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A tensor‑based formulation 
of hetero‑functional graph theory
Amro M. Farid1,2, Dakota J. Thompson1* & Wester Schoonenberg1

Recently, hetero‑functional graph theory (HFGT) has developed as a means to mathematically model 
the structure of large‑scale complex flexible engineering systems. It does so by fusing concepts from 
network science and model‑based systems engineering (MBSE). For the former, it utilizes multiple 
graph‑based data structures to support a matrix‑based quantitative analysis. For the latter, HFGT 
inherits the heterogeneity of conceptual and ontological constructs found in model‑based systems 
engineering including system form, system function, and system concept. These diverse conceptual 
constructs indicate multi‑dimensional rather than two‑dimensional relationships. This paper provides 
the first tensor‑based treatment of hetero‑functional graph theory. In particular, it addresses the 
“system concept” and the hetero‑functional adjacency matrix from the perspective of tensors 
and introduces the hetero‑functional incidence tensor as a new data structure. The tensor‑based 
formulation described in this work makes a stronger tie between HFGT and its ontological foundations 
in MBSE. Finally, the tensor‑based formulation facilitates several analytical results that provide an 
understanding of the relationships between HFGT and multi‑layer networks.

Abbreviations
DOFρ  Sequence-dependent degrees of freedom
PS  A (non-unique) projection matrix for the vectorized knowledge base
Ãρ  Hetero-functional Adjacency Matrix after elimination of row and column sparsity
ψ  Index of the elements in the set of structural degrees of freedom ES

One defining characteristic of twenty-first century engineering challenges is the breadth of their scope. The 
National Academy of Engineering (NAE) has identified 14 “game-changing goals”1. 

 (1) Advance personalized learning
 (2) Make solar energy economical
 (3) Enhance virtual reality
 (4) Reverse-engineer the brain
 (5) Engineer better medicines
 (6) Advance health informatics
 (7) Restore and improve urban infrastructure
 (8) Secure cyber-space
 (9) Provide access to clean water
 (10) Provide energy from fusion
 (11) Prevent nuclear terror
 (12) Manage the nitrogen cycle
 (13) Develop carbon sequestration methods
 (14) Engineer the tools of scientific discovery

At first glance, each of these aspirational engineering goals is so large and complex in its own right that it might 
seem entirely intractable. However, and quite fortunately, the developing consensus across a number of STEM 
(science, technology, engineering, and mathematics) fields is that each of these goals is characterized by an 
“engineering system” that is analyzed and re-synthesized using a meta-problem-solving skill  set2.

Definition 1 Engineering  system3: A class of systems characterized by a high degree of technical complexity, 
social intricacy, and elaborate processes, aimed at fulfilling important functions in society.
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The challenge of convergence towards abstract and consistent methodological foundations for engineering 
systems is formidable. Consider the engineering systems taxonomy presented in Table 13. It classifies engineering 
systems by five generic functions that fulfill human needs: (1.) transform (2.) transport (3.) store, (4.) exchange, 
and (5.) control. On another axis, it classifies them by their operands: (1.) living organisms (including people), (2.) 
matter, (3.) energy, (4.) information, (5.) money. This classification presents a broad array of application domains 
that must be consistently treated. Furthermore, these engineering systems are at various stages of development 
and will continue to be so for decades, if not centuries. And so the study of engineering systems must equally 
support design synthesis, analysis, and re-synthesis while supporting innovation; be it incremental or disruptive.

Background literature. Two fields in particular have attempted to traverse this convergence challenge: sys-
tems engineering and network science. Systems engineering, and more recently model-based systems engineer-
ing (MBSE), has developed as a practical and interdisciplinary engineering discipline that enables the successful 
realization of complex systems from concept, through design, to full  implementation4. It equips the engineer 
with methods and tools to handle systems of ever-greater complexity arising from greater interactions within 
these systems or from the expanding heterogeneity they demonstrate in their structure and function. Despite 
its many accomplishments, model-based systems engineering still relies on graphical modeling languages that 
provide limited quantitative insight (on their own)5–7.

In contrast, network science has developed to quantitatively analyze networks that appear in a wide variety 
of engineering systems. And yet, despite its methodological developments in multi-layer networks, network 
science has often been unable to address the explicit heterogeneity often encountered in engineering  systems7,8. 
In a recent comprehensive review Kivela et.  al8 write:

“The study of multi-layer networks . . . has become extremely popular. Most real and engineered systems 
include multiple subsystems and layers of connectivity and developing a deep understanding of multi-layer 
systems necessitates generalizing ‘traditional’ graph theory. Ignoring such information can yield misleading 
results, so new tools need to be developed. One can have a lot of fun studying ‘bigger and better’ versions 
of the diagnostics, models and dynamical processes that we know and presumably love – and it is very 
important to do so but the new ‘degrees of freedom’ in multi-layer systems also yield new phenomena that 
cannot occur in single-layer systems. Moreover, the increasing availability of empirical data for funda-
mentally multi-layer systems amidst the current data deluge also makes it possible to develop and validate 
increasingly general frameworks for the study of networks.
. . . Numerous similar ideas have been developed in parallel, and the literature on multi-layer networks 
has rapidly become extremely messy. Despite a wealth of antecedent ideas in subjects like sociology and 
engineering, many aspects of the theory of multi-layer networks remain immature, and the rapid onslaught 
of papers on various types of multilayer networks necessitates an attempt to unify the various disparate 
threads and to discern their similarities and differences in as precise a manner as possible.
. . . [The multi-layer network community] has produced an equally immense explosion of disparate ter-
minology, and the lack of consensus (or even generally accepted) set of terminology and mathematical 
framework for studying is extremely problematic.”

In many ways, the parallel developments of the model-based systems engineering and network science com-
munities intellectually converge in hetero-functional graph theory (HFGT)7. For the former, it utilizes multiple 
graph-based data structures to support a matrix-based quantitative analysis. For the latter, HFGT inherits the 
heterogeneity of conceptual and ontological constructs found in model-based systems engineering including 
system form, system function, and system concept. More specifically, the explicit treatment of function and 
operand facilitates a structural understanding of the diversity of engineering systems found in Table 1. Although 
not named as such originally, the first works on HFGT appeared as early as 2006–20089–12. Since then, HFGT 
has become multiply established and demonstrated cross-domain  applicability7,13; culminating in the recent 
consolidating  text7.

The primary benefit of HFGT, relative to multi-layer networks, is the broad extent of its ontological elements 
and associated mathematical  models7. In their recent review, Kivela et. al showed that all of the reviewed works 
have exhibited at least one of the following modeling  constraints8: 

Table 1.  A classification of engineering systems by function and  operand3.

Function/operand Living organisms Matter Energy Information Money

Transform Hospital Blast furnace Engine, electric motor Analytic engine, calculator Bureau of printing and 
engraving

Transport Car, Airplane, Train Truck, train, car, airplane Electricity grid Cables, radio, telephone, and 
internet

Banking fedwire and swift 
transfer systems

Store Farm, apartment complex Warehouse Battery, flywheel, capacitor Magnetic tape and disk, book U.S. Buillon repository (Fort 
Knox)

Exchange Cattle auction, (illegal) 
human trafficking eBay trading system Energy market World wide web, wikipedia London stock exchange

Control U.S. constitution and laws National highway traffic safety 
administration

Nuclear regulatory com-
mission

Internet engineering task 
force United States federal reserve
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(1) Alignment of nodes between layers is  required8,14–62

(2) Disjointment between layers is  required8,51,56,63–80

(3) Equal number of nodes for all layers is  required8,14–51,59,61,65,67,71,72,81,82

(4) Exclusively vertical coupling between all layers is  required8,14–51,59,61,66,82–86

(5) Equal couplings between all layers are  required8,16–41,45–51,59,61,66,82–86

(6) Node counterparts are coupled between all  layers16–20,24–41,45–51,59,61,66,82–86

(7) Limited number of modelled  layers47–49,51,56,59,61,63–93

(8) Limited number of aspects in a  layer14–51,56,59,61,63–80,82

To demonstrate the consequences of these modeling limitations, the HFGT  text7 developed a very small, but 
highly heterogeneous, hypothetical test case system that exhibited all eight of the modeling limitations identified 
by Kivela et. al. Consequently, none of the multi-layer network models identified by Kivela et. al. would be able 
to model such a hypothetical test case. In contrast, a complete HFGT analysis of this hypothetical test case was 
demonstrated in the aforementioned  text7.

The same text provides the even more complex hypothetical smart city infrastructure example shown in Fig. 1. 
It not only includes an electric power system, water distribution system, and electrified transportation system 
but it also makes very fine distinctions in the functionality of its component elements.

