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A new human‑based metahurestic 
optimization method based 
on mimicking cooking training
Eva Trojovská* & Mohammad Dehghani

Metaheuristic algorithms have a wide range of applications in handling optimization problems. In 
this study, a new metaheuristic algorithm, called the chef‑based optimization algorithm (CBOA), 
is developed. The fundamental inspiration employed in CBOA design is the process of learning 
cooking skills in training courses. The stages of the cooking training process in various phases are 
mathematically modeled with the aim of increasing the ability of global search in exploration and 
the ability of local search in exploitation. A collection of 52 standard objective functions is utilized 
to assess the CBOA’s performance in addressing optimization issues. The optimization results show 
that the CBOA is capable of providing acceptable solutions by creating a balance between exploration 
and exploitation and is highly efficient in the treatment of optimization problems. In addition, the 
CBOA’s effectiveness in dealing with real‑world applications is tested on four engineering problems. 
Twelve well‑known metaheuristic algorithms have been selected for comparison with the CBOA. The 
simulation results show that CBOA performs much better than competing algorithms and is more 
effective in solving optimization problems.

The technique of finding the best feasible solution among all existing ones is known as optimization. Optimiza-
tion is used in designing and maintaining many engineering, economic, and even social systems to minimize 
the necessary costs or maximize profits. Due to the wide application of optimization in different sciences, this 
topic has grown a lot, so it is studied in management, mathematics, industry, and many branches of  science1. If 
we want to solve a real optimization problem, we must first build the corresponding mathematical model. Setting 
up a model, of course, means creating a complete description of the problem with variables and mathematical 
relationships so that all the details of the optimization problem are  simulated2.

Deterministic optimization methods can be divided into gradient-based and non-gradient methods, which 
effectively solve linear, convex, and derivable optimization problems and have a continuous search space. On 
the other hand, many real-world optimization problems have features such as nonlinear, non-convex objective 
functions, discrete search spaces, non-differentiable, high dimensions, and high  complexity3.

The inability of deterministic methods to address such optimization challenges has led to the emergence 
of effective stochastic approaches in such cases. Metaheuristic algorithms, as the most prominent stochastic 
method, are capable of tackling optimization problems based on a random search, random operators, and trial-
and-error  processes4. The simplicity of concepts, easy implementation, efficiency in nonlinear and non-convex 
environments, and independence of the type of problem are the features that have led to the widespread use and 
popularity of metaheuristic  algorithms5.

The primary source in the design of metaheuristic algorithms is inspiration from various natural phenom-
ena, swarm intelligence, animal life, biological sciences, physical laws, rules of the game, and so on. Among the 
most famous metaheuristic algorithms are the genetic algorithm (GA)6, inspired by biology, the particle swarm 
optimization (PSO)7, the ant colony optimization (ACO)8, the Artificial bee colony (ABC)9, and the Northern 
Goshawk  optimization8, inspired by animal life.

The critical issue with metaheuristic algorithms is that these methods do not guarantee that they will be able 
to find the optimal global solution. However, the solutions obtained from metaheuristic algorithms are close to 
the global optimal. The desire to achieve better solutions has led to the development of numerous metaheuristic 
algorithms.

Given the development of numerous metaheuristic algorithms, the main research question is, is there still 
a need to design newer algorithms? In answer to this question, the No Free Lunch (NFL)  theorem10 states that 
the success of an algorithm in handling a set of optimization problems cannot be a reason for the successful 
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performance of this algorithm in dealing with other optimization problems. There is no presumption of the 
success or failure of a method in optimizing a problem. The NFL theorem explains that no particular algorithm 
can be introduced as the best optimizer in all optimization applications. The NFL theorem is a source of motiva-
tion for researchers come up with better solutions to optimization problems by designing newer metaheuristic 
algorithms.

The innovation and novelty of the proposed chef-based optimization algorithm (CBOA) are:

• This paper introduces a new metaheuristic algorithm based on the description of a training process.
• Every educational process in different types of schools has certain usual properties, forms and stages. In this 

paper, we were concretely motivated by all specifics of the process of learning the cooking skills of a new 
chief.

