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A LILRB1 variant with a decreased 
ability to phosphorylate SHP‑1 
leads to autoimmune diseases
Thivaratana Sinthuwiwat1,2,3,4, Supranee Buranapraditkun5,6,7, Wuttichart Kamolvisit2,3, 
Siraprapa Tongkobpetch2,3, Wanna Chetruengchai1,2,3, Chalurmpon Srichomthong2,3, 
Adjima Assawapitaksakul2,3, Chureerat Phokaew2,3,8, Patipark Kueanjinda9,10, 
Tanapat Palaga10,11, Tadech Boonpiyathad12, Kanya Suphapeetiporn2,3, 
Nattiya Hirankarn9,10 & Vorasuk Shotelersuk 2,3*

Inborn errors of immunity are known to cause not only immunodeficiencies and allergies but also 
autoimmunity. Leukocyte immunoglobulin‑like receptor B1 (LILRB1) is a receptor on leukocytes 
playing a role in regulating immune responses. No phenotypes have been reported to be caused 
by germline mutations in LILRB1. We aimed to identify the causative variant in a three‑generation 
family with nine members suffering from one of the three autoimmune diseases—Graves’ disease, 
Hashimoto’s thyroiditis, or systemic lupus erythematosus. Whole‑genome linkage study revealed 
a locus on chromosome 19q13.4 with the maximum LOD score of 2.71. Whole‑exome sequencing 
identified a heterozygous missense variant, c.479G > A (p. G160E) in LILRB1, located within the 
chromosomal‑linked region, in all nine affected members. The variant has never been previously 
reported. Jurkat cells transfected with the mutant LILRB1, compared with those with the wild‑type 
LILRB1, showed decreased phosphorylation of both LILRB1 and its downstream protein, SHP‑1. Flow 
cytometry was used to study immunophenotype and revealed that LILRB1 was significantly lower on 
the surface of activated regulatory T lymphocytes (Treg) cells of patients. Single‑cell RNA sequencing 
showed substantially increased M1‑like monocytes in peripheral blood mononuclear cells of affected 
individuals. This study, for the first time, implicates LILRB1 as a new disease gene for autoimmunity.

Inborn errors of immunity (IEIs) are heritable monogenic disorders affecting immune regulation and 
 development1. IEIs have traditionally been associated with immunodeficiencies and susceptibility to infections; 
however, the presence of immune dysfunction also implicates them in autoimmunity and allergies. Although 
rare, IEIs provide biological insights into pathogenesis which paves the way for precision medicine and new 
therapeutic approaches.

Autoimmune diseases are the result of the failure of the immune system to develop tolerance toward self-
antigens. They are characterized by the activity of autoreactive lymphocytes, which cause tissue or organ damage 
through the generation of antibodies that react against host tissues, or effector T cells, which are specific for 
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endogenous self-peptides2. There is a wide range of autoimmune diseases whose manifestations depend mainly 
on the type of self-antigens that the immune system targets.

Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) are autoimmune thyroid diseases in which the immune 
system generates autoantibodies against thyroglobulin and thyroperoxidase in HT and against thyrotropin recep-
tor in GD, leading to the destruction of thyroid  gland3. Systemic lupus erythematosus (SLE), mainly affecting the 
joints, skin, kidneys, brain, blood vessels, and serous membranes, is characterized by autoantibodies directed 
against nuclear  antigens4.

Leukocyte immunoglobulin-like receptor B1 (LILRB1) is an inhibitory receptor, broadly expressing on many 
leukocytes, including NK cells, CD8+ and CD4+ lymphocytes, B lymphocytes, monocytes, and dendritic cells. 
The cytoplasmic region of LILRB1 contains four immunoreceptor tyrosine-based inhibition motifs (ITIMs). 
Upon tyrosine phosphorylation, ITIM recruits the Src homology 2 (SH2) domain-containing protein (SHP-1), 
which is a tyrosine phosphatase involved in the inhibition of different intracellular signal  pathways5. Besides its 
role in adaptive immunity, LILRB1 can inhibit monocyte activation signals by dampening inflammatory signaling 
 cascade6 and induces macrophage differentiation toward an M2  phenotype7. Moreover, LILRB1 has previously 
been shown to play an important role in immune response  regulation8. Changes in its functions have been associ-
ated with autoimmune thyroid  diseases9,  SLE5, and other autoimmune diseases such as rheumatoid  arthritis10.

Here, we identified a three-generation family with nine members affected by either GD, HT, or SLE. Whole-
genome linkage (WGL) study and whole exome sequencing (WES) identified a variant in LILRB1 in all nine 
patients. Functional studies demonstrated that the LILRB1 variant had a decreased ability to phosphorylate 
SHP-1 indicated its pathogenicity. Flow cytometry and single-cell RNA sequencing (scRNA-seq) analyses sug-
gested the decreased LILRB1 expression on Tregs and increased M1-like monocytes could participate in the 
disease pathogenesis. This study demonstrates that a germline loss-of-function variant in LILRB1 could lead to 
autoimmune diseases.