Given the quickly developing “disparate terminology and the lack of consensus”, Kivela et. al.’s8 stated goal 
“to unify the various disparate threads and to discern their similarities and differences in as precise a manner as 
possible” appears imperative. While many may think that the development of mathematical models is subjec-
tive, in reality, ontological science presents a robust methodological foundation. As briefly explained in Online 
Appendix A, and as detailed  elsewhere7,94,95, the process of developing a mathematical model of a given (engi-
neering) system is never direct. Rather, a specific engineering system (which is an instance of a class of systems) 
has abstract elements in the mind (It is likely that modeling abstract elements in the mind is unfamiliar to this 
journal’s readership. This is purely an issue of nomenclature. Most physicists and engineers would agree on the 
indispensable role that intuition – itself a mental model – has to the development of mathematical models of 
systems. For example, the shift from Newtonian mechanics to Einstein’s relativity constituted first an expansion 
in the abstract elements of the mental model and their relationships well before that mental model could be 
translated into its associated mathematics. Similarly, the “disparate terminology and lack of consensus” identi-
fied by Kivela et.  al8 suggests that a reconciliation of this abstract mental model is required (see “Background 
literature”) that constitute an abstraction A (which is an instance of a domain conceptualization C ). C is mapped 
to a set of primitive mathematical elements called a language L , which is in turn instantiated to produce a math-
ematical model M . The fidelity of the mathematical model with respect to an abstraction is determined by the 
four complementary linguistic properties shown in Fig. 295: soundness, completeness, lucidity, and  laconicity96 
(See Appendix Defns. 1–4). When all four properties are met, the abstraction and the mathematical model have 
an isomorphic (one-to-one) mapping and faithfully represent each other. For example, the network science and 
graph theory literature assume an abstract conceptualization of nodes and edges prior to defining their 1-to-1 
mathematical  counterparts7. Consequently, as hetero-functional graph and multi-layer network models of engi-
neering systems are developed, there is a need to reconcile both the abstraction and the mathematical model on 
the basis of the four criteria identified above (See Appendix A.).

The ontological strength of hetero-functional graph theory comes from the “systems thinking” foundations in 
the model-based systems engineering  literature7,97. In effect, and very briefly, all systems have a “subject + verb + 
operand” form where the system form is the subject, the system function is the verb + operand (i.e. predicate) and 
the system concept is the mapping of the two to each other. The key distinguishing feature of HFGT (relative to 
multi-layer networks) is its introduction of system function. In that regard, it is more complete than multi-layer 

a) Topology of (Electrified) Water Distribution System b) Topology of Electric Power System c) Topology of Electrified Transportation System
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Figure 1.  A topological visualizaiton of the trimetrica smart city infrastructure test  case7.
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networks if system function is accepted as part of an engineering system abstraction. Another key distinguishing 
feature of HFGT is the differentiation between elements related to transformation and transportation. In that 
regard, it takes great care to not overload mathematical modeling elements and preserve lucidity.

Original contribution. This paper provides a tensor-based formulation of several of the most important 
parts of hetero-functional graph theory. More specifically, it discusses the system concept, the hetero-functional 
adjacency matrix, and the hetero-functional incidence tensor. Whereas the hetero-functional graph theory  text7 
is a comprehensive discussion of the subject, the treatment is based entirely on two-dimensional matrices. The 
tensor-based formulation described in this work makes a stronger tie between HFGT and its ontological founda-
tions in MBSE. Furthermore, the tensor-based treatment developed here reveals patterns of underlying structure 
in engineering systems that are less apparent in a matrix-based treatment. Finally, the tensor-based formulation 
facilitates an understanding of the relationships between HFGT and multi-layer networks (“despite its disparate 
terminology and lack of consensus”). In so doing, this tensor-based treatment is likely to advance Kivela et. al’s 
goal to discern the similarities and differences between these mathematical models in as precise a manner as 
possible.

Paper outline. The rest of the paper is organized as follows. “The system concept” discusses the system 
concept as an allocation of system function to system form. “Hetero-functional adjacency matrix” discusses the 
hetero-functional adjacency matrix emphasizing the relationships between system capabilities (i.e. structural 
degrees of freedom as defined therein). “Hetero-functional incidence tensor”, then, discusses the hetero-func-
tional incidence tensor which describes the relationships between system capabilities, operands, and physical 
locations in space (i.e. system buffers as defined later). “Discussion” goes on to discuss this tensor-based formu-
lation from the perspective of layers and network descriptors. “Conclusions and future work” brings the work to 
a close and offers directions for future work. Given the multi-disciplinary nature of this work, several appendices 
are provided to support the work with background material and avoid breaking the logical flow of the main 
article. Appendix A provides the fundamental definitions of ontological science that were used to motivate this 
work’s original contribution. Appendix B describes the notation conventions used throughout this work. The 
paper assumes that the reader is well grounded in graph theory and network science as it is found in any one of 
a number of excellent  texts98,99. The paper does not assume prior exposure to hetero-functional graph theory. 
It’s most critical definitions are tersely introduced in the body of the work upon first mention. More detailed 
classifications of these concepts are compiled in Appendix C for convenience. Given the theoretical treatment 
provided here, the interested reader is referred to the hetero-functional graph theory  text7 for further explana-
tion of these well-established concepts and concrete examples. Furthermore, several recent works have made 
illustrative comparisons between (formal) graphs and hetero-functional  graphs100,101. Finally, this work makes 

(a) Soundness (b) Completeness

(c) Lucidity (d) Laconicity

Abstraction Model Abstraction Model

Abstraction Model Abstraction Model

Figure 2.  Graphical representation of four ontological properties as mapping between abstraction and model: 
(a) soundness, (b) completeness, (c) lucidity, and (d)  laconicity95.
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extensive use of set, Boolean, matrix, and tensor operations; all of which are defined unambiguously in Appen-
dices D, E, F, and G respectively.

The system concept
At a high-level, the system concept AS describes the allocation of system function to system form as the central 
question of engineering design. First, “System resources, processes, and knowledge base” provides introduc-
tory definitions of system resources, processes, and knowledge base that serve as prerequisite knowledge for 
the remaining subsections. Next, “The transportation knowledge base tensor” introduces the transportation 
knowledge base as a third-order tensor. Next, “The refined transportation knowledge base tensor” introduces 
the refined transportation knowledge base as a fourth-order tensor. The tensor-based formulations in these two 
subsection directly support the original contribution mentioned in “Original contribution”. Finally, in order to 
support the following section, “Existence, availability, and concept of system capabilities” concludes the section 
with a discussion of existence and availability of system capabilities as part of the system concept.

System resources, processes, and knowledge base. This dichotomy of form and function is repeat-
edly emphasized in the fields of engineering design and systems  engineering97,102–104. More specifically, the allo-
cation of system processes to system resources is captured in the “design equation”10,94:

where R is set of system resources, P is the set of system processes, JS is the system knowledge base, and ⊙ is 
matrix Boolean multiplication (Online Appendix Defn. 24).

Definition 2 (System Resource4) An asset or object rv ∈ R that is utilized during the execution of a process.

Definition 3 (System Process4,105) An activity p ∈ P that transforms a predefined set of input operands into a 
predefined set of outputs.

Definition 4 (System Operand4) An asset or object li ∈ L that is operated on or consumed during the execution 
of a process.

Definition 5 (System Knowledge Base9–13,94) A binary matrix JS of size σ(P)× σ(R) whose element 
JS(w, v) ∈ {0, 1} is equal to one when action ewv ∈ ES (in the SysML sense) exists as a system process pw ∈ P 
being executed by a resource rv ∈ R . The σ() notation gives the size of a set.

In other words, the system knowledge base forms a bipartite graph between the set of system processes and 
the set of system  resources13.

Hetero-functional graph theory further recognizes that there are inherent differences within the set of 
resources as well as within the set of processes. Therefore, classifications of these sets of resources and sets of 
processes are introduced and defined in Appendix C. R = M ∪ B ∪H where M is the set of transformation 
resources (Definition 5), B is the set of independent buffers (Definition 6), and H is the set of transportation 
resources (Definition 7). Furthermore, the set of buffers BS = M ∪ B (Definition 8) is introduced for later discus-
sion. Similarly, P = Pµ ∪ Pη̄ where Pµ is the set of transformation processes (Definition 9) and Pη̄ is the set of 
refined transportation processes (Definition 10). The latter, in turn, is determined from the Cartesian product 
( × ) (Definition 21) of the set of transportation processes Pη (Definition 11) and the set of holding processes Pγ 
(Definition 12).