• The paper provides a mathematical model of two-phase description of the preparation of a new chef, accord-
ing to the principles of a real cooking school.

• Both phases are typical of all art schools (including cooking courses) because every student wants to learn 
from the best chef, but on the other hand, the greatest chefs will not want to prepare weak students. So, in 
the first phase, the chefs compete with each other so that a table of their quality ranking can be created. Simi-
larly, in the second phase, students compete with each other so that their qualitative ranking can be created 
according to their cooking abilities.

• In the mathematical modeling of the first phase, we implemented two master chef strategies. These strategies 
model the fact that even chefs learn new cooking recipes by observing the teaching of other chefs (Strategy 1), 
and then they try to improve these observed recipes even more through their autonomous experimentation 
(Strategy 2).

• In the mathematical modeling of the first phase, we implemented three student strategies. The first strategy 
of each student is to choose a chef and learn all of his/her skills. The second strategy of each student is to 
choose another chef and learn from him/her one skill (one concrete recipe). In the third strategy, students 
try to improve all their skills by self-experimentation.

• CBOA ability to handle optimization problems is tested on fifty-two standard benchmark functions and 
compared with twelve well-known meta-heuristic algorithms. In doing so, CBOA achieves much better 
results than these competing programs.

The rest of the structure of the paper is as follows; the literature review is presented in the “Lecture review’’ 
section. The proposed CBOA is introduced and modeled in the “Chef-based optimization algorithm’’ section. 
The simulation studies and results are presented in the “Simulation studies and results’’ section. A discussion of 
results and performance of the proposed CBOA is presented in the “Discussion’’ section. CBOA implementa-
tion on CEC 2017 test suite is presented in “Evaluation CEC 2017 test suite” section. The efficiency of CBOA in 
handling real-world applications is evaluated in “CBOA for real world applications” section. Conclusions and 
several suggestions for future research are provided in the “Conclusions and future works’’ section.

Lecture review
Metaheuristic algorithms, according to the primary source of design inspiration, are classified into five groups: 
(i) swarm-based, (ii) evolutionary-based, (iii) physics-based, (iv) game-based, and (v) human-based methods.

Theorizing on swarming activities and behaviors in the lives of birds, animals, aquatic animals, insects, and 
other living things in nature has been the main source of inspiration in the development of swarm-based algo-
rithms. PSO, ACO, and ABC are among the most widely used and popular swarm-based algorithms. The natural 
behavior of the crowds of birds or fish in search of food have been the main idea of the PSO. Discovering the 
shortest path between the nest and the food source based on the collective intelligence of ants has been main idea 
of ACO. Hierarchical efforts and activities of bee colonies in search of food has been the main idea of the ABC. 
The idea of the ability of living organisms to find food sources in nature has led to the design of several swarm-
based metaheuristic algorithms, such as: the tunicate swarm algorithm (TSA)11, the African vultures optimiza-
tion algorithm (AVOA)12, and the snake optimizer (SO)13. The strategy of living things in nature when hunting 
and trapping prey has been the main idea in designing algorithms such as the grey wolf optimizer (GWO)14, the 
Golden Jackal optimization (GJO)15, the whale optimization algorithm (WOA)16, the reptile search algorithm 
(RSA)17, the marine predator algorithm (MPA)18.

The concepts of natural selection, Darwin’s theory of evolution, and stochastic operators such as selection, 
crossover, and mutation have been used in the design of evolutionary algorithms. GA and differential evolution 
(DE)19 are among the most famous evolutionary algorithms whose main design idea is the reproduction process 
and its concepts.

