
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14987  | https://doi.org/10.1038/s41598-022-19325-y

www.nature.com/scientificreports

Image copy‑move forgery 
detection and localization based 
on super‑BPD segmentation 
and DCNN
Qianwen Li1, Chengyou Wang1*, Xiao Zhou1 & Zhiliang Qin1,2

With the increasing importance of image information, image forgery seriously threatens the security 
of image content. Copy-move forgery detection (CMFD) is a greater challenge because its abnormality 
is smaller than other forgeries. To solve the problem that the detection results of the most image 
CMFD based on convolutional neural networks (CNN) have relatively low accuracy, an image copy-
move forgery detection and localization based on super boundary-to-pixel direction (super-BPD) 
segmentation and deep CNN (DCNN) is proposed: SD-Net. Firstly, the segmentation technology is 
used to enhance the connection between the same or similar image blocks, improving the detection 
accuracy. Secondly, DCNN is used to extract image features, replacing conventional hand-crafted 
features with automatic learning features. The feature pyramid is used to improve the robustness 
to the scaling attack. Thirdly, the image BPD information is used to optimize the edges of rough 
detected image and obtain final detected image. The experiments proved that the SD-Net could 
detect and locate multiple, rotated, and scaling forgery well, especially large-level scaling forgery. 
Compared with other methods, the SD-Net is more accurately located and robust to various post-
processing operations: brightness change, contrast adjustments, color reduction, image blurring, 
JPEG compression, and noise adding.

With the image editing software becoming prevalent, such as Adobe Photoshop and ACDSee Photo Editor, people 
alter the content of images arbitrarily and easily. This results in the authenticity and integrity of images being 
questioned1. The question is fatal in many critical fields, especially the fields depending on image content2. For 
example, tampered images in the judiciary may affect the judgment of judges, while tampered images in news 
may cause political conflict3.

Therefore, the image forensics technique, aiming at detecting and locating the forgery, has important research 
value4. Copy-move forgery detection (CMFD) is one of the passive forensics technique for copy-move forgery 
(CMF). CMF is a common and easy image forgery manner, which copies and pastes a region from an image to the 
same image5. However, the tampered region in CMF is from the image itself and has the similar characteristics to 
the whole image, leading to the difficulty of being recognized accurately. Therefore, CMFD is a challenging topic6.

In the current methods, the conventional CMFD based on keypoint or block needs to build hand-crafted fea-
tures and may limit one or some certain datasets. Therefore, the CMFD based on convolutional neural networks 
(CNN) is emerged, which could learn the features of suitable CMFD by itself. However, in the CMFD based on 
CNN, since the CNN loses details information easily, the accuracy of location results is lower, especially on edge.

To improve the accuracy, this paper proposes an image CMFD based on super boundary-to-pixel direction 
(super-BPD) segmentation and deep CNN (DCNN): SD-Net. To obtain suitable and global CMFD features, 
DCNN is used to extract image features, replacing conventional hand-crafted features with automatic learning. 
To improve the edge accuracy, a segmentation method, super-BPD, is used to extract image edge information. 
The proposed method SD-Net could more accurately detect and locate multiple, rotated, and scaling forgery 
well, especially large-level scaling forgery.
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Related works
Conventional CMFD methods mainly have two categories: block-based and keypoint-based. In block-based 
methods, the images are divided into many blocks, e.g. overlapping or non-overlapping, regular or irregular. 
The features of all blocks are extracted to represent the information, such as discrete cosine transform (DCT)7,8, 
singular value decomposition (SVD)9, histogram of oriented gradients (HOG)10, Zernike moment (ZM)11, local 
binary pattern (LBP)8, polar harmonic transform (PHT)1, etc. However, although the block-based methods can 
detect the tampered regions accurately, they have high computational complexities and low robustness to large-
level rotation and scaling.

To reduce the computational complexity of block-based CMFD methods, the keypoint-based methods are 
proposed, using features of key points to replace that of blocks. The main key features are scale invariant feature 
transform (SIFT)12, speed-up robust feature (SURF)1, Harris13, accelerated-KAZE (A-KAZE)14, oriented FAST 
and rotated BRIEF (ORB)15, fast retina keypoint (FREAK)16, etc. However, most keypoints extraction methods 
extract few key points in the smooth regions, resulting in some forgeries in the smooth regions being ignored 
easily.

With the application of CNN in computer vision, CNN is used in the image forensics field17. The classification 
function of CNN judges the image to reveal if the image is tampered with. Methods18–20 used CNN to detect splic-
ing, copy-move, and other forgery images by the abnormal traces of forgery, such as the inconsistent of noise and 
illumination direction in whole image. However, the abnormality of CMF is smaller than other forgeries, result-
ing in a poor effect on CMFD. Subsequently, methods which dedicated to detect CMFD appear. Methods21–23 
used CNN to detect similarity and judge whether the image has been tampered with in a copy-move manner.

After that, researchers modify the output of the last module seeking to achieve the purpose of pixel-level 
CMFD. BusterNet5 is the first CNN framework specifically for CMF and the first CMFD method that distin-
guishes the source/target forgery regions, though the accuracy of the distinguish module is only 12%. Then, 
Chen et al.24 changed the parallel detection branch in BusterNet to a serialized branch, improving the accuracy 
of distinguishing source/ target forgery regions to 39.9%. AR-Net17 improved the accuracy of the located forgery 
region from 49.26% to 50.09%, through modifying the Simi-Det branch of the BusterNet. However, it is still 
unable to resist noise and blurring attacks, which impacts the accuracy of the detection results.