Results
Clinical characteristics of autoimmune patients. Clinical and laboratory findings of the nine mem-
bers suffering from one of the three autoimmune diseases—GD, HT, or SLE were characterized (Fig. 1a, Sup-
plementary Table S1). The patient II-3 with HT and breast cancer was the proband who presented with a pain-
less goiter and was referred by an oncologist to a clinical geneticist at King Chulalongkorn Memorial Hospital, 
Bangkok, Thailand. During pedigree taking, she was found to have several other family members with autoim-
mune diseases. All patients were seen at least once at King Chulalongkorn Memorial hospital, where history 
was reviewed, and a physical examination was performed. Laboratory tests were retrospectively reviewed from 
their primary hospitals including free T4, thyroid stimulating hormone (TSH), anti-thyroglobulin, anti-thyroid 
peroxidase, C-reactive protein, complete blood count, sedimentation rate, blood urea and creatinine concentra-
tions, serum cholesterol and triglycerides, blood glucose test, 24-h urine protein test, urine analyses and renal 
biopsy result. Their clinical courses, immunological findings, and treatments were retrospectively reviewed.

Whole‑genome linkage (WGL) analysis and whole exome sequencing (WES) identified candi‑
date genetic variants, and PCR‑Sanger sequencing validated the variant’s existence. WGL 
analysis using the nine affected members defined the 4.5-Mb critical region on chromosomes 19q13.4 posi-
tions 53,861,258–58,379,941 (hg19) with a maximum logarithm of the odds (LOD) score of 2.71 (Supplemen-
tary Fig. S1a-1c). WES with filtering steps (Supplementary Table S2) revealed three non-synonymous exonic 
variants present in all nine patients with allele frequencies < 1% in public and in-house  databases11 (Supple-
mentary Table S3). Remarkably, only one variant was located on the chromosomal linked region, which was a 
heterozygous missense mutation in LILRB1 (hg19; chr19:55,143,506; c.479G > A; p.Gly160Glu; rs866926837). 
Its allele frequency in the East Asian population in the gnomAD database (https:// gnomad. broad insti tute. org) 
is 0.0001503 but not in the ClinVar and the 1000 Genomes Project databases. Germline variants including the 
c.479G > A in LILRB1 have never been previously reported to cause any diseases. Thus, we used PCR-Sanger 
sequencing to confirm its presence in all nine patients (Fig. 1b). The p.G160E is located on the immunoglobulin-
like C2-type 2  domain12, an important region for binding to a major histocompatibility  complex10 (Fig. 1c). To 
confirm the important of this amino acid residue, we compared the amino acid sequences of this region across 
multiple species, ranging from human to C. elegans, and found that this amino acid was evolutionarily conserved 
(Supplementary Fig. S1d).

Quantitative real‑time PCR and Western blot analysis showed the LILRB1 variant did not 
affect RNA and protein expressions. To elucidate the effect of this mutation on LILRB1 function, we 
first measured mRNA expression level of this gene in peripheral blood mononuclear cells (PBMCs) by quan-
titative real-time PCR (qRT-PCR). The result showed no significant difference of LILRB1 mRNA levels among 
the unaffected members without the LILRB1 variant, the unaffected with the variant, and the affected with the 
variant (Supplementary Fig. S2). Western blot analysis detected a similar amount of LILRB1 protein was found 
in Jurkat cells transfected with the wild-type (WT) LILRB1 compared to those transfected with the mutant 
(MT) LILRB1 (Fig. 2a,b). These results suggested that the c.479G > A in LILRB1 did not affect RNA and protein 
expressions.

Western blot analysis and human phospho‑immuno receptor antibody array found decreased 
phosphorylation levels of both LILRB1 and SHP‑1 in the mutant LILRB1. To verify that p.G160E 
in LILRB1 was a loss-of-function variant, we compared the LILRB1 and SHP-1 phosphorylation levels in Jur-
kat cells transfected with either WT or MT LILRB1 in the presence of pervanadate (PV)—a substance induc-

https://gnomad.broadinstitute.org
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ing tyrosine phosphorylation of  LILRB113. Western blot analysis revealed decreased phosphorylation levels of 
SHP-1 in Jurkat cells transfected with MT LILRB1, compared with those transfected with WT one (Fig. 2c,d). In 
addition, immunoblot using antibody array of human phospho-proteins at 10 min showed decreased phospho-
rylation levels of both LILRB1 and SHP-1 (Fig. 2e,f). These findings indicated that p.G160E mutation impaired 
LILRB1 phosphorylation ability, which in turn reduced SHP-1 phosphorylation, implying that this variant in 
LILRB1 gene caused a loss-of-function.