This taxonomy of resources, processes, and their allocation is organized in the HFGT meta-architecture shown 
in Fig. 3. The taxonomy of resources R and processes P originates from the field of production systems where 
transformation processes are viewed as “value-adding”, holding processes support the design of fixtures, and 
transportation processes are cost-minimized. Furthermore, their existence is necessitated by their distinct roles 
in the structural relationships found in hetero-functional graphs. Consequently, subsets of the design Eq. (1) 
can be written to emphasize the relationships between the constitutent classes of processes and  resources9–13.

where JM is the transformation knowledge base, Jγ is the holding knowledge base, JH is the transportation 
knowledge base, and JH̄ is the refined transportation knowledge  base10,13,106–109. The original system knowledge 
base JS is straightforwardly reconstructed from these smaller knowledge  bases9–13:

(1)P = JS ⊙ R

(2)Pη̄ = Pγ×Pη

(3)Pµ = JM ⊙M

(4)Pγ = Jγ ⊙ R

(5)Pη = JH ⊙ R

(6)Pη̄ = JH̄ ⊙ R
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The transportation knowledge base tensor. The transportation knowledge base JH is best under-
stood as a matricized 3rd-order tensor JH where the element JH(y1, y2, v) = 1 when the transportation process 
pu ∈ Pη defined by the origin bsy1 ∈ BS and the destination bsy2 ∈ BS is executed by the resource rv ∈ R.

where FM and F−1
M  are the matricization and tensorization functions (Defns. 33 and 34) respectively. Here, FM() 

serves to vectorize the dimensions of the origin and destination buffers into the single dimension of transporta-
tion processes. Appendix G, more generally, introduces the reader to tensor-based operations.

The JH tensor reveals that the transportation knowledge base is closely tied to the classical understanding of 
a graph ABS where point elements of form called nodes, herein taken to be the set of buffers BS , are connected by 
line elements of form called edges. Such a graph in hetero-functional graph theory (and model-based systems 
engineering) is called a formal  graph97 because all of its elements describe the system form and any statement 
of function is entirely implicit.

where the 
∨

 notation is the Boolean analogue of the 
∑

 notation (Definition 22), ⊙n is the n-mode Boolean 
matrix product (Online Appendix Defn. 39), vec−1() is inverse vectorization (Online Appendix Defn. 36) and 
()V  is shorthand for vectorization (Online Appendix Defn. 35). Appendix E, more generally, introduces the 
reader to Boolean operations. Furthermore, the notation 1n is used to indicate a ones-vector of length n. The 
transportation system knowledge base JH replaces the edges of the formal graph ABS with an explicit description 
of function in the transportation processes Pη . The multi-column nature of the transportation knowledge base 
JH contains more information than the formal graph ABS and allows potentially many resources to execute any 
given transportation process. Consequently, the OR operation across the rows of JH (or the third dimension of 

(7)JS =

[
JM | 0

JH̄

]

(8)JH = FM(JH , [2, 1], [3])

(9)JH = F
−1
M (JH , [σ(BS), σ(BS), σ(R)], [2, 1], [3])

(10)

ABS (y1, y2) =

σ(R)∨

v

JH(y1, y2, v)

=

σ(R)∨

v

JH(u, v) ∀y1, y2 ∈ {1, . . . , σ(BS)}, u = σ(BS)(y1 − 1)+ y2, v ∈ {1, . . . , σ(R)}

(11)ABS = JH ⊙3 1
σ(R) = vec−1

(
JH ⊙ 1

σ(R), [σ(BS), σ(BS)]
)T

(12)ATV
BS

=

(
JH ⊙3 1

σ(R)
)TV

= JH ⊙ 1
σ(R)

LFES-ResourceArchitecturepackage Model [  ]

+Transform Operand()
operations

Transformation 
Resources M

operations
+Transport Operand()
+Hold Operand()

Resources R

Transportation
 Resources H

Buffers B_S

Independent 
Buffers B

Figure 3.  The hetero-functional graph theory meta-architecture drawn using the systems markup language 
(SysML). It consists of three types of resources R = M ∪ B ∪H that are capable of two types of process 
Pη̄ = Pγ×Pη

7.
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JH ) is sufficient to reconstruct the formal graph ABS . In short, a single column transportation knowledge base 
is mathematically equivalent to a vectorized formal graph ABS.

The refined transportation knowledge base tensor. Similarly, the refined transportation knowledge 
base is best understood as a matricized 4th order tensor JH̄ where the element JH(g , y1, y2, v) = 1 when the 
refined transportation process pϕ ∈ Pη̄ defined by the holding process pγ g ∈ Pγ , the origin bsy1 ∈ BS and the 
destination bsy2 ∈ BS is executed by the resource rv ∈ R.

The JH̄ tensor reveals that the refined transportation knowledge base is closely tied to the classical under-
standing of a multi-commodity flow network ALBS

110–112. Mathematically, it is a 3rd-order tensor whose element 
ALBS (i, y1, y2) = 1 when operand li ∈ L is transported from buffer bsy1 to bsy2 . Again, the multi-commodity flow 
network ALBS is purely a description of system form and any statement of function is entirely implicit. In the 
special case (By Definition 12, holding processes are distinguished by three criteria: 1.) different operands, 2.) 
how they hold those operands, and 3.) if they change the state of the operand. The special case mentioned above 
is restricted to only the first of these three conditions.) of a system where the set of operands L maps 1-to-1 the 
set of holding processes Pγ (i.e. i = g):

The refined transportation system knowledge base JH̄ replaces the operands and edges of the multi-commod-
ity flow network AMP with an explicit description of function in the holding processes Pγ and transportation 
processes Pη . The multi-column nature of the refined transportation knowledge base JH̄ contains more informa-
tion than the multi-commodity flow network ALBS and allows potentially many resources to execute any given 
refined transportation process. Consequently, the OR operation across the rows of JH̄ (or the fourth dimension of 
JH̄ ) is sufficient to reconstruct the multi-commodity flow network ALBS . In short, a single column of the refined 
transportation knowledge base is mathematically equivalent to a vectorized multi-commodity flow network.

The transformation, holding, transportation and refined transportation knowledge bases ( JM , Jγ , JH and JH̄ ) 
readily serve to reconstruct the system knowledge base JS . First, the refined transportation knowledge base is 
the Khatri-Rao product of the holding and transportation knowledge bases.

where · is the Hadamard (or scalar) product (Online Appendix Defn. 28), ⊛ is the Khatri-Rao product (Online 
Appendix Defn. 31) and ⊗ is the Kronecker product (Online Appendix Defn. 30).

Existence, availability, and concept of system capabilities. Hetero-functional graph theory also 
differentiates between the existence and the availability of physical capabilities in the  system10,107. While the 
former is described by the system knowledge base the latter is captured by the system constraints matrix (which 
is assumed to evolve in time).

Definition 6 (System Constraints Matrix9–13,94) A binary matrix KS of size σ(P)× σ(R) whose element 
KS(w, v) ∈ {0, 1} is equal to one when a constraint eliminates event ewv from the event set.

The system constraints matrix is constructed analogously to the system knowledge  base9–13.

(13)JH̄ = FM

(
JH̄ , [3, 2, 1], [4]

)

(14)JH̄ = F
−1
M

(
JH̄ , [σ(Pγ ), σ(BS), σ(BS), σ(R)], [3, 2, 1], [4]

)

(15)

ALBS (i, y1, y2) =

σ(R)∨

v

JH̄ (g , y1, y2, v) ∀g ∈ {1, . . . , σ(Pγ )}, y1, y2 ∈ {1, . . . , σ(BS)}, v ∈ {1, . . . , σ(R)}

(16)=

σ(R)∨

v

JH̄ (ϕ, v) ∀ϕ = σ 2(BS)(g − 1)+ σ(BS)(y1 − 1)+ y2, v ∈ {1, . . . , σ(R)}

(17)ALBS = JH̄ ⊙4 1
σ(R) = vec−1

(
JH̄ ⊙ 1

σ(R),
[
σ(BS), σ(BS), σ(Pγ )

])T

(18)ATV
LBS

=

(
JH̄ ⊙4 1

σ(R)
)TV

= JH̄ ⊙ 1
σ(R)

(19)
JH̄ (σ (Pη)(g − 1)+ u, v) = Jγ (g , v) · JH (u, v)

∀g ∈ {1, . . . , σ(Pγ )}, u = σ(BS)(y1 − 1)+ y2, v ∈ {1, . . . , σ(R)}

(20)JH̄ = Jγ ⊛ JH

(21)=

[
Jγ ⊗ 1

σ(Pη)
]
·

[
1
σ(Pγ ) ⊗ JH

]
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In this regard, the system constraints matrix has a similar meaning to graph  percolation113,114 and temporal 
 networks115.