In addition to using VGG networks, such as BusterNet5, later Generative Adversarial Networks (GAN)25, 
InceptionNet26 and DenseNet27 are also used for feature extraction. It can be seen that researchers have made 
many attempts in the CNN-based CMFD, hoping to further improve the generalization and robustness of the 
algorithm.

Therefore, in pixel-level aspect, the CNN-based CMFD method has a number of potentials to be improved in 
terms of accuracy, robustness, special forgery region, and distinguishing the source/target. The proposed method 
focuses on solving the problems of accuracy and robustness.

Proposed method: SD‑Net
This section presents the SD-Net in detail, which flow chart is given in Fig. 1a. The SD-Net is mainly divided 
into five parts: segmentation, feature extraction, matching, classification, and refinement modules. Moreover, 
Fig. 1b–d shows the detail framework of each module of the SD-Net.

Firstly, the SD-Net uses super-BPD segmentation technology to divide a forgery image into irregular blocks, 
obtaining the segmented features of the image. Due to the characteristic of copy-move forgery, the pasted region 
is very similar to the copied region, being divided under the same or similar type of blocks. Secondly, DCNN is 
used to extract image features, replacing conventional hand-crafted features with automatic learning features. 
The feature pyramid is used to improve the robustness to the scaling attack. Thirdly, the image features are fused 
with the segmented features, and obtain the correlation matrix by matching module. The correlation matrix is 
classified and discriminated through the CNN, and the repetitive regions in the image are found out. Finally, 
the rough forgery detection is optimized and finetuned with BPD edge information to obtain a more refined 
detection result.

Segmentation module.  In the conventional image CMFD method, methods based on the combination of 
block and keypoints have gradually become popular1,28. Feature matching in the same or similar image blocks 
can reduce the interference of irrelevant blocks and improve the matching efficiency. On this basis, SD-Net 
incorporates a semantic segmentation method based on image content. After the image is segmented, feature 
matching is performed concerning the segmentation image. It enhances the connection between the same or 
similar blocks, which include both copied and pasted regions, and improves the detection accuracy.

Through the super-BPD segmentation29, the image is segmented by using the BPD information of the image. 
The BPD information Dp is a two-dimensional unit vector and can be expressed as follows29:

where 
−→
Bpp is the vector pointing from the nearest boundary pixel Bp to each pixel p, and 

−−→
|Bpp| is their distance.

Compared with other segmentation, super-BPD improves the speed while achieving high accuracy. When 
providing high-precision detection results, it has a lower impact on the complexity for the SD-Net.

Figure 2 shows six examples of the super-BPD segmentation on the CoMoFoD30 datasets. The 1st row is the 
original images, the 2nd row is forgery images, the 3rd row is ground-truth forgery regions, and the 4th row is 
the segmentation results of the super-BPD.

The forgeries of 002_F, 038_F, 030_F, and 025_F, shown in Fig. 2a–d, respectively, occur in regular or irregular 
regions with multiple pasted. The segmentation results in Fig. 2 show the segmentation module of the SD-Net will 

(1)Dp =
−→
Bpp ·

−−→
|Bpp|,
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divide the copied and pasted regions into the same block. The forgeries of 012_F and 123_F, shown in Fig. 2e,f, 
respectively, occur in the regular region including irregular foreground and supplementary background. The 
segmentation results in Fig. 2e,f show the segmentation module of the SD-Net will divide the irregular foreground 
into the same or similar regions and divide the background into the same regions. Therefore, even in the case 
of irregular and multiple forgeries, the super-BPD segmentation method can still divide the copied and pasted 
regions into the same or similar blocks and achieve better performance.

Feature extraction module.  Conventional algorithms are more dedicated to hand-crafted features that 
are similar to the copied and pasted regions. At the same time, it also takes into account attacks such as rotation, 
scaling, and noise, and it is difficult to find an optimal feature descriptor. The emerging CNN methods can bet-
ter solve the problem by using big data to learn features suitable for image CMFD, and avoid the limitations of 
hand-crafted features as much as possible.

Figure 1.   Framework of the SD-Net: (a) overview, (b) feature extraction module, (c) matching and 
classification modules, and (d) refinement module.
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The SD-Net uses a DCNN to extract image features, and uses VGG1631 as the backbone network. Figure 1b 
shows the specific network framework of the feature extraction module.

The blue box in Fig. 1b, which denotes feature extraction, is that the VGG16 network removes the fully con-
nected layer to extract image features. The red box in Fig. 1b, which represents a pyramid structure, consists of 
the CNN shallow information and atrous spatial pyramid pooling (ASPP) layer32.

ASPP is used to extract the multi-scale features of the image and robust to scaling17 by considering differ-
ent object ratios. Figure 3 shows the feature in ASPP, on the image in CASIA II33 dataset, and the black box is 
the field in four 3× 3 atrous convolution. Figure 3a is the original image and field in atrous convolution, while 
Fig. 3b is the image scaled by 0.66 and field in atrous convolution. In Fig. 3, the 1st field in Fig. 3a is similar to 

Figure 2.   Segmentation results for super-BPD on six images in CoMoFoD30 datasets. 1st row: original images; 
2nd row: forgery images; 3rd row: ground-truth forgery regions; 4th row: segmentation results of the super-
BPD. (a) 002_F, (b) 038_F, (c) 030_F, (d) 025_F, (e) 012_F, and (f) 123_F.

