Domain 1st domain (outer) 2nd domain (inner) 3rd domain (inner)

Resolution 12 km 4 km 1 km

Horizontal grid 181 × 160 154 × 199 105 × 105

Vertical grid 34 sigma levels up to 50 hPa

Initialization NCEPa FNL (Final) at 00 UTC September 6, 2019

PBL scheme Yonsei University (YSU)54

Surface layer scheme Revised  MM5b Monin-Obukhov39

Microphysics WRF Single-Moment 6-class (WSM6)58

Cloud scheme Kain Fritsch (KF)59 None

Radiation scheme MM5b,60 for shortwave radiation and  RRTMc,61 for longwave radiation



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15513  | https://doi.org/10.1038/s41598-022-19359-2

www.nature.com/scientificreports/

In addition, the ROMS model was simulated with a spatial resolution of 12 km and 30 vertical sigma levels. 
The single domain of the model was the same as that of the outer domain of the WRF. The model’s initial condi-
tion at 0000 UTC on September 6 was derived using HYCOM global analysis (https:// www. hycom. org/ data/ glby0 
pt08/ expt- 93pt0). We mainly used generic length scale (GLS) options in the ROMS configuration with third-
order horizontal advection and fourth-order centered vertical advection. For vertical mixing parameterization, 
the GLS vertical mixing scheme in Umlauf and  Burchard55 was also used. One arc-min gridded global relief 
(ETOPO1) data from the National Oceanic and Atmospheric Administration (NOAA)56 was used to provide 
ocean bathymetry. Here, the bathymetry was smoothed using the direct iterative technique proposed by Martinho 
and  Batteen57 to reduce pressure gradient errors related to sigma coordinates.

Experimental design. In the WRF, the surface layer schemes provide a parameterization linkage for the 
thermal and dynamic atmospheric phenomena between the ocean and atmosphere. Among the physics options, 
the revised MM5 Monin–Obukhov surface layer  scheme39 used in this study is based on the Monin–Obukhov 
similarity  theory40. In the scheme, heat fluxes at the atmosphere-surface interface are given as follows:

and

where QL and QS are the latent and sensible heat fluxes, respectively, ρa is the atmospheric surface density, cp is 
the specific heat capacity at constant pressure, Lv is the latent heat of vaporization, U is wind speed, Ch and Cq 
are the exchange coefficients for heat and moisture, respectively. The differences in the potential temperature 
and specific humidity between the ocean and atmosphere are �θ = θs − θa and �q = qs − qa , respectively.

As mentioned above, the wind stress under extreme wind events leads to SST cooling induced by vertical 
mixing of the upper ocean waters along the typhoon passage. This cooling results in a downward QL, exchanging 
moisture between the atmosphere and the ocean. However, the surface layer scheme used in this study does not 
allow for motion toward the ocean surface (i.e., the surface downward QL over the ocean) as follows:

Here, we briefly modified the source code for the downward QL in the WRF. In Eq. (3), if the QL is negative, 
the lines that replace the zero value are excluded. Therefore, a simple flow chart of this experimental design is 
illustrated in Supplementary Fig. S1. We designed a coupled experiment (CPL) to investigate the effect of air-
sea interaction on atmospheric frontogenesis using the modified surface layer scheme in the WRF model. The 
uncoupled experiment (NOCPL) was also designed to be compared with the CPL simulation. Both the coupled 
and uncoupled experiments were conducted for 66 h. The predefined coupling time step was maintained at 600 s 
through the coupler in COAWST.

In addition, we compared the flux observations in Ieodo ORS with the model results. The observation is 
obtained through the eddy covariance method, which is the most widely used method to obtain sensible and 
latent heat fluxes. The method also includes data quality control processes (e.g., spike, physical limit, and turbu-
lent condition check). These processes have contributed to improving the quality of Ieodo ORS. For more details, 
see Ha et al.1, which describes detailed information on Ieodo ORS.

Data availability
The Ieodo ORS data are available online at http:// www. khoa. go. kr/ ocean grid/ khoa/ koofs. do through the Korea 
Hydrographic and Oceanographic Agency (KHOA). We gratefully acknowledge the efforts of the KHOA mem-
bers in producing valuable observation data. The Joint Typhoon Warning Center (JTWC) best-track dataset is 
available online at http:// www. usno. navy. mil/ JTWC.
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