The laws, concepts, and phenomena of physics have been a source of inspiration in designing of numerous 
methods that fall into the category of physics-based algorithms. Simulated annealing (SA) is the most significant 
physics-based algorithm produced based on the physical phenomenon of metal  annealing20. Physical forces 
and Newton’s laws of motion have been the main idea behind the design of methods such as the gravitational 
search algorithm (GSA) based on gravity  force21 and the spring search algorithm (SSA) based on spring  force22. 
Mathematical modeling of the natural water cycle in nature has led to the design of the water cycle algorithm 
(WCA)23. Cosmological studies and space holes have been the inspiration in designing the multi-verse optimizer 
(MVO)24. Archimedes principle concepts have been the main idea in the design of the archimedes optimization 
algorithm (AOA)24.

The rules of the game, the behavior of the players, the coaches, and the referees have been a source of inspi-
ration for designing game-based algorithms. Football game based optimization (FGBO)24 and the volleyball 
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premier league (VPL)25 are two game-based approaches designed based on the modeling of football and vol-
leyball league, respectively. The strategy of the players to put the pieces together has been the design idea of the 
puzzle optimization algorithm (POA)26.

Human activities and behaviors in individual and social life have become the idea of designing approaches 
that fall into the category of human-based algorithms. Teaching–learning-based optimization (TLBO) is one 
of the most famous human-based algorithms that has been developed based on the simulation of interactions 
between a teacher and students in the  classroom27. The treatment process that the doctor performs to treat 
patients has been the main idea in the design of the doctor and patient optimization (DPO)28. The cooperation 
of the members of a team to achieve success and the common goal of that team has been the main idea in the 
design of the teamwork optimization algorithm (TOA)29. The City Councils Evolution (CCE) is a human-based 
approach that is produced based on modeling the evolution of city  councils30. The strategic movement of army 
troops during the war has been the idea employed in the design of the war strategy optimization (WSO)31.

Based on the best knowledge gained from the literature review, no metaheuristic algorithm inspired by the 
culinary education process has been designed. However, teaching cooking to people who attend training courses 
is an intelligent process that can be a motivation to design a new metaheuristic algorithm. Consequently, in 
this study, a new optimization approach has been developed by mathematical modeling the cooking education 
process, which is discussed in the next section.

Ethical approval. This article does not contain any studies with human participants or animals performed 
by any of the authors.

Informed consent. Informed consent was not required as no human or animals were involved.

Chef‑based optimization algorithm
This part is devoted to the introduction and mathematical modeling of the proposed algorithm called the Chef-
based optimization algorithm (CBOA).

Inspiration of CBOA. Cooking students and young cooks participate in training courses to improve their 
cooking skills and become chefs. This concept is analogous to metaheuristic algorithms, where several candidate 
solutions are initialized and then improved through an iterative process to determine the best candidate solution 
as the solution to the problem at the end of the algorithm implementation. Thus, the process of transforming a 
cooking student into a chef in a culinary school is a source of inspiration for the design of the proposed CBOA.

It is assumed that a certain number of chef instructors are present in a culinary school. Each chef instructor 
is responsible for teaching a class. Each cooking student can choose which of these classes to attend. The chef 
instructor teaches students cooking skills and techniques. However, chef instructors also try to improve their 
skills based on the instructions of the best chef instructor in the school and individual exercises. Cooking stu-
dents try to learn and imitate the skills of the chef instructor. In addition, cooking students try to improve the 
skills they have learned through practice. At the end of the course, cooking students become skilled chefs under 
the training they have received.

Mathematical modeling of the above concepts is used in designing the CBOA, which is discussed in the 
following subsections.

Algorithm initialization. The proposed CBOA approach is a population-based algorithm whose members 
consist of two groups of people, namely cooking students and chef instructors. Each CBOA member is a candi-
date solution that contains information about the problem variables. From a mathematical point of view, each 
member of the CBOA is a vector, and the set of CBOA members can be modeled using a matrix according to 
Eq. (1).

where X is the CBOA population matrix, Xi =
(

xi,1, xi,2, . . . , xi,m
)

 is the i th CBOA member (candidate solu-
tion), xi,j is its j th coordinate (i.e., the value of the j th problem variable for the i th CBOA member), N is the 
population size, and m is the number of problem variables of the objective function (dimension of the problem).