Figure 3.   Feature in atrous spatial pyramid pooling (ASPP) on the image in CASIA II33 dataset: (a) original 
image and (b) image is scaled by 0.66.
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the 3rd in Fig. 3b. That means that there is similar feature in ASPP even though the image is large-level scaled, 
to detect the copy-move forgery. Therefore, the module improves detection accuracy and is capable of detecting 
large-level scaling forgery which conventional methods failed.

On the other hand, though the deep network increases the receptive field, it loses some local detailed infor-
mation when extracting the global information of the image. In BusterNet5, only the final output in the whole 
VGG network is used without considering the local information, which cannot meet the edge accuracy require-
ments in the forgery detection17. The SD-Net takes advantage of the regularity of VGG16 to consider the local 
information features in the shallow network outputs, and combines it with the ASPP layer, forming the feature 
pyramid structure.

Matching and classification module.  The auto-correlation matching module (the red box) and the clas-
sification discriminant module (the blue box) is shown in Fig. 1c. The essence of the matching stage in CMFD is 
judging the similarity of two feature vectors. The SD-Net uses the correlation matrix to measure the relationship 
between sample vectors.

The image features extracted from feature extraction module are merged with the segmentation image deliv-
ered by the segmentation module to obtain a feature matrix Mf  . The size of Mf  is [m× n, f ] , where the m× n is 
the image resolution and the f is the dimension of pixel feature.

The correlation matrix Mcor is obtained by follows:

where [·]T is the transposition operation. The size of Mcor is [m× n,m× n] , which representing the similarity 
between all features. The closer the similarity is to 1, the higher the similarity between the two features, and the 
greater the possibility of forgery in the region as described by the feature.

Furthermore, the dimension of the correlation matrix Mcor is changed to [m, n,m× n] , and then sort the 
third dimension in a descending order, intercepting the second to k-th feature after sorting features. The reason 
for discarding the first similarity feature is that the maximum similarity is between the feature and itself, and 
approaches infinitely close to 1, which is meaningless for finding the forgery region. Moreover, it will interfere 
with the subsequent judgment of the matching regions.

After obtaining the correlation matrix, the SD-Net judges whether there is a similar feature vector in the 
region rather than looking for a matching position. Cancellation of the mapping search process reduces the 
complexity of the SD-Net and has advantages in the case of multiple copy-move forgeries.

The blue box in Fig. 1c is the framework of the classification discrimination module. Based on the classifica-
tion function of the convolutional network, the obtained matching results, which are represented by image pixels, 
are distinguished whether it belongs to a forgery region.

Refinement module.  Due to the loss of detailed local information after deep convolution, the detected 
forgery region suffers from the loss of fine edges. Therefore, the SD-Net refines edge details, through fusing the 
edge information extracted from the super-BPD method and the rough detection image from the matching and 
classification module. The refinement network is shown in Fig. 1d.

The edge information, that is, the BPD information, is generated in the segmentation module. In the refine-
ment module, rough detected result is combined with the edge information, increase the weight of the edge in 
the detection result, and get the final detection result.

Firstly, extend the rough detection image and the edge information from 2-dimension to 128-dimension, 
obtaining deeper feature information. Then, four convolutional layers are used to learn the detection image 
edges. Through the BPD edge information, add or subtract the edge in rough detection image. Finally, the 1× 1 
convolutional layer is used to reduce the feature dimension and obtain the detection image.

Training details.  The training strategy of the SD-Net is mainly divided into the following two steps: 

(1)	 Use the PascalContext34 datasets to train the image segmentation module, to obtain a better segmentation 
effect29. Then freeze the trained segmentation module parameters to ensure that they do not participate in 
the second step of training.

(2)	 Use the USCISI5 train set (include 80,000 images) to train the image tampering detection branch, including 
feature extraction, auto-correlation matching, classification, and refinement modules to accurately classify 
the pixels in the forgery image into tampering or non-tampering classes.

Because image forgery detection is a binary classification problem, the binary cross entropy loss (BCELoss) LBCE 
is used for the training loss function, which is expressed as follows17:

where � is the image domain, yp ∈ {0, 1} represents the ground-truth for the pixel, while ŷp represents the pre-
dicted result of the SD-Net for the pixel.

(2)Mcor = Mf ·M
T
f ,

(3)LBCE = −
∑

p∈�

[yp · log(ŷp)+ (1− yp) · log(1− ŷp)]
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Experimental results and discussions
This section first introduces the datasets and evaluation metrics used in all experiments. Following that, a series 
of validation experiments are conducted to evaluate and discuss the performance of the SD-Net: ablation experi-
ments, robustness experiments, and compare the SD-Net with the state-of-the-art methods. Finally, complexity 
of the SD-Net is analysed.