Flow cytometry analysis showed the surface LILRB1 expression in PBMC of patients. After 
the loss-of-function of the variant was substantiated, we further sought to find abnormalities in patients’ PBMCs 
that might suggest disease pathogenesis. Flow cytometry analysis revealed that the surface LILRB1 expression 
on activated regulatory Treg (GARP+LAP+CD25+CD127-CD4+) cells was significantly decreased in the family 
members with the LILRB1 variant. According to the flow cytometry data, the surface LILRB1 expression level 
on the activated regulatory Tregs in symptomatic (median = 431) or asymptomatic (median = 444) patients was 
significantly lower than in those without the variant (median = 673) (difference of median = -242; P = 0.0008 and 
difference of median = -229; P = 0.0002 for symptomatic vs. control and asymptomatic vs. control, respectively) 
(Fig. 3a).

We also analyzed the expression of LILRB1 in different leukocyte populations and found no differences in the 
percentage of LILRB1 expressing CD4+ and CD8+ T lymphocytes, NK cells (CD16+CD56+), B cells (CD19+), 
monocytes (CD14+), myeloid dendritic cells (mDCs; CD1c+CD11c+), plasmacytoid dendritic cells (pDCs; 
CD123+CD303+) and regulatory B lymphocytes (Breg; CD71+CD73-CD25+CD19+) between the patients with 
the LILRB1 variant and the controls (Supplementary Fig. S3a–S3g). Notably, this is the first time LILRB1 expres-
sion level was observed in Breg cell populations.

Figure 1.  Whole-genome linkage analysis and exome sequencing identified a variant in LILRB1 to be 
associated with familial autoimmune disease. (a) The family pedigree includes a symbolic presentation of the 
three clinical features of Hashimoto’s thyroiditis, Graves’ disease, and SLE. An arrow indicates the proband. 
The Roman numerals at the left side represent generations. Numbers immediately below individual’s symbols 
indicate individual’s order in the generation. Numbers below the individual’s order denote ages. W, wild-type 
allele. V, variant. (b) Sanger sequencing demonstrates a heterozygous missense c.479G > A (p.G160E) variant in 
LILRB1. (c) Structure of LILRB1 receptor. The arrow shows the p.G160E is located on the immunoglobulin-like 
domain (Ig-like C2-type 2).
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Figure 2.  The c.479G > A (p.G160E) variant in LILRB1 decreases SHP-1 phosphorylation. (a) The protein levels of 
LILRB1 and SHP-1 in the Jurkat cells transfected with the wild-type (WT) LILRB1 and mutant (MT) LILRB1 in different 
time points as detected by Western blotting. GAPDH was used as a loading control. The grouping of blots was cropped 
from different parts of the same gel. Control denotes Jurkat cells without transfection and PV denotes pervanadate.(b) 
Representative Western blot graphs showing relative densitometric bar graphs of total proteins of LILRB1 and SHP-1 
normalized to the intensity of the corresponding GAPDH bands. (c) The tyrosine phosphorylation status of SHP-1 
was examined using Western blot analysis. The grouping of blots was cropped from different parts of the same gel. (d) 
Representative western blot graphs showing relative densitometric bar graphs of phosphorylated SHP-1 and GAPDH. 
(e) Representative blots of Human Phospho-Immunoreceptor Antibody Arrays treated with PV and incubated with a 
phosphotyrosine-specific antibody. Dots of LILRB1, SHP-1, and controls are boxed in green, blue, and orange, respectively. 
(f) Phosphorylation levels of the dot blots. The relative change in the phosphorylation state of LILRB1 and SHP-1 (the 
average signal of the pixel density of the pair of duplicate spots) to the average of signal reference spots in three corners of 
the array. The original Western blots are presented in Supplementary Fig. S8 and S9, respectively.
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Figure 3.  Flow cytometry and single cell RNA sequencing (scRNA-seq) results. (a) Comparison of mean fluorescent intensity 
(MFI) of LILRB1 expression on the surface of activated Treg cells in family members (b) High-dimensional transcriptomic 
scRNA-seq clustering reveals increased percentage of monocyte subsets in the three studied patients compared with the sex-, 
age- and ethnic-matched control. (c) Two-dimensional UMAP visualization of PBMCs of patients with the LILRB1 variant. 
Colors represent four clusters (cell types) of interest similar to (b) (top panel). Expression of marker genes for LILRB1 and 
SHP-1 (bottom panel). Red color indicates high expression level of the gene. (d) UMAP visualization of PBMCs of patients 
with the macrophage subset markers CD86 (left panel) and flow cytometry results of the frequency (middle panel) and MFI 
(right) of CD86 marker, where red and blue dots indicate samples of patients and controls concurrently investigated in scRNA-
seq experiment, respectively. * indicates statistical significance. (e) LYZ (left panel) and CLEC10A (right panel) expression 
in cell population. Visualization of single-cell transcriptome data was done in R (v. 4.2.1; https:// www.R- proje ct. org) using 
RStudio (http:// www. rstud io. com) and R packages tidyverse (v. 1.3.1; https:// doi. org/ 10. 21105/ joss. 01686) and ggpubr (v. 
0.4.0; https:// CRAN.R- proje ct. org/ packa ge= ggpubr).