The position of the CBOA members at the beginning of the algorithm implementation is randomly initialized 
for i = 1,2, . . . ,Nandj = 1,2, . . . ,m using Eq. (2).

where r is a random number in the interval [0,1] , lbj and ubj are the lower and the upper bounds of the j th prob-
lem variable, respectively.

By inserting the suggested values of each CBOA member into the variables, a corresponding objective func-
tion value is evaluated. As a result, the objective function is evaluated in N  turns (where N  is the number of 
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CBOA members) and N values are calculated for the objective function. These values can be represented using 
a vector corresponding to Eq. (3).

where F is the vector of values of the objective function and Fi is the value of the objective function obtained for 
the i th member of CBOA, where i = 1,2, . . . ,N .

The values of the objective functions provide essential information about the quality of the candidate solu-
tions. The value of the objective function is the decision criterion for selecting the best candidate solution. Among 
CBOA members, the member with the best value for the objective function is recognized as the best member 
of the population and the best candidate solution. During the running of the algorithm, in each iteration, the 
members of the CBOA are updated, and the corresponding values of the objective function are calculated. It is, 
therefore, necessary to update the best member in each iteration based on comparing the values of the objective 
function.

Mathematical modeling of CBOA. After the algorithm is initialized, the CBOA steps are gradually 
applied to the candidate solutions to improve them. CBOA members consist of a group of instructing chefs and 
a group of cooking students. The update process for each of these groups is different. Based on comparing the 
values of the objective function, some CBOA members with better values of the objective function are selected as 
the chef instructor. Therefore, if the rows of the CBOA population matrix are sorted in ascending order accord-
ing to the value of the objective function (thus, the member in the first row is the best member), then the group 
of the first NC members is selected as the group of chef instructors and the rest group of N − NC members is 
chosen as the group of cooking students. The CBOA sorted population matrix and the sorted objective function 
vector are specified in Eqs. (4) and (5).

where NC is the number of chef instructors, XS is the sorted population matrix of CBOA, and FS is a vector of 
ascending objective function values. In the matrix XS , members from XS1 to XSNC represent the group of chef 
instructors, and members from XSNC+1 to XSN represent the group of cooking students. The vector  FS i includes 
successively the values of the objective functions corresponding to XS1 to XSN.

Phase 1: the updating process for group of chef instructors (update of XS
1
 to XS

N
C

). In a culi-
nary school, it is assumed that several chef instructors are responsible for teaching cooking skills to students. 
Chef instructors follow two strategies to improve their cooking skills. In the first strategy, they emulate the best 
chef instructor and try to learn the chef instructor techniques. This strategy demonstrates the global search and 
CBOA exploration capabilities.

The advantage of updating the chef instructors based on this strategy is that the top chefs (top population 
members) improve their skills based on the best chef (best population member) before they start teaching stu-
dents. Hence, there is no direct dependence on updating the students’ position only on the base of the best mem-
ber of the population in CBOA design. Furthermore, this approach prevents the algorithm from getting stuck in 
local optima and causes different areas of the search space to be scanned more accurately and effectively. Based 
on this strategy, a new position for each chef instructor is first calculated for i = 1,2, . . . ,NC and j = 1,2, . . . ,m 
using the following equation
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where XSC/S1i  is the new calculated status for the i th sorted member of CBOA (that is XSi ) based on the first 
strategy ( C/S1 ) of updating the chef instructor, xsC/S1i,j  is its j th coordinate, BC is the best chef instructor (denoted 
as XS1 in the matrix XS ), BCj is the j th coordinate of the best chef instructor, r is a random number from the 
interval [0,1] , and I is a number that is selected randomly during execution from the set {1,2} . This new position is 
acceptable to the CBOA if it improves the value of the objective function. This condition is modeled using Eq. (7).

where FSC/S1i  is the value of the objective function of the member XSC/S1i .

In the second strategy, each chef instructor tries to improve his cooking skills based on individual activi-
ties and exercises. This strategy represents the local search and the CBOA’s exploitation ability. If each problem 
variable is considered a cooking skill, a chef instructor will try to improve all of those skills to achieve a better 
objective function value.