The SD-Net is compared with the six state-of-the-art methods: conventional block-based35, conventional 
keypoint-based36, combined keypoint and block1, and CNN-based5,17,37 CMFD methods. Wu et al.37 detects 
forgery according to trace of manipulation, while BusterNet5 and AR-Net17 detect forgery according to similar-
ity regions. In BusterNet, the Simi-Det branch uses VGG16 to extract features, which is the basic framework in 
feature extraction of the SD-Net. In AR-Net, the ASPP module is used to extract multi-scale features, similar 
to the SD-Net.

All experiments in this paper are performed on a 64-bit win10 PC with the Intel Core i9-9960X CPU @ 
3.10GHz, 64GB RAM, and two parallel NVIDIA GeForce RTX 2080 Ti GPUs.

Datasets and evaluation metrics.  To test generalization, USCISI test set (include 20,000 images)5, 
CoMoFoD (include 5000 images)30, and the copy-move forgery images in CASIA II (include 1313 images)33, a 
total of 26,313 images, are used for testing the SD-Net.

In CMFD methods, the precision p, recall r, and F score metrics are commonly used to evaluate the perfor-
mance of methods and are defined as follows1:

where NTP is the number of pixels that predict tampered pixels as tampered pixels; NFP is the number of pix-
els that predict original pixels as tampered pixels; NFN is the number of pixels that predict tampered pixels as 
original pixels.

The three metrics are used to evaluate the performance of the SD-Net and other methods. If the precision p, 
recall r, and F are larger, it means that the image CMFD algorithm locates the repeated regions more accurately. 
If the precision p is low, it means that the detected tampered region is smaller than correct; if the recall r is low, 
it means that the detected tampered region is larger than correct; the F score comprehensively considers the 
precision and recall, which can fully reflect the performance of the detection methods.

Validation of the SD‑net.  To validate the SD-Net, the ablation experiments and robustness experiments 
are conducted to compare the SD-Net with the state-of-the-art methods, and then analyse complexity of the 
SD-Net.

Ablation experiment.  To prove the effectiveness of the component frameworks in the SD-Net, such as segmen-
tation and optimization, the ablation experiments were carried out for each component.

In ablation experiments, the SD-Net are tested on the USCISI5 test set. Table 1 shows the detection results 
of the ablation experiments on the USCISI5 test set. Moreover, in Table 1, “Base-Refine” means the framework 
with only the refinement module, “Base-Segment” means the framework with only the segmentation module, 
and “Base-Segment-Refine” means the framework with the segmentation and refinement modules, which is the 
SD-Net.

From Table 1, the p of Base-Segment-Refine is higher 0.13 and 0.16 than that of Base-Refine and Base-
Segment, respectively. the F of Base-Segment-Refine is higher 0.07 and 0.11 than that of Base-Refine and Base-
Segment, respectively. It means that the refinement and segmentation modules improve the detected results, 
especially the precision p. The r of Base-Segment-Refine is lower 0.04 than that of Base-Refine. The reason is that 
the segmentation module enhances the connection between the same blocks, and may bring some false matching 
whose spatial distance is too short. For the purpose of clarity, detection results of the SD-Net on six copy-move 
forgery images in USCISI5 are shown in Fig. 4.

It can be seen from the difference between Fig. 4d,f that the segmentation module can improve the detection 
accuracy and reduce ghosting. It can be seen from the difference between Fig. 4e,f that the refinement module 
can refine edge.

In Fig. 4, the tampered regions are occurred rotation-only (the 1st row), scaling-only (the 2nd row), rotation 
and large-level scaling (the 3rd row), and large-level scaling-only (the 4th row). Figure 4 shows the SD-Net can 
handle rotation and scaling well, especially large-level scaling, owing to the multi-scale features extracted by the 
ASPP module. However, the 3rd row in Fig. 4 shows that the SD-Net detects the small tampered regions, which, 
however, do not have sufficiently refined edges, an effect which needs to be improved in the future.

(4)p =
NTP

NTP + NFP
, r =

NTP

NTP + NFN
, F = 2 ·

p · r

p+ r
,

Table 1.   Results of the ablation experiments for the SD-Net.

Methods p r F

Base-refine 0.78 0.92 0.82

Base-segment 0.75 0.85 0.78

Base-segment-refine 0.91 0.88 0.89
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Robustness experiment.  To test the robustness of the SD-Net, the experiment is conducted on CoMoFoD30 
datasets, which include forgery images with six post-processing operations: brightness change, contrast adjust-
ments, color reduction, image blurring, JPEG compression, and noise adding. Details of the six post-processing 
operations can be found in CoMoFoD30.

In robustness experiments, the SD-Net are trained on USCISI5 train set and tested on CoMoFoD30 datasets. 
Figure 5 shows the F average of the SD-Net and other CMFD methods under six post-processing operations 
in CoMoFoD30. Meanwhile, the robustness of the SD-Net is compared with the four state-of-the-art methods.

From Fig. 5, the robustness of the SD-Net is better than that of other methods, especially the robustness to 
image blurring, JPEG compression, and noise adding post-processing operations. The F of detection results of 
the SD-Net is similar to that of BusterNet5, due to the similar CNN basic framework in feature extraction. The F 
of detection results of the SD-Net is better than that of the conventional hand-crafted features35,36, because these 
hand-crafted features are affected by attacks relatively large. The F of detection results of Wu et al.37 is the worst 
since the trace of manipulation is affected by post-processing operation easily.