https://www.R-project.org
http://www.rstudio.com
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=ggpubr


6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15420  | https://doi.org/10.1038/s41598-022-19334-x

www.nature.com/scientificreports/

Single‑cell RNA‑seq analysis revealed expansion of CD14+ monocyte subpopulations. We 
further performed scRNA-seq analysis of PBMCs from three patients and a healthy sex-, age- and ethnic-
matched control to further characterize leukocyte population. Notably, the result showed a substantial expan-
sion of CD14+ monocyte population in patient sample compared to healthy control (Fig. 3b and Supplementary 
Table S4). Among the CD14+ monocytes, four subsets of unique monocytes were identified. Remarkably, the 
highest increase was CD14+ monocyte 2 subset (1,063 cells per patient compared to 35 cells in the control;  log2 
fold-change = 4.9) while the most decrease was CD14+ monocyte 3 subset (35 cells per patient compared to 
3,039 cells in the control;  log2 fold-change = -6.5). Moreover, scRNA-seq result showed an increase in LILRB1 
and SHP-1 expression levels in CD14+ monocyte subsets (Fig. 3c).

In addition, we annotated the CD14+ monocytes to macrophage subsets using  MacSpectrum14, a 2-index 
platform that allows mapping of macrophage activation states. The analysis suggested that CD14+ monocyte 2 
and 3 subsets had M1- and M2-like phenotypes, respectively (Supplementary Fig. S4). LILRB1 was previously 
found to polarize monocytes toward M2-like  macrophages15. Consistently, CD14+ monocyte subsets in our 
patients who harbored the loss-of-function LILRB1 variant substantially expressed CD86 (a maker of mature 
macrophage) (Fig. 3d, left panel) and LYZ (M1 marker) but not CLEC10A (M2 marker) (Fig. 3e), indicating a 
highly active pro-inflammatory M1-like CD14+ monocyte population in these patients.

Flow cytometry showed increased total monocytes and M1 monocytes. Next, we used flow 
cytometry to confirm our findings in the scRNA-seq results by staining PBMCs from the three patients and 
the controls with antibodies against the M1 or M2 signatures. The gating strategy of M1 and M2 monocytes is 
depicted in Supplementary Fig. S5.

We found an increasing tendency of the frequency of CD14+ monocytes in patients (median = 24.30) 
when compared to healthy controls (median = 16.75) (difference = 7.55; P = 0.0577; Supplementary Fig. S6a). 
When determining the M1 monocytes using CD80 and CD86 markers, we found that the frequency of M1 
(CD14+CD80+CD86+) monocytes in patients and controls were not different (Supplementary Fig. S6b). How-
ever, when considering CD14+CD80+ monocytes and CD14+CD86+ monocytes separately, we found that the 
frequency (-5.15; P = 0.0032) and MFI (-245; P = 0.0012) of CD14+CD86+ monocytes significantly increased 
in patients (Fig. 3d; middle and right panels) but not CD14+CD80+ monocytes (Supplementary Fig. S6c-S6d). 
The increase of CD86 frequency and MFI in CD14+ monocytes from patients revealed by flow cytometry sup-
ported the results of our scRNA-seq analysis, which indicated a higher CD86 expression in CD14+ monocyte 
population from the patients.

In addition to the M1-like monocyte population, we examined the M2-like monocytes using the M2 markers, 
CD163 and CD206. We found that the frequency of M2 (CD14+CD163+CD206+) monocytes in patients was not 
statistically different from that in healthy controls (0.00343; P = 0.0573; Supplementary Fig. S6e). The analyses of 
CD14+CD163+ monocytes and CD14+CD206+ monocytes revealed that the frequency and MFI of both CD163 
and CD206 in patients were not different from those in healthy controls (Supplementary Fig. S6f.-S6i). From 
our findings, we hypothesized that the loss-of-function mutation of LILRB1 might increase a tendency of M1 
polarization and caused M1/M2 ratio imbalance. Thus, we calculated M1/M2 ratio by dividing the total number 
of M1 macrophages by the total number of M2 macrophages in each patient and healthy group. The M1/M2 
ratio in patients (ratio = 35.97) was significantly higher than in healthy controls (ratio = 17.68) (difference = 18.29; 
P = 0.1061.) (Supplementary Fig. S6j). The loss-of-function mutation of LILRB1 was implicated in a skewing of 
monocytes toward an M1 polarization, resulting in an imbalance of M1/M2 ratio.