Once the system knowledge base JS and the system constraints matrix KS have been constructed, the system 
concept AS follows straightforwardly.

Definition 7 (System Concept9–13,94) A binary matrix AS of size σ(P)× σ(R) whose element AS(w, v) ∈ {0, 1} is 
equal to one when action ewv ∈ ES (in the SysML sense) is available as a system process pw ∈ P being executed 
by a resource rv ∈ R.

where ⊖ is Boolean subtraction (Online Appendix Defn. 26) and KS = NOT(KS).

Every filled element of the system concept indicates a system capability (Definition 13) of the form: “Resource 
rv does process pw ”. The system constraints matrix limits the availability of capabilities in the system knowledge 
base to create the system concept AS . The system capabilities are quantified by the structural degrees of freedom.

Definition 8 (Structural Degrees of Freedom9–13,94) The set of independent actions ES that completely defines the 
instantiated processes in a large flexible engineering system. Their number is given by:

As has been discussed extensively in prior publications, the term structural degrees of freedom is best viewed 
as a generalization of kinematic degrees of freedom (or generalized coordinates)9–13,116. Note that the trans-
formation degrees of freedom DOFM and the refined transportation degrees of freedom DOFH are calculated 
 similarly9–12:

Hetero‑functional adjacency matrix
This section serves provides a tensor-based formulation of the hetero-functional adjacency matrix. First, “Pair-
wise sequences of system capabilities” introduces this matrix as pairwise sequences of system capabilities. Next, 
“The system sequence knowledge base tensor” provides a tensor-based formulation of the system sequence 
knowledge base. Next, “The system sequence constraints tensor” provides a tensor-based formulation of the 
system sequence constraints. Both of these subsections directly support the paper’s original contribution. Finally, 
“Sequence-dependent degrees of freedom” concludes the section with a discussion of sequence-dependent 
degrees of freedom.

Pairwise sequences of system capabilities. Once the system’s physical capabilities (or structural 
degrees of freedom have been defined), the hetero-functional adjacency matrix Aρ is introduced to represent 
their pairwise  sequences13,108,117–119.

Definition 9 (Hetero-functional Adjacency Matrix13,108,117–119) A square binary matrix Aρ of size 
σ(R)σ (P)× σ(R)σ (P) whose element Jρ(χ1,χ2) ∈ {0, 1} is equal to one when string zχ1,χ2 = ew1v1ew2v2 ∈ Z is 
available and exists, where index χi ∈ [1, . . . , σ(R)σ (P)].

In other words, the hetero-functional adjacency matrix corresponds to a hetero-functional graph G = {ES,Z} 
with structural degrees of freedom (i.e. capabilities) ES as nodes and feasible sequences Z as edges.

Much like the system concept AS , the hetero-functional adjacency matrix Aρ arises from a Boolean 
 difference13,108,117–119.

(22)KS =

[
KM | 0

KH̄

]

(23)AS = JS ⊖ KS = JS · K̄S

(24)DOFS = σ(ES) =

σ(P)∑

w

σ(R)∑

v

[JS ⊖ KS](w, v)

(25)=

σ(P)∑

w

σ(R)∑

v

AS(w, v)

(26)= �JS , K̄S�F

(27)DOFM =

σ(Pµ)∑

j

σ(M)∑

k

[JM ⊖ KM ](j, k)

(28)DOFH =

σ(Pη̄ )∑

ϕ

σ(R)∑

v

[
JH̄ ⊖ KH̄

]
(u, v)
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where Jρ is the system sequence knowledge base and Kρ is the system sequence constraints matrix.

Definition 10 (System Sequence Knowledge Base13,108,117–119) A square binary matrix Jρ of size 
σ(R)σ (P)× σ(R)σ (P) whose element Jρ(χ1,χ2) ∈ {0, 1} is equal to one when string zχ1,χ2 = ew1v1ew2v2 ∈ Z 
exists, where index χi ∈ [1, . . . , σ(R)σ (P)].

Definition 11 (System Sequence Constraints Matrix13,108,117–119) A square binary constraints matrix Kρ of size 
σ(R)σ (P)× σ(R)σ (P) whose elements K(χ1,χ2) ∈ {0, 1} are equal to one when string zχ1χ2 = ew1v1ew2v2 ∈ Z 
is eliminated.

The definitions of the system sequence knowledge base Jρ and the system sequence constraints matrix Kρ 
feature a translation of indices from ew1v1ew2v2 to zχ1χ2 . This fact suggests that these matrices have their associ-
ated 4th order tensors Jρ , Kρ and Aρ.

The system sequence knowledge base tensor. The system sequence knowledge base Jρ and its tensor-
equivalent Jρ create all the potential sequences of the capabilities in AS.

The system sequence constraints tensor. Of these potential sequences of capabilities, the system 
sequence constraints matrix Kρ serves to eliminate the infeasible pairs. The feasibility arises from five types of 
constraints: 

 I: PµPµ . Two transformation processes that follow each other must occur at the same transformation 
resource. m1 = m2.

 II: PµPη̄ . A refined transportation process that follows a transformation process must have an ori-
gin equivalent to the transformation resource at which the transformation process was executed. 
m1 − 1 = (u1 − 1)/σ (BS) where / indicates integer division.

 III: Pη̄Pµ . A refined transportation process that precedes a transformation process must have a destina-
tion equivalent to the transformation resource at which the transformation process was executed. 
m2 − 1 = (u1 − 1)%σ(BS) where % indicates the modulus.

 IV: Pη̄Pη̄ . A refined transportation process that follows another must have an origin equivalent to the desti-
nation of the other. (u1 − 1)%σ(BS) = (u2 − 1)/σ (BS)

 V: PP. The type of operand of one process must be equivalent to the type of output of another process. In 
other words, the ordered pair of processes Pw1

Pw2
 is feasible if and only if AP(w1,w2) = 1 where AP is 

the adjacency matrix that corresponds to a functional graph in which pairs of system processes are con-
nected.

In previous hetero-functional graph theory works, the system sequence constraints matrix Kρ was calculated 
straightforwardly using for FOR loops to loop over the indices χ1 and χ2 and checking the presence of the five 
feasibility constraints identified above.

Here, an alternate approach based upon tensors is provided for insight into the underlying mathematical 
structure. For convenience, Kρ = NOT(Kρ) captures the set of all feasibility conditions that pertain to valid 
sequences of system capabilities. This set requires that any of the first four constraints above and the last con-
straint be satisfied.

(29)Aρ = Jρ ⊖ Kρ

(30)Jρ = FM

(
Jρ , [1, 2], [3, 4]

)

(31)Kρ = FM

(
Kρ , [1, 2], [3, 4]

)

(32)Aρ = FM

(
Aρ , [1, 2], [3, 4]

)

(33)Jρ(w1, v1,w2, v2) = AS(w1, v1) · AS(w2, v2) ∀w1,w2 ∈ {1 . . . σ (P)}, v1, v2 ∈ {1 . . . σ (R)}

(34)Jρ(χ1,χ2) = AV
S (χ1) · A

V
S (χ2) ∀χ1,χ2 ∈ {1 . . . σ (R)σ (P)}

(35)Jρ = AV
S A

VT
S

(36)Jρ =
[
JS · K̄S

]V [
JS · K̄S

]VT

(37)Jρ = F
−1
M

(
Jρ , [σ(P), σ(R), σ(P), σ(R)], [1, 2], [3, 4]

)
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where ⊕ is Boolean addition (Definition 23) and KρI ,KρII ,KρIII ,KρIV ,KρV are the matrix implementations of 
the five types of feasibility constraints identified above. Their calculation is most readily achieved through their 
associated 4th-order tensors.

Type I Constraints: For the Type I constraint, KρI is constructed from a sum of 4th-order outer products 
(Online Appendix Defn. 32) of elementary basis vectors.

where the eni  notation places the value 1 on the ith element of a vector of length n. KρI is calculated straightfor-
wardly by matricizing both sides and evaluating the sums.

Type II Constraints: Similarly, for the Type II constraint:

Here, the Xσ(PH̄ )
y1  vector has a value of 1 wherever a refined transportation process pw2

 originates at the trans-
formation resource mv1 . Drawing on the discussion of the 3rd-order tensor JH̄ in “The system concept”, Xσ(PH̄ )

y1  , 
itself, is expressed as a vectorized sum of 3rd-order outer products.