Comparison with the state‑of‑the‑art methods.  To evaluate and discuss the performance of the SD-Net, the com-
parison experiments are conducted on CoMoFoD30 and CASIA II33 datasets, which is also used in BusterNet5 
and AR-Net17.

In robustness experiments, the SD-Net are trained on USCISI5 train set and tested on CoMoFoD30 and CASIA 
II33 datasets. Table 2 shows the detection results comparison in terms of average p, r, and F between the SD-Net 
and other six methods on CoMoFoD30 and CASIA II33 datasets. The p, r, and F of the compared methods are 
derived from AR-Net17 and the bold values denote the greatest performance in the six methods.

From Table 2, the SD-Net achieves better performance as compared with conventional methods1,35,36, since the 
hand-crafted features in conventional methods are more suitable for a specific datasets which they are designed 
for. The SD-Net performs significantly better than Wu et al.37, due to the trace of manipulation is what copy-
move forgery is difficult to detect. The SD-Net shows a remarkable gain over BusterNet5 and AR-Net17, due to 
the segmentation and edge refinement modules. However, the p of detection results of AR-Net17 on CASIA II33 
datasets is higher than that of the SD-Net, bacause the AR-Net detection results are smaller than ground-truth 
tampered regions.

To observe the subjective effect, the detection results of the SD-Net on ten copy-move forgery images in 
CoMoFoD30 and CASIA II33 datasets are shown in Fig. 6. The 1st to 4th rows images are from CoMoFoD30 
datasets and the 5th to 10th rows images are from CASIA II33 datasets.

Figure 4.   Detection results of the SD-Net on six copy-move forgery images in USCISI5 datasets: (a) original 
images, (b) forgery images, (c) ground-truth tampered regions, (d) detection results of Base-Refine, (e) 
detection results of Base-Segment, and (f) detection results of the SD-Net.
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The 1st and 2nd rows in Fig. 6 show that the forgery occurring in single and multiple regions could be detected 
well. However, the 3rd and 4th rows in Fig. 6 show that the SD-Net detects only the object without background 
when the forgery occurred in obvious objects with a part of the background.

The 5th and 6th rows in Fig. 6 show the SD-Net detects forgery well, except the forgery occurred in very 
narrow edges. The reason is that the deep convolution network will discard some details and the segmentation 
module will weak the matching in block edges. The 7th and 8th rows in Fig. 6 show the large-level scaling for-
gery could be detected well, due to the ASPP module. The 9th and 10th rows in Fig. 6 show that the forgery in 
multiple regions could be detected, but the detection results have some shadows from similar backgrounds and 
could ignore narrow edges.

Compared with other methods, such as BusterNet5 and AR-Net17, the detection images of SD-Net are more 
accurate, but there are background shadow, which need to be improved in the future.

Complexity analysis.  To measure the effectiveness of the SD-Net, complexity analysis is conducted, including 
time complexity and space complexity. Because the training strategy of the SD-Net is divided into two steps, the 
complexity analysis is obtained by adding the two steps.

Figure 5.   The F average of the SD-Net and other CMFD methods under six post-processing: (a) brightness 
change, (b) contrast adjustments, (c) color reduction, (d) image blurring, (e) JPEG compression, and (f) noise 
adding.

Table 2.   Detection results compison in terms of average p, r, and F (%) between the SD-Net and other 
methods on CoMoFoD30 and CASIA II33 datasets. Maximum values are in bold.

Methods

CoMoFoD30 CASIA II33

p r F p r F

Conventional

Ryu et al.35 45.78 34.35 37.37 22.71 13.36 16.40

Cozzolino et al.36 39.92 47.61 41.83 24.92 26.81 25.43

Wang et al.1 49.09 57.45 46.44 30.64 31.23 31.08

CNN-based

Wu et al.37 36.29 40.41 31.13 23.97 13.79 14.64

BusterNet5 57.34 49.39 49.26 55.71 43.83 45.56

AR-Net17 54.21 46.55 50.09 58.32 37.33 45.52

SD-Net 59.11 57.69 50.77 57.48 51.25 48.06
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Figure 6.   Detection results of the SD-Net on CoMoFoD30 and CASIA II33 datasets: (a) original images, (b) 
forgery images, (c) ground-truth tampered regions, (d) detection results of Base-Refine, (e) detection results of 
Base-Segment, and (f) detection results of the SD-Net.
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The time complexity is represented by the number of floating-point operations (FLOPs) and calculated as 
follows:

where d is the number of convolutional layers, Ml , Kl , and Cl are the output feature map size, kernel size, and 
number of channels of the l-th layer convolution, respectively. The number of FLOPs of the SD-Net can be 
divided into the sum of the Step (1) and Step (2). When the input image is 512× 512× 3 , the time complexity 
of the SD-Net is shown in Table 3.

Space complexity, that is, the size of the memory consumption, including the training parameters and the 
output feature map size of each layer, and could be calculated as follows:

The memory consumption of the SD-Net can be divided into the sum of the Step (1) and Step (2). When the 
input image is 512× 512× 3 , the space complexity of the SD-Net is shown in Table 3.

In Table 3, the complexity of the SD-Net is compared with BusterNet5. The Step (2) of the SD-Net does not 
divide the source/target regions for tamper detection, so the time and space complexity of the Step (2) are lower 
than those of BusterNet5. However, since the SD-Net contains a Super-BPD segmentation module (Step (1)), 
which re-extracts edge information in the tampered image, which greatly increases the number of operations 
and memory consumption, the complexity of the SD-Net is higher than that of BusterNet5.