Single‑cell RNA‑seq analysis of five additional individuals showed increased CD14+ monocyte 
subpopulations. To further validate our findings from scRNA-seq analysis, we incorporated publicly avail-
able scRNA-seq data of PBMCs from five healthy females aged 25–29 years old into our scRNA-seq dataset 
(Supplementary Table S5). Although the cell topology was not preserved as a result of the addition of the new 
samples into the dataset (Supplementary Fig. S7), we attempted to maintain consistency in cell-type classifica-
tion by applying  CIBERSORTx16–18 to identify cell types based on the gene expression profiles used in our previ-
ous scRNA-seq analysis (Supplementary Table S6).

The scRNA-seq analysis revealed that the total number of CD14+ monocytes in patient samples was more 
than that of healthy controls (1,580 cells per patient compared to 536 cells in a control;  log2Fold-change = 1.56) 
(Supplementary Table S7). The number of the CD14+ monocyte subset expressing LYZ (clusters 2 and 4) repre-
senting M1-like cells was more prevalent in patients than in healthy controls. In contrast, the CD14+ monocyte 
subset expressing CLEC10A representing M2-like cells was absent in both patients and healthy controls. The 
increased numbers of total CD14+ monocytes and M1-like cells were consistent with our flow cytometry results.

Discussion
Here, we identified a three-generation family with nine members suffering from one of the three autoimmune 
diseases – Grave’s disease, Hashimoto’s thyroiditis, or SLE. Three family members (individuals #II-10, II-11, 
III-1 in Fig. 1a) who had been healthy were found to harbor a LILRB1 variant. Notably, all three were male with 
relatively young age. As it remains possible that they could develop symptoms or be affected when they become 
older, a regular follow-up visit would be prudent. Of the 12 members who harbor the variant, nine are affected, 
suggesting a 75% penetrance.

Previous studies showed that phosphorylated LILRB1 recruits and phosphorylates SHP-1, which inhibits 
both signaling and cellular events important for T cell  activation13. Since the identified p.G160E is located in 
the Ig-like C2-type 2 domain of LILRB1—an important binding region to its cognate ligand such as MHC-I19, 
we hypothesized that this LILRB1 variant resulted in a loss-of-function; in the presence of its ligand, the mutant 
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LILRB1 would have a decreased phosphorylation of itself and its downstream molecule, SHP-1. This might lead 
to an over-activation of some T cell clones and subsequently cause autoimmunity. The study of p. G160E showed 
that phosphorylation of LILRB1 and SHP-1 decreased when compared with wild-type. These indicate that it 
possesses a loss-of-function mechanism, in the presence of its ligand.

Because p.G160E is a germline mutation, we profiled leukocytes in PBMCs of the patients by flow cytometry 
and found that surface LILRB1 expression on activated Treg cells was significantly decreased in the family mem-
bers with the LILRB1 variant, either symptomatic or asymptomatic, compared with those without the variant. 
Tregs are immunosuppressive cells that play a crucial role in regulating immune tolerance in pathological set-
tings and in preventing autoimmune diseases. Treg deficiency, reduction, and dysfunction all account for various 
autoimmune  diseases20. The dysfunction of Tregs is one of the proposed mechanisms underlying the breakdown 
of self-tolerance, leading to the progression of autoimmunity. The binding of HLA-G to LILRB1 on NK cells, T 
cells, and macrophages can inhibit the cytotoxicity of NK cells and CD8+ T cells as well as increase the number 
Treg cells, contributing to development of immune  tolerance21. We hypothesize that the loss-of-function variant 
in LILRB1 with a significantly lower LILRB1 on the surface of activated Treg cells might lead to defective sup-
pressive function and immune regulation failure leading to autoimmune  diseases22.

Single-cell RNA-seq analysis was often used to identify immune cell subsets related to the  disease23. In addi-
tion to Treg cells, our scRNA-seq analysis revealed an expansion of CD14+ monocyte population in patients. 
Monocytes have been described for their broad immuno-modulatory, inflammatory, and tissue-repairing roles 
in development of autoimmune diseases. In particular, after getting exposure to specific cytokines in the tissue 
environment, naïve monocytes can differentiate into macrophages having either pro-inflammatory or anti-
inflammatory functions, known as M1- or M2-like macrophages,  respectively24. Furthermore, the pathogenesis 
of autoimmune diseases can be manifested as an imbalance between pro-inflammatory M1- and wound healing 
M2-like  macrophages25. Based on our scRNA-seq data, we determined that CD14+ monocyte 2 and 3 subsets were 
M1- and M2-like cells when we used LYZ and CLEC10A to define M1- and M2-like monocytes,  respectively18,26,27. 
In addition to scRNA-seq results, we identified the M1 and M2 monocyte populations in PBMCs of patients 
were examined by flow cytometry using typical M1 (CD80 and CD86) and M2 (CD163 and CD206) markers. 
A significant increase in frequency and MFI of CD86+ monocyte subset was observed in patients. These results 
strongly imply that the LILRB1 variant investigated here affects the phenotypes of monocytes by biasing toward 
M1-like phenotype. It remains unclear whether the observed impact on monocytes is intrinsic or extrinsic and 
warrants for further investigation. This increased LILRB1 and SHP-1 expression in patients’ monocytes might 
indicate a compensatory mechanism for the loss of LILRB1 functions.