KρII is then calculated straightforwardly by matricizing both sides of Eq. (42) and evaluating the sums.

Type III Constraints: Similarly, for the Type III constraint:

Here, the Xσ(PH̄ )
y2  vector has a value of 1 wherever a refined transportation process pw1

 terminates at the trans-
formation resource mv2 . X

σ(PH̄ )
y2  , itself, is expressed as a vectorized sum of 3rd-order outer products.

KρIII is then calculated straightforwardly by matricizing both sides of Eq. (46) and evaluating the sums.

Type IV Constraints: Similarly, for the Type IV constraint:

(38)Kρ =
(
KρI ⊕ KρII ⊕ KρIII ⊕ KρIV

)
· KρV

(39)KρI =

σ(Pµ)∑

w1=1

σ(M)∑

v1=1

σ(Pµ)∑

w2=1

v1∑

v2=v1

eσ(P)w1
◦ eσ(R)v1

◦ eσ(P)w2
◦ eσ(R)v2

(40)KρI =

σ(Pµ)∑

w1=1

σ(M)∑

v1=1

σ(Pµ)∑

w2=1

v1∑

v2=v1

(
eσ(R)v1

⊗ eσ(P)w1

)
⊗

(
eσ(R)v2

⊗ eσ(P)w2

)T

(41)KρI =

σ(M)∑

v1=1

(
eσ(R)v1

⊗
1
σ(Pµ)

0
σ(Pη̄ )

)(
eσ(R)v1

⊗
1
σ(Pµ)

σ(Pη̄ )

)T

(42)KρII =

σ(Pµ)∑

w1=1

σ(M)∑

v1=1

v1∑

y1=v1

σ(R)∑

v2=1

eσ(P)w1
◦ eσ(R)v1

◦
0
σ(Pµ)

X
σ(Pη̄ )
y1

◦ eσ(R)v2

(43)X
σ(PH̄ )
y1 =

σ(Pγ )∑

g=1

σ(BS)∑

y2=1

(
e
σ(Pγ )
g ◦ eσ(BS)y1

◦ eσ(BS)y2

)TV
=

(
1
σ(Pγ ) ⊗ eσ(BS)y1

⊗ 1
σ(BS)

)

(44)KρII =

σ(Pµ)∑

w1=1

σ(M)∑

v1=1

v1∑

y1=v1

σ(R)∑

v2=1

(
eσ(R)v1

⊗ eσ(P)w1

)
⊗

(
eσ(R)v2

⊗
0
σ(Pµ)

X
σ(PH̄ )
y1

)T

(45)KρII =

σ(M)∑

v1=1

(
eσ(R)v1

⊗
1
σ(Pµ)

0
Pη̄

)(
1
σ(R) ⊗

0
σ(Pµ)

1
σ(Pγ ) ⊗ e

σ(BS)
v1 ⊗ 1

σ(BS)

)T

(46)KρIII =

v2∑

y2=v2

σ(R)∑

v1=1

σ(Pµ)∑

w2=1

σ(M)∑

v2=1

0
σ(Pµ)

X
σ(Pη̄ )
y2

◦ eσ(R)v1
◦ eσ(P)w2

◦ eσ(R)v2

(47)X
σ(PH̄ )
y2 =

σ(Pγ )∑

g=1

σ(BS)∑

y1=1

(
e
σ(Pγ )
g ◦ eσ(BS)y1

◦ eσ(BS)y2

)TV
=

(
1
σ(Pγ ) ⊗ 1

σ(BS) ⊗ eσ(BS)y2

)

(48)K̄ρIII =

v2∑

y2=v2

σ(R)∑

v1=1

σ(Pµ)∑

w2=1

σ(M)∑

v2=1

(
eσ(R)v1

⊗

[
0
σ(Pµ)

X
σ(PH̄ )
y2

])
⊗

(
eσ(R)v2

⊗ eσ(P)w2

)T

(49)KρIII =

σ(M)∑

v2=1

(
1
σ(R) ⊗

[
0
σ(Pµ)

1
σ(Pγ ) ⊗ 1

σ(BS) ⊗ e
σ(BS)
v2

])(
eσ(R)v2

⊗

[
1
σ(Pµ)

0
Pη̄

])T
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KρIV is then calculated straightforwardly by matricizing both sides of Eq. (50) and evaluating the sums.

Type V Constraints: The Type V constraint must make use of the functional graph adjacency matrix AP . 
Consequently, the fourth-order tensor KρV is calculated first on a scalar basis using the Kronecker delta function 
δi (Online Appendix Defn. 30) and then is matricized to KρV.

Sequence‑dependent degrees of freedom. Once the system sequence knowledge base and constraints 
matrix have been calculated, the number of sequence-dependent degrees of freedom follow straightforwardly.

Definition 12 (Sequence-Dependent Degrees of Freedom13,108,117–119) The set of independent pairs of actions 
zχ1χ2 = ew1v1ew2v2 ∈ Z of length 2 that completely describe the system language. The number is given by:

For systems of substantial size, the size of the hetero-functional adjacency matrix may be challenging to pro-
cess computationally. However, the matrix is generally very sparse. Therefore, projection operators are used to 
eliminate the sparsity by projecting the matrix onto a one’s  vector108,119. This is demonstrated below for JVS  and Aρ:

where PS is a (non-unique) projection matrix for the vectorized system knowledge base and the hetero-functional 
adjacency  matrix108,119. Note that the number of sequence dependent degrees of freedom for the projected hetero-
functional adjacency matrix can be calculated as:

where ψ ∈ [1, . . . , σ(ES)].

Hetero‑functional incidence tensor
This section serves to introduce the hetero-functional incidence tensor as part of the paper’s original contribu-
tion. “Third order form” describes the tensor in third-order form. “Fourth order form” then elaborates why it 
sometimes useful to present this tensor in fourth-order form. Finally, “Second order form” shows how matricizing 
the heter-functional incidence tensor (into second-order form) can serve to reconstruct the hetero-functional 
adjacency matrix.

(50)KρIV =

σ(BS)∑

y2=1

σ(R)∑

v1=1

y2∑

y1=y2

σ(R)∑

v2=1

[
0
σ(Pµ)

X
σ(PH̄ )
y2

]
◦ eσ(R)v1

◦

[
0
σ(Pµ)

X
σ(PH̄ )
y1

]
◦ eσ(R)v2

(51)KρIV =

σ(BS)∑

y2=1

σ(R)∑

v1=1

y2∑

y1=y2

σ(R)∑

v2=1

(
eσ(R)v1

⊗

[
0
σ(Pµ)

X
σ(PH̄ )
y2

])
⊗

(
eσ(R)v2

⊗

[
0
σ(Pµ)

X
σ(PH̄ )
y1

])T

(52)KρIV =

σ(BS)∑

y2=1

(
1
σ(R) ⊗

[
0
σ(Pµ)

1
σ(Pγ ) ⊗ 1

σ(BS) ⊗ e
σ(BS)
y2

])(
1
σ(R) ⊗

[
0
σ(Pµ)

1
σ(Pγ ) ⊗ e

σ(BS)
y2 ⊗ 1

σ(BS)

])T

(53)KρV (w1, v1,w2, v2) = δv1v1 · δv2v2 · AP(w1,w2) ∀w1,w2 ∈ {1, . . . , σ(P)}, v1, v2 ∈ {1, . . . , σ(R)}

(54)KρV =

σ(R)∑

v1=1

σ(R)∑

v2=1

(
eσ(R)v1

⊗ eσ(R)Tv2

)
⊗ AP

(55)KρV =

(
1
σ(R) ⊗ 1

σ(R)T
)
⊗ AP

(56)DOFρ = σ(Z) =

σ(R)σ (P)∑

χ1

σ(R)σ (P)∑

χ2

[Jρ ⊖ Kρ ](χ1,χ2)

(57)=

σ(R)σ (P)∑

χ1

σ(R)σ (P)∑

χ2

[Aρ ](χ1,χ2)

(58)PSJ
V
S = 1

σ(ES)

(59)PSAρP
T
S = Ãρ

(60)DOFρ = σ(Z) =

σ(ES)∑

ψ1

σ(ES)∑

ψ2

[Ãρ ](ψ1,ψ2)
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Third order form. To complement the concept of a hetero-functional adjacency matrix Aρ and its associ-
ated tensor Aρ , the hetero-functional incidence tensor M̃ρ describes the structural relationships between the 
physical capabilities (i.e. structural degrees of freedom) ES , the system operands L, and the system buffers BS.