Conclusions
SD-Net is proposed to solve the problem that the detection results of the most CNN-based CMFD methods have 
relatively low accuracy. The super-BPD segmentation technology is used to improve edge detection accuracy. The 
DCNN is used to improve method robustness. The experiments show that SD-Net is more accurately located in 
edge and robust, especially large-level scaling forgery. However, the SD-Net introduced the segmentation module 
and dual-branch structure, resulting in the method being more complex. The method that reduce complexity 
while ensuring accuracy is need be investigated in the future. Moreover, detecting forgery with similar but real 
regions also requires deep exploration.

Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository, [https://
github.com/lalalalqw/SD-Net]. The datasets used and/or analysed during the current study available from the 
corresponding author on reasonable request.

Received: 9 November 2021; Accepted: 26 August 2022

References
	 1.	 Wang, C., Zhang, Z., Li, Q. & Zhou, X. An image copy-move forgery detection method based on SURF and PCET. IEEE Access 7, 

170032–170047. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29553​08 (2019).
	 2.	 Kataoka, T. & Nihei, Y. Quantification of floating riverine macro-debris transport using an image processing approach. Sci. Rep. 

10. https://​doi.​org/​10.​1038/​s41598-​020-​59201-1 (2020).
	 3.	 Zheng, L., Zhang, Y. & Thing, V. L. A survey on image tampering and its detection in real-world photos. J. Vis. Commun. Image 

Represent. 58, 380–399. https://​doi.​org/​10.​1016/j.​jvcir.​2018.​12.​022 (2019).
	 4.	 Rahul, T. & Rajesh, R. Recent advances in digital image manipulation detection techniques: A brief review. Forensic Sci. Int. 312, 

110311. https://​doi.​org/​10.​1016/j.​forsc​iint.​2020.​110311 (2020).
	 5.	 Wu, Y., Abd-Almageed, W. & Natarajan, P. BusterNet: Detecting copy-move image forgery with source/target localization. In 15th 

European Conference on Computer Vision, vol. 11210, 170–186, https://​doi.​org/​10.​1007/​978-3-​030-​01231-1_​11 (Munich, Germany, 
2018).

	 6.	 Teerakanok, S. & Uehara, T. Copy-move forgery detection: A state-of-the-art technical review and analysis. IEEE Access 7, 40550–
40568. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29073​16 (2019).

	 7.	 Vega, E. A. A., Fernández, E. G., Orozco, A. L. S. & Villalba, L. J. G. Copy-move forgery detection technique based on discrete 
cosine transform blocks features. Neural Comput. Appl. 33, 4713–4727. https://​doi.​org/​10.​1007/​s00521-​020-​05433-1 (2021).

	 8.	 Islam, M. M., Karmakar, G., Kamruzzaman, J. & Murshed, M. A robust forgery detection method for copy-move and splicing 
attacks in images. Electronics 9, 1500. https://​doi.​org/​10.​3390/​elect​ronic​s9091​500 (2020).

(5)Time ∼ O

(

d
∑

l=1

M2
l · K

2
l · Cl−1 · Cl

)

,

(6)Space ∼ O

(

d
∑

l=1

K2
l · Cl−1 · Cl +

d
∑

l=1

M2
l · Cl

)

,

Table 3.   The complexity comparison between the SD-Net and BusterNet5.

Complexity

SD-Net

BusterNet5Step (1) Step (2) Total

Number of operations (G) 1450 97.47 1547.47 146.66

Amount of training parameters (M) 28.01 18.32 46.33 15.30

Memory consumption (MB) 4320.41 827.48 5147.89 2515.92

https://doi.org/10.1109/ACCESS.2019.2955308
https://doi.org/10.1038/s41598-020-59201-1
https://doi.org/10.1016/j.jvcir.2018.12.022
https://doi.org/10.1016/j.forsciint.2020.110311
https://doi.org/10.1007/978-3-030-01231-1_11
https://doi.org/10.1109/ACCESS.2019.2907316
https://doi.org/10.1007/s00521-020-05433-1
https://doi.org/10.3390/electronics9091500


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14987  | https://doi.org/10.1038/s41598-022-19325-y

www.nature.com/scientificreports/

	 9.	 Wang, Y., Kang, X. & Chen, Y. Robust and accurate detection of image copy-move forgery using PCET-SVD and histogram of 
block similarity measures. J. Inf. Secur. Appl. 54, 102536. https://​doi.​org/​10.​1016/j.​jisa.​2020.​102536 (2020).

	10.	 Dixit, A. & Bag, S. Utilization of edge operators for localization of copy-move image forgery using WLD-HOG features with con-
nected component labeling. Multimed. Tools Appl. 79, 26061–26097. https://​doi.​org/​10.​1007/​s11042-​020-​09230-9 (2020).

	11.	 Ouyang, J., Liu, Y. & Liao, M. Robust copy-move forgery detection method using pyramid model and Zernike moments. Multimed. 
Tools Appl. 78, 10207–10225. https://​doi.​org/​10.​1007/​s11042-​018-​6605-1 (2019).