The advantage of updating based on individual activities and exercises is that each member, regardless of the 
position of other population members, seeks to discover better solutions near the position where it is located. 
There is a possibility that better solutions can be obtained based on local search and exploitation, with minor 
changes in the position of population members in the search space. According to this concept, around each chef 
instructor in the search space, a random position is generated for j = 1,2, . . . ,m using Eqs. (8) to (10). If this 
random position improves the value of the objective function, it is acceptable for updating, which this condition 
is modeled using Eq. (11).

where lblocalj  and ublocalj  are the lower and upper local bound of the j th problem variable, respectively, and the 
variable t  represents the iteration counter.

where XSC/S2i  is the new calculated status for the i th CBOA sorted member (i.e., XSi ) based on the second strategy 
( C/S2 ) of chef instructors updating, xsC/S2i,j  is its j th coordinate, and FSC/S2i  is its value of the objective function.

Phase 2: the updating process for the group of cooking students (update of XS
N
C
+1

 to XS
N

).  
Cooking students attend culinary school to learn cooking skills and become a chef. In the design of CBOA, it is 
assumed that cooking students follow three strategies to learn cooking skills. According to the first strategy, each 
cooking student randomly chooses a class taught by one of the chefs, and then he is taught cooking skills by this 
chef instructor. The advantage of updating cooking students based on this strategy is that there are different chef 
instructors available to lead them, resulting in cooking students learning different skills (i.e., population mem-
bers moving to other areas of the search space) based on the guidance of the chosen chef instructor. On the other 
hand, if all cooking students learn only from the best chef-instructor (all members of the population moved 
towards the best member), then an efficient global search in the problem-solving space would not be possible. 
This strategy is simulated in the CBOA in such a way that first for each cooking student, a new position is calcu-
lated based on the training and guidance of the chef instructor, for i = NC + 1,NC + 2, . . . ,N , j = 1,2, . . . ,m, 
using Eq. (12).

where XSS/S1i  is the new calculated status for the i th sorted member of CBOA (i.e., XSi ) based on the first strategy 
( S/S1 ) of the updating of cooking students, xsS/S1i,j  is its j th coordinate, and CIki ,j is the selected chef instructor 
by the i th cooking student, where ki is randomly selected from the set {1,2, . . . ,NC} (where CIki ,j denotes the 
value xski ,j).

This new position replaces the previous position for each CBOA member, if it improves the value of the 
objective function. This concept is modeled for i = NC + 1,NC + 2, . . . ,N by Eq. (13).

where FSS/S1i  is the value of the objective function of XSS/S1i .
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In the second strategy, since each problem variable in the CBOA is assumed to be a cooking skill, each cook-
ing student tries to learn one of the skills of the chef instructor completely and fully imitate the chef instructor 
(therefore, by “skill’’, we mean a recipe for one great meal). This strategy enhances the global search and explora-
tion capabilities of the CBOA. The advantage of this strategy is that instead of updating all candidate solution 
variables (i.e., all cooking student skills), only one variable (one skill, i.e., one recipe) changes. It may not be 
necessary to update all member position coordinates to achieve better solutions.

In the design of CBOA, this “skill’’ represents a certain component of a vector of cooking skills of a randomly 
selected chef instructor CIk ( k ∈ {1,2, . . . ,Nc} ). Hence, the second strategy is mathematically simulated in such 
a way that for each cooking student XSi (members of CBOA with i = NC + 1,NC + 2, . . . ,N  ), first one chief 
instructor, which is represented by the vector CIki =

(

CIki,1 , . . . ,CIki,m
)

, is randomly selected (a member of 
CBOA with the index ki , which is randomly selected from the set {1, ...,NC} ), then it is randomly selected his 
� th coordinate (thus a number � from the set {1, ...m}, which represents a “skill’’ of this selected chief instructor) 
and by this value CIki,� we replace the � th coordinate of the vector of the i th cooking student XSi (thus, xsi,�).