Despite a change in cell topology after addition of more data (five healthy female individuals) into our scRNA-
seq dataset, our conclusion regarding the CD14+ monocyte 1 subset as M1-like cells that could contribute to the 
observed inflammation in patients remains intact as we mentioned that the loss-of-function mutation of LILRB1 
resulted in the tendency toward an M1 polarization and M1/M2 ratio imbalance.

In summary, this study is the first to implicate LILRB1 as a new monogenic disease gene for autoimmunity. 
Loss-of-function LILRB1 variant decreases the ability to phosphorylate SHP-1, involves in reduced LILRB1 
expression on the surface of activated Treg cells, and caused an imbalance in the M1/M2 macrophage ratio. This 
may result in a break of immune tolerance and hyperactivation of pro-inflammatory immune cells, subsequently 
leading to the development of autoimmune diseases (Fig. 4).

Methods
Subject recruitment. A three-generation family with nine members suffering from one of the three auto-
immune diseases – Grave’s disease, Hashimoto’s thyroiditis, or SLE that fulfilled the diagnostic criteria, was 
recruited. All experimental protocols were approved by the institutional review board of the Faculty of Medicine, 

Figure 4.  Proposed diagram of the loss-of-function LILRB1 variant resulting in immune over activity and 
autoimmune diseases.
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Chulalongkorn University (IRB #360/61), and all methods were performed under the guidelines and regulations 
mandated by the board. Written informed consent was obtained from all enrolled subjects, and their peripheral 
blood samples were collected.

Whole‑genome linkage analysis (WGL). Nine members of the family (I-2, II-1, II-3, II-5, II-7, II-9, 
III-2, III-3 and III-4) were genotyped using Infinium OmniZhongHua-8 BeadChip specific to Chinese popula-
tions containing 1,175,489 single-nucleotide polymorphisms (SNPs; Illumina, San Diego, CA, USA). Parametric 
linkage analysis showed LOD score calculation for a phase-known data (Fig. S1a) and was performed by Merlin 
1.1.2 software using an autosomal dominant model with the penetrance values being set at 0.6 (Fig. S1b-S1c).

Whole‑exome sequencing (WES). WES was performed as previously  described28. Briefly, genomic DNA 
was isolated from peripheral blood mononuclear cells using an extraction kit (Qiagen Inc., Valencia, CA, USA). 
The DNA sample was prepared as an Illumina sequencing library and in the exome capture step. The sequencing 
libraries were enriched by SureSelect Human All Exon V7 kits. The captured libraries were sequenced using Illu-
mina NovaSeq 6000 Sequencer. The sequences were aligned to the human genome reference sequence (UCSC 
Genome Browser, hg19). To identify disease-causing variants under the assumption of an autosomal dominant 
pattern of inheritance. The analysis was made and filtered all SNVs and Indels; located in exons or flanking 
introns of the listed genes and not synonymous (Supplementary Table S2). The identified variants were validated 
using Sanger sequencing.

Primers for PCR amplification and sequencing. To confirm the presence of the identified variant, we 
performed PCR and Sanger sequencing in the affected and unaffected family members who underwent WES. 
The primers amplified DNA and the PCR products were treated with Exo-SAP-IT (Affymetrix), followed by 
Sanger sequencing. The primer sequences are shown in Supplementary Table S810.

Quantitative real‑time PCR. We performed quantitative real-time PCR (qRT-PCR) with RNA from 
PBMCs of eight patients from the family (II-1, II-3, II-5, II-7, II-9, III-2, III-3 and III-4), using the TaqMan® 
Gene Expression Assay (Applied Biosystems, cat # APT2AFH for LILRB1, Hs01060665_g1 ACTB, respectively). 
The LILRB1 expression levels were calculated relative to the reference gene, ACTB. These were compared with 
two unaffected controls, who were unaffected family members.

Mutagenesis. The expression vectors pcDNA3.1+ /C-(K)DYK containing the wild-type LILRB1 were pur-
chased from GenScript. The mutant LILRB1 vectors of p.G160E was generated using Q5 Site-Directed Mutagen-
esis Kit (New England Biolabs, Ipswich, MA, USA). After mutagenesis, the mutant plasmid was extracted, and 
the sequence was verified by Sanger sequencing.