	12.	 Chen, H., Yang, X. & Lyu, Y. Copy-move forgery detection based on keypoint clustering and similar neighborhood search algorithm. 
IEEE Access 8, 36863–36875. https://​doi.​org/​10.​1109/​ACCESS.​2020.​29748​04 (2020).

	13.	 Rathi, K. & Singh, P. Copy-move forgery detection by using key-point-based Harris features and CLA clustering. In New Approaches 
for Multidimensional Signal Processing. International Workshop, 113–124. https://​doi.​org/​10.​1007/​978-​981-​33-​4676-5_8 (Sofia, 
Bulgaria, 2020).

	14.	 Dixit, A. & Bag, S. Composite attacks-based copy-move image forgery detection using AKAZE and FAST with automatic contrast 
thresholding. IET Image Proc. 14, 4528–4542. https://​doi.​org/​10.​1049/​iet-​ipr.​2020.​1118 (2020).

	15.	 Zhao, X., Lihua, T. & Chen, L. Passive image copy-move forgery detection based on ORB features. In Recent Developments in Intel‑
ligent Computing, Communication and Devices, 312–317. https://​doi.​org/​10.​1007/​978-​981-​15-​5887-0_​45 (Xi’an, China, 2019).

	16.	 Diwan, A., Sharma, R., Roy, A. K. & Mitra, S. K. Keypoint based comprehensive copy-move forgery detection. IET Image Proc. 15, 
1298–1309. https://​doi.​org/​10.​1049/​ipr2.​12105 (2021).

	17.	 Zhu, Y., Chen, C., Yan, G., Guo, Y. & Dong, Y. AR-Net: Adaptive attention and residual refinement network for copy-move forgery 
detection. IEEE Trans. Industr. Inf. 16, 6714–6723. https://​doi.​org/​10.​1109/​TII.​2020.​29827​05 (2020).

	18.	 Xu, D., Shen, X., Lyu, Y., Du, X. & Feng, F. MC-Net: Learning mutually-complementary features for image manipulation localiza-
tion. Int. J. Intell. Syst.https://​doi.​org/​10.​1002/​int.​22826 (2022).

	19.	 Wu, Y., Abdalmageed, W. & Natarajan, P. Mantra-net: Manipulation tracing network for detection and localization of image 
forgeries with anomalous features. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9535–9544. https://​doi.​
org/​10.​1109/​CVPR.​2019.​00977 (Long Beach, CA, USA, 2019).

	20.	 Bappy, J. H., Simons, C., Nataraj, L., Manjunath, B. S. & Roy-Chowdhury, A. K. Hybrid LSTM and encoder-decoder architecture 
for detection of image forgeries. IEEE Trans. Image Process. 28, 3286–3300. https://​doi.​org/​10.​1109/​TIP.​2019.​28954​66 (2019).

	21.	 Elaskily, M. A., Alkinani, M. H., Sedik, A. & Dessouky, M. M. Deep learning based algorithm (ConvLSTM) for copy move forgery 
detection. J. Intell. Fuzzy Syst. 40, 4385–4405. https://​doi.​org/​10.​3233/​JIFS-​201192 (2021).

	22.	 Goel, N., Kaur, S. & Bala, R. Dual branch convolutional neural network for copy move forgery detection. IET Image Proc. 15, 
656–665. https://​doi.​org/​10.​1049/​ipr2.​12051 (2021).

	23.	 Mayer, O. & Stamm, M. C. Forensic similarity for digital images. IEEE Trans. Inf. Forensics Secur. 15, 1331–1346. https://​doi.​org/​
10.​1109/​TIFS.​2019.​29245​52 (2020).

	24.	 Chen, B., Tan, W., Coatrieux, G., Zheng, Y. & Shi, Y.-Q. A serial image copy-move forgery localization scheme with source/target 
distinguishment. IEEE Trans. Multimed. 23, 3506–3517. https://​doi.​org/​10.​1109/​TMM.​2020.​30268​68 (2021).

	25.	 Islam, A., Long, C., Basharat, A. & Hoogs, A. DOA-GAN: Dual-order attentive generative adversarial network for image copy-move 
forgery detection and localization. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4675–4684. 
https://​doi.​org/​10.​1109/​CVPR4​2600.​2020.​00473 (2020).

	26.	 Kafali, E., Vretos, N., Semertzidis, T. & Daras, P. RobusterNet: Improving copy-move forgery detection with Volterra-based con-
volutions. In 2020 25th International Conference on Pattern Recognition (ICPR), 1160–1165. https://​doi.​org/​10.​1109/​ICPR4​8806.​
2021.​94125​87 (2021).

	27.	 Zhong, J.-L. & Pun, C.-M. An end-to-end Dense-InceptionNet for image copy-move forgery detection. IEEE Trans. Inf. Forensics 
Secur. 15, 2134–2146. https://​doi.​org/​10.​1109/​TIFS.​2019.​29576​93 (2020).

	28.	 Bi, X., Pun, C. & Yuan, X. Multi-scale feature extraction and adaptive matching for copy-move forgery detection. Multimed. Tools 
Appl. 77, 363–385. https://​doi.​org/​10.​1007/​s11042-​016-​4276-3 (2018).