According to this concept, a new position is calculated for each CBOA cooking student member using 
Eq. (14).

where � is a randomly selected number from the set {1,2, . . . ,m},  i = NC + 1,NC + 2, . . . ,N , j = 1,2, . . . ,m. 
Then, it is replaced with the previous position based on Eq. (15) if it improves the target value of the objective 
function.

where XSS/S2i  is the new calculated status for the i th sorted member of CBOA (i.e., XSi ) based on the second 
strategy ( S/S2 ) of updating cooking students, xsS/S2i,j  is its j th coordinate, FSS/S2i  is its objective function value.

In the third strategy, each cooking student tries to improve his cooking skills based on his individual activities 
and exercises. In fact, this strategy represents the local search and the CBOA’s exploitation ability. The advantage 
of updating cooking students based on the strategy of individual activities and exercises is that it increases the 
power of local search and exploitation of the algorithm in achieving better possible solutions near the discovered 
solutions. In this strategy, similar to the local search strategy of chef instructors, cooking students try to converge 
to better solutions with small and precise steps. If each problem variable is considered a cooking skill, a cooking 
student will try to improve all of those skills to achieve a better objective function value.

According to this concept, around each cooking student in the search space, a random position is generated 
by Eqs. (8), and (9) and a new position is calculated using Eq. (16).

where XSS/S3i  is the new calculated status for the i th sorted member of CBOA (that is XSi ) based on the third 
strategy ( S/S3 ) of updating cooking students, xsS/S3i,j  is its j th coordinate, and q is randomly selected number from 
the set {1,2, . . . ,m} , i = NC + 1,NC + 2, . . . ,N , and j = 1,2, . . . ,m. If this new random position improves the 
value of the objective function, it is acceptable for updating of XSi , which is modeled by Eq. (17).

where FSS/S3i  is the value of the objective function of XSS/S3i .

Repetition process, pseudocode, and flowchart of CBOA. A CBOA iteration is completed by updat-
ing all members of the population. The CBOA enters the next iteration with these new statuses, and the groups 
of chef instructors and cooking students are respecified. The population members are updated based on the 
implementation of the CBOA steps according to Eqs. (4) to (17) until the last iteration of the algorithm. After 
reaching the maximum value of the iteration variable CBOA, the best candidate solution obtained during the 
implementation process is presented as the solution to the problem. Various steps of CBOA implementation are 
presented in the form of a flowchart in Fig. 1 and its pseudocode in Algorithm 1.
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Computational complexity of CBOA. In this subsection, the computational complexity of the CBOA is 
analyzed. Preparing and initializing the CBOA for an optimization problem, with the number of decision vari-
ables m , has a computational complexity of O(Nm) , where N is the number of CBOA members. Updating the 
group of chef instructors in two strategies has a computational complexity equal to O(2NCmT) , where T is the 
maximum number of CBOA iterations and NC is the number of chef instructors. Updating the student cooking 
group in three strategies has a computational complexity equal to O(3(N − NC)mT) . Thus, the total computa-
tional complexity of CBOA is equal to O(m(N + 2NCT + 3(N − NC)T)).

Simulation studies and results
This section presents simulation studies and an evaluation of the ability of CBOA to solve optimization problems 
and real practice tasks. For this purpose, a set of 23 standard benchmark objective functions has been employed. 
For this purpose, a set of 23 standard benchmark objective functions has been employed. The reason for choosing 
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this collection is as follows. Seven unimodal functions F1 to F7 , which have only one main extremum and lack 
local optimal solutions, have been selected. Therefore, unimodal functions are employed to challenge the exploita-
tion and local search ability of the proposed CBOA algorithm in convergence to global optimal. The six functions 
in this set, F8 to F13 , are the high-dimensional multimodal type, which, in addition to the main extremum, has 
several local extremums and local optimal solutions. Thus, high-dimensional multimodal functions are employed 
to test the CBOA’s exploration and global search capability in accurately scanning the search space, passing 
local optimal areas, and discovering the main optimal area. The ten functions in this set,  F14 to F23 , are selected 
from the fixed-dimensional multimodal type, whose dimensions and the number of local extremes are less than 
those of the high-dimensional multimodal functions. These functions are employed to analyze the ability of the 
proposed CBOA algorithm to strike a balance between exploration and exploitation. The information on this 
set of benchmark functions is specified in Tables 1, 2 and 3.