Definition 13 (The Negative 3rd Order Hetero-functional Incidence Tensor M̃−
ρ  ) The negative hetero-functional 

incidence tensor M̃ρ

−
∈ {0, 1}σ(L)×σ(BS)×σ(ES) is a third-order tensor whose element M̃−

ρ (i, y,ψ) = 1 when the 
system capability ǫψ ∈ ES pulls operand li ∈ L from buffer bsy ∈ BS.

Definition 14 (The Positive 3rd Order Hetero-functional Incidence Tensor M̃+
ρ  ) The positive hetero-functional 

incidence tensor M̃+
ρ ∈ {0, 1}σ(L)×σ(BS)×σ(ES) is a third-order tensor whose element M̃+

ρ (i, y,ψ) = 1 when the 
system capability ǫψ ∈ ES injects operand li ∈ L into buffer bsy ∈ BS.

The calculation of these two tensors depends on the definition of two more matrices which further depend 
on the hetero-functional graph theory definitions in Appendix C.

Definition 15 (The Negative Process-Operand Incidence Matrix M−
LP ) A binary incidence matrix 

M−
LP ∈ {0, 1}σ(L)×σ(P) whose element M−

LP(i,w) = 1 when the system process pw ∈ P pulls operand li ∈ L as an 
input. It is further decomposed into the negative transformation process-operand incidence matrix M−

LPµ
 (Defini-

tion 14) and the negative refined transformation process-operand incidence matrix M−
LPη̄

 (Definition 15) which by 
definition is in turn calculated from the negative holding process-operand incidence matrix M−

LPγ
 (Definition 16).

Definition 16 (The Positive Process-Operand Incidence Matrix M+
LP ) A binary incidence matrix 

M+
LP ∈ {0, 1}σ(L)×σ(P) whose element M+

LP(i,w) = 1 when the system process pw ∈ P injects operand li ∈ L as 
an output. It is further decomposed into the positive transformation process-operand incidence matrix M+

LPµ
 

(Definition 17) and the positive refined transformation process-operand incidence matrix M+
LPη̄

 (Definition 18) 
which, by definition, is, in turn, calculated from the positive holding process-operand incidence matrix M+

LPγ
 

(Definition 19)

With the definitions of these incidence matrices in place, the calculation of the negative and positive hetero-
functional incidence tensors M̃−

ρ  and M̃+
ρ  follows straightforwardly as a third-order outer product. For M̃−

ρ :

where

The X−
iy1

 matrix is equivalent in size to the system concept AS . It has a value of one in all elements where the 
associated process both withdraws input operand li and originates at the buffer bsy1 . Consequently, when X−

iy1
 is 

vectorized and then projected with PS , the result is a vector with a value of one only where the associated system 
capabilities meet these criteria.

For M̃+
ρ :

where

The X+
iy2

 matrix is equivalent in size to the system concept AS . It also has a value of one in all elements where 
the associated process both injects output operand li and terminates at the buffer bsy2 . Consequently, when X+

iy2
 is 

vectorized and then projected with PS , the result is a vector with a value of one only where the associated system 
capabilities meet these criteria.

(61)M̃ρ = M̃+
ρ − M̃−

ρ

(62)M−
LP =

[
M−

LPµ
M−

LPη̄

]
=

[
M−

LPµ
M−

LPγ
⊗ 1

σ(Pη)T
]

(63)M+
LP =

[
M+

LPµ
M+

LPη̄

]
=

[
M+

LPµ
M+

LPγ
⊗ 1

σ(Pη)T
]

(64)M̃−
ρ =

σ(L)∑

i=1

σ(BS)∑

y1=1

e
σ(L)
i ◦ eσ(BS)y1

◦ PS

((
X−
iy1

)V)

(65)X−
iy1

=


M−T

LPµ
e
σ(L)
i e

σ(M)T
y1 | 0

M−T
LPγ

e
σ(L)
i ⊗

�
e
σ(BS)
y1 ⊗ 1

σ(BS)
�
⊗ 1

σ(R)T




(66)M̃+
ρ =

σ(L)∑

i=1

σ(BS)∑

y2=1

e
σ(L)
i ◦ eσ(BS)y2

◦ PS

((
X+
iy2

)V)

(67)X+
iy2

=


M+T

LPµ
e
σ(L)
i e

σ(M)T
y2 | 0

M+T
LPγ

e
σ(L)
i ⊗

�
1
σ(BS) ⊗ e

σ(BS)
y2

�
⊗ 1

σ(R)T



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It is important to note that the definitions of the 3rd order hetero-functional incidence tensors M̃−
ρ  , and M̃+

ρ  
are provided in projected form as indicated by the presence of the projection operator PS in Eqs. (64) and (66) 
respectively. It is often useful to use the un-projected form of these tensors.

Fourth order form. The third dimension of these unprojected 3rd order hetero-functional incidence ten-
sors can then be split into two dimensions to create 4th order hetero-functional incidence tensors.

These fourth order tensors describe the structural relationships between the system processes P, the physical 
resources R that realize them, the system operands L that are consumed and injected in the process, and the 
system buffers BS from which these are operands are sent and the system buffers BS to which these operands are 
received. They are used in the following section as part of the discussion on layers.

Definition 17 (The Negative 4th Order Hetero-functional Incidence Tensor M−
PR ) The negative 4th Order hetero-

functional incidence tensor M−
PR ∈ {0, 1}σ(L)×σ(BS)×σ(P)×σ(R) has element M−

PR(i, y,w, v) = 1 when the system 
process pw ∈ P realized by resource rv ∈ R pulls operand li ∈ L from buffer bsy ∈ BS.

Definition 18 (The Positive 4th Order Hetero-functional Incidence Tensor M−
PR ) The positive 4th Order hetero-

functional incidence tensor M−
PR ∈ {0, 1}σ(L)×σ(BS)×σ(P)×σ(R) has element M−

PR(i, y,w, v) = 1 when the system 
process pw ∈ P realized by resource rv ∈ R injects operand li ∈ L into buffer bsy ∈ BS.

Furthermore, the negative and positive 4th hetero-functional incidence tensors can be used to demonstrate 
a direct relationship to the system concept AS.

Equations (74) and (76) show that the 4th order hetero-functional incidence tensors contain three types of 
information: 

(1) the mapping of system processes to system resources in the system concept AS,
(2) the mapping of processes to their operands in M−

LP and M+
LP,

(3) the implicit knowledge that by definition transformation processes occur at a stationary buffer, and that 
transportation processes are defined by their origin and destination buffers.

In other words, the hetero-functional incidence tensor is a complete descption of a system’s allocated architecture.
Second order form. Returning back to the third-order hetero-functional incidence tensor M̃ρ , it and and 
its positive and negative components M̃+

ρ , M̃
−
ρ  , can also be easily matricized.

(68)M−
ρ =
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The resulting matrices have a size of σ(L)σ (BS)× σ(ES ) which have a corresponding physical intuition. Each 
buffer bsy has σ(L) copies to reflect a place (i.e. bin) for each operand at that buffer. Each of these places then forms 
a bipartite graph with the system’s physical capabilities. Consequently, and as expected, the hetero-functional 
adajacency matrix Aρ can be calculated as a matrix product of the positive and negative hetero-functional inci-
dence matrices M+

ρ  and M+
ρ .

Such a product systematically enforces all five of the feasibility constraints identified in “Hetero-functional 
adjacency matrix”. Furthermore, the Boolean and real matrix products are interchangeable because each process 
is associated with exactly one origin-destination pair.

Discussion
Given the discussion on multi-layer networks in the introduction, it is worthwhile reconciling the gap in termi-
nology between multi-layer networks and hetero-functional graph theory. First, the concept of layers in hetero-
functional graphs is discussed. Second, an ontological comparison of layers in hetero-functional graphs and 
multi-layer networks is provided. Third, a discussion of network descriptors in the context of layers is provided. 
Given the “disparate terminology and the lack of consensus” in the multi-layer network literature, the discussion 
uses the multi-layer description provided De Dominico et.  al14.

Layers in hetero‑functional graphs. 

Definition 19 (Layer120) A layer G� = {ES�,ZS�} of a hetero-functional graph G = {ES,ZS} is a subset of a hetero-
functional graph, G� ⊆ G , for which a predefined layer selection (or classification) criterion applies. A set of 
layers in a hetero-functional graph adhere to a classification scheme composed of a number of selection criteria.

Note that this definition of a layer is particularly flexible because it depends on the nature of the classification 
scheme and its associated selection criteria. Nevertheless, and as discussed later, it is important to choose a 
classification scheme that leads to a set of mutually exclusive layers that are also collectively exhaustive of the 
hetero-functional graph as a whole.