	29.	 Wan, J., Liu, Y., Wei, D., Bai, X. & Xu, Y. Super-BPD: Super boundary-to-pixel direction for fast image segmentation. In IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 9250–9259. https://​doi.​org/​10.​1109/​CVPR4​2600.​2020.​00927 (Seattle, WA, 
USA, 2020).

	30.	 Tralic, D., Zupancic, I., Grgic, S. & Grgic, M. CoMoFoD - New database for copy-move forgery detection. In 55th International 
Symposium Electronics in Marine, 49–54 (Zadar, Croatia, 2013).

	31.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference 
on Learning Representations, 1–14 (San Diego, CA, USA, 2015).

	32.	 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. DeepLab: Semantic image segmentation with seep convo-
lutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848. https://​doi.​org/​
10.​1109/​TPAMI.​2017.​26991​84 (2018).

	33.	 Dong, J., Wang, W. & Tan, T. CASIA image tampering detection evaluation database. In IEEE China Summit and International 
Conference on Signal and Information Processing, 422–426. https://​doi.​org/​10.​1109/​China​SIP.​2013.​66253​74 (Beijing, China, 2013).

	34.	 Mottaghi, R. et al. The role of context for object detection and semantic segmentation in the wild. In IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 891–898. https://​doi.​org/​10.​1109/​CVPR.​2014.​119 (Columbus, OH, USA, 2014).

	35.	 Ryu, S.-J., Lee, M.-J. & Lee, H.-K. Detection of copy-rotate-move forgery using Zernike moments. In 12th Information Hiding 
Conference, vol. 6387, 51–65. https://​doi.​org/​10.​1007/​978-3-​642-​16435-4_5 (Calgary, Canada, 2010).

	36.	 Cozzolino, D., Poggi, G. & Verdoliva, L. Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10, 
2284–2297. https://​doi.​org/​10.​1109/​TIFS.​2015.​24553​34 (2015).

	37.	 Wu, Y., Abd-Almageed, W. & Natarajan, P. Deep matching and validation network: An end-to-end solution to constrained image 
splicing localization and detection. In 25th ACM International Conference on Multimedia. 1480–1588, https://​doi.​org/​10.​1145/​
31232​66.​31234​11 (Mountain View, CA, USA, 2017).

Acknowledgements
This work was supported in part by the Shandong Provincial Natural Science Foundation (Nos. ZR2021MF060, 
ZR2017MF020), in part by the Joint Fund of Shandong Provincial Natural Science Foundation (No. 
ZR2021LZH003), in part by the National Natural Science Foundation of China (No. 61702303), in part by the 
Education and Teaching Reform Research Project of Shandong University, Weihai (No. Y2021054), in part by 
the Science and Technology Development Plan Project of Weihai Municipality in 2020, and in part by the 16th 
Student Research Training Program (SRTP) at Shandong University, Weihai (No. A21243).

Author contributions
 Q.L.: conceptualization, methodology, software, writing—original draft. C.W.: writing—review and editing, 
investigation, supervision, resources. X.Z.: writing—review and editing, supervision. Z.Q.: writing—review and 
editing, supervision.

https://doi.org/10.1016/j.jisa.2020.102536
https://doi.org/10.1007/s11042-020-09230-9
https://doi.org/10.1007/s11042-018-6605-1
https://doi.org/10.1109/ACCESS.2020.2974804
https://doi.org/10.1007/978-981-33-4676-5_8
https://doi.org/10.1049/iet-ipr.2020.1118
https://doi.org/10.1007/978-981-15-5887-0_45
https://doi.org/10.1049/ipr2.12105
https://doi.org/10.1109/TII.2020.2982705
https://doi.org/10.1002/int.22826
https://doi.org/10.1109/CVPR.2019.00977
https://doi.org/10.1109/CVPR.2019.00977
https://doi.org/10.1109/TIP.2019.2895466
https://doi.org/10.3233/JIFS-201192
https://doi.org/10.1049/ipr2.12051
https://doi.org/10.1109/TIFS.2019.2924552
https://doi.org/10.1109/TIFS.2019.2924552
https://doi.org/10.1109/TMM.2020.3026868
https://doi.org/10.1109/CVPR42600.2020.00473
https://doi.org/10.1109/ICPR48806.2021.9412587
https://doi.org/10.1109/ICPR48806.2021.9412587
https://doi.org/10.1109/TIFS.2019.2957693
https://doi.org/10.1007/s11042-016-4276-3
https://doi.org/10.1109/CVPR42600.2020.00927
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/ChinaSIP.2013.6625374
https://doi.org/10.1109/CVPR.2014.119
https://doi.org/10.1007/978-3-642-16435-4_5
https://doi.org/10.1109/TIFS.2015.2455334
https://doi.org/10.1145/3123266.3123411
https://doi.org/10.1145/3123266.3123411


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14987  | https://doi.org/10.1038/s41598-022-19325-y

www.nature.com/scientificreports/

 Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Image copy-move forgery detection and localization based on super-BPD segmentation and DCNN
	Related works
	Proposed method: SD-Net
	Segmentation module. 
	Feature extraction module. 
	Matching and classification module. 
	Refinement module. 
	Training details. 

	Experimental results and discussions
	Datasets and evaluation metrics. 
	Validation of the SD-net. 
	Ablation experiment. 
	Robustness experiment. 
	Comparison with the state-of-the-art methods. 
	Complexity analysis. 


	Conclusions
	References
	Acknowledgements