Cells and cell transfection. T lymphocyte cell line, Jurkat, were grown in RPMI1640/10% FBS. The wild-
type and mutant LILRB1 plasmids were transfected to Jurkat cells (without endogenous LILRB1 expression) 
by electroporation using AmaxaTM SE Cell Line 4D-NucleofectorTM X Kit S a Lonza 4d strip nucleocuvette 
(Lonza, Germany). The transfectants were selected in G418-containing medium. LILRB1 expression on trans-
fected cells was assessed by FACS analysis using anti-LILRB1 mAb GHI/75 (BioLegend, San Diego, CA, USA).

Western blot analysis. Total proteins from Jurkat cells treated with pervanadate (PV) (200 μM sodium 
orthovanadate and 200 μM  H2O2 at 37 °C for 5 and 10 min) were lysed in RIPA buffer (Thermo Fisher Scientific). 
Total amount of protein was measured by the PierceTM BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, 
USA). The results of three independent experiments were reported as mean ± SD. The P-value was < 0.01. A total 
amount of 20 μg of protein per sample was separated on 12% sodium dodecyl sulfate–polyacrylamide gels and 
then transferred by iBlot™ Transfer Stack onto regular-size PVDF membrane (Invitrogen, Carlsbad, CA, USA). 
Monoclonal anti-LILRB1 antibody at 1:500 dilution (cat # 78144s, Cell Signaling Technology, Danvers, MA, 
USA) was used as primary antibody to detect WT and MT LILRB1 proteins followed by anti-rabbit IgG antibody 
at 1:2000 dilution (cat # 7076, Cell Signaling Technology) as secondary antibody. Anti-GAPDH antibody (cat # 
Mab1501, Sigma-Aldrich, St Louis, MO, USA) was used as a positive control to determine gel loading equiva-
lency. Monoclonal Phospho-SHP-1 (Tyr564) (D11G5) antibody at 1:1000 dilution (cat # 8849, Cell Signaling 
Technology) was used as primary antibody to detect phospho-SHP1 proteins. The results were visualized using 
SuperSignal™ West Pico PLUS Chemiluminescent Substrate (Thermo fisher scientific) and chemiluminescence 
camera (ImageQuant LAS 4000, Amersham). The level of the proteins were quantified using the Image J gel 
analysis program.

Human phospho‑immunoreceptor array. Jurkat cells transfected with LILRB1-WT and LILRB1-MT 
expression vectors followed by pervanadate (PV) treatment were lysed as described above. A total of 20 μg of 
protein per sample was used to determine tyrosine phosphorylation level of LILRB1 and SHP-1 by Human 
Phospho-Immunoreceptor Array (R&D Systems, cat # ARY004) according to the manufacturer’s instructions. 
Moreover, the phosphorylation level of SHP-1 was also determined by Western blot analysis and quantified using 
the Image J gel analysis program.

Flow cytometry to determine expression of LILRB1 from PBMCs. To evaluate the expression of 
LILRB1 in different cell populations from the PBMCs of 14 family members and five healthy controls. PBMCs 
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were stained with specific primary antibodies. For T B NK panel, anti-CD4 APC-Cy7 (clone RPA-T4), anti-CD8 
AF700 (clone SK1), anti-CD14 PE-Cy7 (clone HCD14), anti-CD16 PE-DZ594 (clone 3G8), anti-CD19 PE-Cy5 
(clone HIB19), anti-CD56 AF647 (clone 5.1H11) were used. For DC panel, anti-CD1C PE-DZ594 (clone L161), 
anti-CD11c AF700 (clone N418), anti-CD123 APC (clone 6H6), and anti-CD303 PerCP-Cy5.5 (clone 201A) 
were used. For the Treg panel, anti-CD25 APC-Cy7 (clone BC96), anti- CD127 PE-DZ594 (clone A019D5), anti-
GARP PE-Cy7 (clone 7B11), and anti-LAP APC (clone TW4-2F8) were used. For the Breg panel, anti-CD19 
PerCP-Cy5.5 (clone HIB19), anti-CD24 PE-DZ594 (clone ML5), anti-CD38 AF700 (clone HB7), anti- CD71 
PE-Cy7 (clone CY1G4), and anti-CD73 APC (clone AD2) were used. In addition, an anti-LILRB1 MAB (clone 
HP-F1) labeled with phycoerythrin (PE, Invitrogen) was also employed.

Single‑cell RNA sequencing (scRNA‑Seq). Cell isolation, capturing, library preparation and sequenc-
ing.. PBMCs were isolated using density-gradient centrifugation from heparinized peripheral blood. PBMC 
were stored at − 80 °C in the freezing medium for use. All samples were washed and resuspended in PBS, con-
taining 0.1% BSA. Cell numbers and cell viability for each sample were counted using an automated cell counter 
(Countess II, Invitrogen) before single-cell RNA-seq library preparation. The cell numbers of three patients were 
16,486, 16,454, and 16,517 cells whereas the cell number of a healthy control was 16,511 cells. The viability of 
cells in all samples was greater 80%.