To select out specific subsets of capabilities (or structural degrees of freedom), HFGT has used the concept 
of “selector matrices” of various  types7,121. Here a layer selector matrix is defined.

Definition 20 120 Layer Selector Matrix: A binary matrix �� of size σ(P)× σ(R) whose element ��(w, v) = 1 
when the capability ewv ⊂ ES�.

From this definition, the calculation of a hetero-functional graph layer follows straightforwardly. First, a layer 
projection operator P� is  calculated120:

Next, the negative and positive hetero-functional incidence tensors M̃−
ρ� and M̃+

ρ� for a given layer � are 
calculated  straightforwardly120.

From there, the positive and negative hetero-functional incidence tensors for a given layer can be matricized 
and the adjacency matrix of the associated layer Ãρ� follows  straightforwardly120.
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This approach of separating a hetero-functional graph into its constituent layers is quite generic because 
the layer selector matrix �� can admit a wide variety of classification schemes. Three classification schemes are 
discussed here: 

(1) An Input Operand Set Layer
(2) An Output Operand Set Layer
(3) A Dynamic Device Model Layer

Definition 21 Input Operand Set Layer: A hetero-functional graph layer for which all of the node-capabilities 
have a common set of input operands L� ⊆ L.

This definition of an Operand Set Layer was used in the HFGT  text7 to partition the Trimetrica test case (first 
mentioned in Fig. 1) into the multi-layer depiction in Fig. 4. In this classification scheme, any system contains 
up to 2 σ(L) possible layers. For completeness, an index �D ∈ {1, . . . , 2σ(L)} is used to denote a given layer. In real-
ity, however, the vast majority of physical systems exhibit far fewer than 2 σ(L) layers. Consequently, it is often 
useful to simply assign an index � to each layer and create a 1-1 mapping function (i.e. lookup table) f� back to 
the �D index.

The utility of the �d index (stated as a base 10 number) becomes apparent when it is converted into a binary 
(base 2) number �v ∈ {0, 1}σ(L) which may be used equivalently as a binary vector of the same length.

(87)f�:� → �D

Legend:

Degree of Freedom w/ operand 

Sequence-dependent Degree of Freedom

Degree of Freedom w/ operand 

Potable Water 
Topology

Water Topology

Topology

Charging Topology
Topology

Transportation Topology

Figure 4.  The trimetric smart city infrastructure test case visualized as five layers defined by input operand 
sets: the potable water topology, the electrified potable water topology, the electric power topology, the charging 
topology, and the transportation topology.
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The resulting binary vector �v has the useful property that �v(li) = 1 , iff operand li ∈ L� . Consequently, a 
given value of �v serves to select from L the operands that pertain to layer � . The associated layer selector matrix 
follows straightforwardly:

It is also worth noting that the layer selector matrix � above is effectively a third order tensor whose value 
�(�,w, v) = 1 when the capability ewv is part of layer �.

One advantage of a classification scheme based on sets of input operands is that they lead to the generation 
of a mutually exclusive and collectively exhaustive set of layers. Because no process (and consequently capabil-
ity) has two sets of input operands, it can only exist in a single layer (mutual exclusivity). In the meantime, the 
presence of 2σ(L) assures that all capabilities fall into (exactly) one layer (exhaustivity). It is worth noting that 
a classification scheme based on individual operands would not yield these properties. For example, a water 
pump consumes electricity and water as input operands. Consequently, it would have a problematic existence 
in both the “water layer” as well as the “electricity layer”. In contrast, a classification scheme based on operand 
sets creates an “electricity-water” layer.

Analogously to Definition 21, an output-operand set layer can be defined and its associated layer selector 
matrix calculated.

Definition 22 Output Operand Set Layer: A hetero-functional graph layer for which all of the node-capabilities 
have a common set of output operands L� ⊆ L.

The third classification scheme is required when developing dynamic equations of motion from the structural 
information of a hetero-functional  graph117,122. Every process is said to have a “dynamic device model” that is 
usually described as a set of differential, algebraic, or differential-algebraic  equations117,122. The simplest of these 
are the constitutive laws of basic dynamic system elements (e.g. resistors, capacitors, and inductors). Some pro-
cesses, although distinct, may have device models with the same functional form. For example, two resistors at 
different places in an electrical system have the same constitutive (Ohm’s) law, but have different transportation 
processes because their origin and destinations are different. Consequently, layers that distinguish on the basis 
of dynamic device model (i.e. constitutive law) are necessary.

Definition 23 Dynamic Device Model Layer: A hetero-functional graph layer for which all of the node-capa-
bilities have a dynamic device model with the same functional form.

In such a case, the layer selector matrix �� straightforwardly maps capabilities to their layer and dynamic 
device model interchangeably. A sufficient number of layers need to be created to account for all of the different 
types of dynamic device models in the system. This classification scheme may be viewed as a generalization of 
the well-known literature on “linear-graphs”123 and “bond graphs”124.

Finding commonality between multilayer networks and hetero‑functional graphs. The above 
discussion of layers in a hetero-functional graph inspires a comparison with multi-layer networks. The multi-
layer adjacency tensor ( AMLN ) defined by De Dominico et. al.14 is chosen to facilitate the discussion. This fourth 
order tensor has elements AMLN (α1,α2,β1,β2) where the indices α1,α2 denote “vertices” and β1,β2 denote 
“layers”. De Dominico et. al write that this multilayer adjacency tensor is  a14: “...very general object that can be 
used to represent a wealth of complicated relationships among nodes.” The challenge in reconciling the multi-layer 
adjacency tensor AMLN and the hetero-functional adjacency tensor Aρ is an ontological one. Referring back to 
the ontological discussion in the introduction and more specifically Fig. 2 reveals that the underlying abstract 
conceptual elements (in the mind) to which these two mathematical models refer may not be the same.

Consider the following interpretation of AMLN (α1,α2,β1,β2) = ABSl1(y1, y2, i1, i2) where the multi-layer 
network’s vertices are equated to the buffers BS and the layers are equated to the operands L. This interpretation 
would well describe the departure of an operand li1 from buffer bsy1 and arriving as li2 at bsy2 . The equivalence 
of vertices to buffers is effectively a consensus view in the literature. In contrast, the concept of a “layer” in a 
multi-layer network (as motivated in the introduction) remains relatively unclear. The equivalence of layers to 
operands warrants further attention.

Theorem 1 The mathematical model ABSl1 is neither lucid nor complete with respect to the system processes P (as 
an abstraction).

Proof By contradiction. Assume that ABSl1 is both lucid and complete network model with respect to system 
processes P. Consider an operand l1 that departs bs1 , undergoes process p1 , and arrives as l1 at bs2 . Now consider 
the same operand l1 that departs bs1 , undergoes process p2 , and arrives as l1 at bs2 . Both of these scenarios would 
be denoted by ABSl1(1, 2, 1, 1) = 1 . Consequently, this modeling element is overloaded and as such violates the 

(88)�v = bin(�D)

(89)��(w, v) =

{
1 if �v = M−

LP(:,w) ∀rv ∈ R
0 otherwise

(90)��(w, v) =

{
1 if �v = M+

LP(:,w) ∀rv ∈ R
0 otherwise
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ontological property of lucidity. Furthermore, because ABSl1 makes no mention of the concept of system pro-
cesses, then it violates the completeness property as well.   �

The counter-example provided in the proof above is not simply a theoretical abstraction but rather quite 
practical. For several decades, the field of mechanical engineering has used “linear graphs”123 to derive the equa-
tions of motion of dynamic systems with multi-domain physics. Consider the RLC circuit shown in Fig. 5 and 
its associated linear graph. As parallel elements, the inductor and capacitor both transfer electrical power (as an 
operand) between the same pair of nodes. However, the constitutive law (as a physical process) of a capacitor is 
distinct from that of the inductor. Consequently, the interpretation ABSl1 of a multi-layer network is inadequate 
even for this very simple counter-example (Although electric power systems and circuits have served as a rich 
application domain for graph theory and network science, these approaches usually parameterize the circuit 
components homogeneously as a fixed-value impedance/admittance at constant frequency. When the constant 
frequency assumption is relaxed, the diversity of constitutive laws for resistors, capacitors, and inductors must 
be explicitly considered.).

Another possible interpretation of a multi-layer network is AMLN (α1,α2,β1,β2) = ABSl2(y1, y2,w1,w2) where 
the multi-layer network’s vertices are equated to the buffers BS and the layers are equated to the processes P. 
This interpretation would well describe the execution of a process pw1

 that is realized by buffer bsy1 followed by a 
process pw2

 that is realized by buffer bsy2 . The equivalence of layers to processes warrants further attention as well.