According to the manufacturer’s  protocol29, the single-cell capturing and downstream library constructions 
were performed using the Chromium Single Cell 5′ library or 3’ v2 library preparation kit (10X Genomics). 
Briefly, cellular suspensions were partitioned with barcoded gel beads to generate single-cell gel bead-in-emulsion 
(GEM), and poly-adenylated transcripts were reverse-transcribed. Full-length cDNA and cell-barcode identifiers 
were PCR-amplified, and sequencing libraries were prepared and normalized to 3 nM for loading on a Novaseq 
6000 (Illumina). Unsupervised clustering of cells from scRNA-seq was performed in  R30 (version 4.2.1) using 
 Seurat31 package (version 2.2) and Uniform Manifold Approximation and Projection (UMAP)32 R package (ver-
sion 0.2.8.0) for dimensionality reduction. Visualization of single-cell transcriptomic data was done in R using 
 RStudio33 and R packages  tidyverse34 (version 1.3.1) and  ggpubr35 (version 0.4.0).

Identification of marker genes and cell-type annotation.. Differential expression of every cluster was calculated 
using the ‘bimod’ test as implemented in the Seurat Find Markers function. Genes were found as marker genes 
with a log2 average differential expression of 0.25 and P < 0.05.

Macrophage subset identification and relative change calculation. Using our scRNA-seq data of CD14+ mono-
cytes, we converted the population-averaged,  log2 fold-change of the expression levels of the differentially 
expressed genes to fold-change level as follows:

, where x is  log2 fold-change and y is fold-change levels. Then, the data were used as an input for macrophage 
subset identification using  MacSpectrum14 (https:// macsp ectrum. uconn. edu). For relative change calculation, we 
obtained an averaged cell number of CD14+ monocyte subsets from patients (n = 3) and healthy control (n = 1) 
and calculate relative change as follows:

, where C is relative change,  x1 is cell number of CD14+ monocyte subset from healthy control, and  x2 is averaged 
cell number of CD14+ monocyte subset from patients.

Flow cytometry for investigate M1 monocyte population identified in the 10X experiments. To further investigate 
the M1 monocyte population identified in the 10X experiments, we used PBMCs from 13 patients (I-1, I-2, II-2, 
II-4, II-5, II-7, II-9, II-10, II-11, III-1, III-2, III-3 and III-4) and 5 healthy controls, stained with antibodies, and 
performed flow cytometry analysis. The antibodies included anti-CD14 PerCP/Cy5.5 (clone M5E2), anti- CD80 
FITC (clone 2D10), anti-CD86 APC (clone IT2.2), anti-CD163 PE (clone GHI/61), and anti-CD206 PE-Cy7 
(clone 15–2). All antibodies were purchased from BioLegend (San Diego, CA, USA). Cells were analyzed by 
LSRII flow cytometer (Becton Dickinson, USA). Gating strategy for M1 and M2 monocytes is depicted in Sup-
plementary Fig. S5a. Data were processed by the FlowJo Software Version 10.8.1 (BD Life Sciences); website: 
https:// www. flowjo. com/.

Single-cell RNA sequencing (scRNA-Seq) analysis of five additional PBMCs healthy individuals from publicly avail-
able data. The sorted five human PBMCs of healthy female donors aged 25–29 that supported the findings 
of this study were obtained from publicly available 10X Genomics datasets (Supplementary Table S5) (https:// 
www. 10xge nomics. com/ resou rces/ datas ets)36–40, which included this published article Massively parallel digital 
transcriptional profiling of single  cells41. The data were then included in our scRNA-seq dataset generated from 
our patients and a healthy control and re-analyzed using procedure described above. We noticed that cell topol-
ogy and clusters changed after applying UMAP  clustering42. To maintain cell-type classification consistency, we 
obtained a set of reference genes that described cell types in our initial scRNA-seq analysis and used it in cell-
type identification by  CIBERSORTx16–18. The difference in the number of monocyte subsets from patients and 
healthy controls was calculated as  log2 fold-change value.

y =

{

2
x for x > 0
1

|2x |
for x < 0

,

C =

x2 − x1

x1

https://macspectrum.uconn.edu
https://www.flowjo.com/
https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
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Statistical analysis. Data were entered into GraphPad Prism (version 9.1.0) and analyzed using non-para-
metric tests (GraphPad Software, San Diego, CA, USA). For cell frequency and MFI from flow cytometry analy-
sis, the results were shown in median of cell population. Kruskal–Wallis test (or non-parametric ANOVA) was 
used to evaluate flow cytometry data of LILRB1 surface expression. Manne-Whitney U test was used to evaluate 
flow cytometry data of other surface protein in cell subsets. Dunn test was used for multiple comparisons tests. 
P-value < 0.05 was considered statistically significant.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Received: 16 March 2022; Accepted: 29 August 2022
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