Theorem 2 The mathematical model ABSl2 is neither lucid nor complete with respect to the system’s transportation 
resources H (as an abstraction).

Proof By contradiction. Assume that ABSl2 is both a lucid and complete network model with respect to system’s 
transportation resources H. Consider transportation process p between a buffer bs1 and a distinct buffer bs2 . If 
such a transportation process were realized by any buffer bs ∈ BS , then by definition it would no longer be a buffer 
but rather a transportation resource. Consequently, ABSl2 is not complete with respect the system’s transportation 
resources H. Now consider a process p1 that is realized by buffer bs1 followed by a process p2 that is realized by a 
distinct buffer bs2 . This is denoted by ABSl2(1, 2, 1, 2) = 1 . Given the distinctness of bs1 and bs2 , a transportation 
process must have happened in between p1 and p2 although it is not explicitly stated by the mathematical state-
ment ABSl2(1, 2, 1, 2) = 1 . Such a transportation process, although well-defined by its origin and destination could 
have been realized by any one of a number of transportation resources. Consequently, the modeling element 
is overloaded and as such violates the property of lucidity. The lack of an explicit description of transportation 
processes or resources limits the utility of this type of multi-layer network model.   �

It is worth noting that the first multi-layer network interpretation ABSl1 can be derived directly from the 
positive and negative hetero-functional incidence  matrices120.

When M−T
ρ  and M+

ρ  are multiplied so that the capabilities Es are the inner dimension, the result is an adja-
cency matrix that when tensorized becomes ABSl1 . In effect, ABSl1 (in matricized form) is the dual adjacency 
 matrix125 of the hetero-functional adjacency matrix Aρ . The presence of this matrix multiplication obfuscates (i.e. 
creates a lack of lucidity) as to whether one capability or another occurred when expressing the adjacency tensor 
element ABSl1(y1, y2, i1, i2) . In contrast, the matrix multiplication in Eq. (80) does not cause the same problem. 
When two capabilities succeed one another, the information associated with their physical feasibility in terms of 

(91)ABSL1(y1, y2, i1, i2) =
∨

ψ

M−
ρ (i, y1,ψ) ·M+

ρ (i, y2,ψ)

(92)ABSl1 = F
−1
M

(
M−T

ρ ⊙M+
ρ , [σ(BS), σ(BS), σ(L), σ(L)], [1, 3], [2, 4]

)
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L Cs(t)
+

-

Rs

s(t) L C

Figure 5.  A simple RLC circuit shown as a circuit diagram on left and as a linear graph model on right. Each 
resistor, capacitor and inductor can be said to be part of its own layer by virtue of their distinct constitutive laws.
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intermediate buffers and their functional feasibility in terms of intermediate operands remains intact. In other 
words, given the sequence of capabilities ew1v1ew2v2 , one can immediately deduce the exchanged operands in 
L� ⊆ L and the intermediate buffer bs . In the case of the exchanged operands, one simply needs to intersect the 
output-operand set of the first process with the input operand set of the second process. In the case of the inter-
mediate buffer, one checks if either or both of the resources are buffers. If not, then two transportation processes 
followed one another and the intermediate buffer is deduced by Appendix Eq. (3). In short, the hetero-functional 
adjacency matrix (or tensor) unambigously describes the sequence of two subject+verb+operand sentences 
whereas neither of the above interpretations of a multi-layer network do.
Network descriptors. In light of the commonalities and differences between hetero-functional graphs and 
(formal) multilayer networks, this section discusses the meaning of network descriptors in the context of hetero-
functional graphs. In this regard, the hetero-functional adjacency matrix is an adjacency matrix like any other. 
Consequently, network descriptors can be calculated straightforwardly. Furthermore, network descriptors can 
be applied to subsets of the graph so as to conduct a layer-by-layer analysis. Nevertheless, that the nodes in a 
hetero-functional graph represent whole-sentence-capabilities means that network descriptors have the poten-
tial to provide new found meanings over formal graphs based on exclusively formal elements.

Degree centrality. Degree centrality measures the number of edges attached to a vertex. Since a hetero-func-
tional graph is a directed graph, there is a need to distinguish between the in-degree centrality, which measures 
the number of edges going into vertex, and the out-degree centrality, which measures the number of edges going 
out of a  vertex100. In the context of hetero-functional graph theory, the in-degree centrality of a vertex calculates 
the number of capabilities that potentially proceed the capability related to the vertex. The out-degree central-
ity calculates the number of capabilities that potentially succeed the vertex’s capability. The higher the degree 
centrality of a capability, the more connected that capability is to the other capabilities in the hetero-functional 
graph. It is important to recognize that because transportation capabilities receive nodes in a hetero-functional 
graph, they can become the most central node. In contrast, the degree centrality of a formal graph could not 
reach such a conclusion because the function of transportation is tied to formal edges rather than formal nodes.

Closeness centrality. Closeness centrality measures the average shortest path from one vertex to every other 
reachable vertex in the graph. In a hetero-functional graph, the meaning of closeness centrality shows how a 
disruption has the potential to propagate through the graph across all different types of  operands100. This metric 
is especially valuable for the resilience studies of interdependent systems, where the propagation of disruption 
across multiple disciplines is often poorly understood.

Eigenvector centrality. Eigenvector centrality calculates the importance of a node relative to the other nodes in 
the  network126. It also includes the eigenvector centrality of the node’s direct  neighbors14. The eigenvector cen-
trality is specifically designed for the weighting of the in-degree of nodes in a directed network. The Katz central-
ity, on the other hand, provides an approach to study the relative importance of nodes based on the out-degree14.

Clustering coefficients. Clustering coefficients describe how strongly the nodes of a network cluster together. 
This is performed by searching for “triangles” or “circles” of nodes in a network. In a directed network, these 
circles can appear in multiple distinct combinations of directed connections. Each of these combinations 
needs to be measured and counted differently. Fagiolo discussed this taxonomy and accompanying clustering 
 coefficients127. These clustering coefficients for directed networks can be directly applied to hetero-functional 
graphs and show which capabilities are strongly clustered together. The definition of layers in hetero-functional 
graphs allows for a consistent definition and calculation of clustering coefficients within and across layers for dif-
ferent types of systems. When investigating a system, the clustering coefficient may show clusters of capabilities 
that were not yet recognized as heavily interdependent. Such information can be used to revise control structures 
such that clusters of capabilities are controlled by the same entity for efficiency.

Modularity. Modularity serves as a measure to study if a network can be decomposed in disjoint sets. In the 
hetero-functional graph theory literature, much has been published about modularity as it was a prime moti-
vation towards the inception of the  theory10,128. Hetero-functional graph theory introduces the concept of the 
Degree-of-Freedom-based Design Structure Matrix (or: the capability DSM) that does not only encompass the 
hetero-functional adjacency matrix, but extends the concept to the other elements of hetero-functional graph 
theory: the service model and the control model. The hetero-functional graph design structure matrix has the 
ability to visualize the couplings between the subsystems of an engineering system and to classify those inter-
faces. Note that the capability DSM can also be applied to just the hetero-functional adjacency matrix. Further-
more, the capability DSM applies to the concept of layers in a hetero-functional graph. To study the interfaces 
between layers, the capability DSM can adopt layers as subsystems and classify the interfaces between the lay-
ers as mentioned previously. In conclusion, hetero-functional graphs are described by flat adjacency matrices, 
regardless of the number of layers in the analysis. Consequently, conventional graph theoretic network descrip-
tors can be applied. The main difference in definition between the conventional graph theoretic application and 
the hetero-functional graph theoretic application is the result of the difference in the definition of the fundamen-
tal modeling elements, the nodes and edges, in a hetero-functional graph.
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Conclusions and future work
This paper has provided a tensor-based formulation of several of the most important parts of hetero-functional 
graph theory. More specifically, it discussed the system concept showing it as a generalization of formal graphs 
and multi-commodity networks. It also discussed the hetero-functional adjacency matrix and its tensor-based 
closed form calculation. It also discussed the hetero-functional incidence tensor and related it back to the 
hetero-functional adjacency matrix. The tensor-based formulation described in this work makes a stronger tie 
between HFGT and its ontological foundations in MBSE. Finally, the tensor-based formulation facilitates an 
understanding of the relationships between HFGT and multi-layer networks “despite its disparate terminology 
and lack of consensus”. In so doing, this tensor-based treatment is likely to advance Kivela et. al’s goal to discern 
the similarities and differences between these mathematical models in as precise a manner as possible.
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