Input information of optimization problem.
Intervals for variables, constraints, objective function.

Set population size (N) and maximum number of iterations (T).

Set = 1. Create the initial population.

Evaluate the objective function based on the initial population and set = 1.

Update  and  matrices using Equations (4) and (5).

Start CBOA

Yes

No

= + 1

Print the best candidate solution.

<

= 1

= + 1

Update the best solution found so far.

<
Yes

No

End CBOA

Update  based on the 1st strategy 
of cooking students.

<

Update  based on the 2nd strategy 
of cooking students.

Update  based on the 1st strategy 
of chef instructors.

Yes No

Update  based on the 2nd strategy 
of chef instructors.

Update  based on the 3rd strategy 
of cooking students.

Figure 1.  Flowchart of CBOA.
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The performance of the proposed CBOA approach in optimization is compared with the results of 12 well-
known metaheuristic algorithms. The criterion for selecting these 12 competitor algorithms is as follows. PSO, 
GA, and DE are three prevalent algorithms that have been employed in many optimization applications. CMA, 
GSA, TLBO, GWO, MVO, and WOA are the six most cited algorithms that always have interested researchers. 
Finally, the three algorithms, MPA, TSA, and HBO, are the algorithms that have been released recently and have 
received a lot of attention and application in this short period. The values adopted for the control parameters of 
the competitor algorithms are specified in Table 4.

Table 1.  Information about unimodal objective functions.

Objective function Range Dimensions ( m) Fmin

1. F1(x) =
∑m

i=1x
2
i [− 100, 100]m 30 0

2. F2(x) =
∑m

i=1|xi | +
∏m

i=1|xi | [− 10, 10]m 30 0

3. F3(x) =
∑m

i=1

(

∑i
j=1xi

)2
[− 100, 100]m 30 0

4. F4(x) = max{|xi |, 1 ≤ i ≤ m} [− 100, 100]m 30 0

5. F5(x) =
∑m−1

i=1

(

100
(

xi+1 − x2i
)2

+ (xi − 1)2)
)

[− 30, 30]m 30 0

6. F6(x) =
m
∑

i=1

⌊xi + 0.5⌋2 [− 100, 100]m 30 0

7. F7(x) =
∑m

i=1ix
4
i + random(0,1] [− 1.28, 1.28]m 30 0

Table 2.  Information about high-dimensional multimodal objective functions.

Objective function Range Dimensions ( m) Fmin

8. F8(x) =
∑m

i=1 − xisin(
√
|xi |) [− 500, 500]m 30 − 418.98m

9. F9(x) =
∑m

i=1

(

x2i − 10cos(2πxi)+ 10
)

[− 5.12, 5.12]m 30 0

10. F10(x) = −20exp

(

−0.2
√

1
m

∑m
i=1x

2
i

)

 −exp
(

1
m

∑m
i=1cos (2πxi)

)

+ 20+ e
[− 32, 32]m 30 0

11. F11(x) =
1

4000

∑m
i=1x

2
i −

∏m
i=1cos

(

xi√
i

)

+ 1 [− 600, 600]m 30 0

12.
F12(x) =

π
m {10sin

(

πy1
)

 +
∑m−1

i=1

(

yi − 1
)2(

1+ 10sin2
(

πyi+1

))

+
(

ym − 1
)2
} +

∑m
i=1u(xi , 10,100,4), where 

yi = 1+ 1+xi
4  , u(xi , a, i, n) =

{

k(xi − a)n , xi > −a;
0, −a ≤ xi ≤ a

k(−xi − a)n , xi < −a.

;

[− 50, 50]m 30 0

13. F13(x) = 0.1{sin2(3πx1)+
∑m

i=1(xi − 1)2
[

1+ sin2(3πxi + 1)
]

+ (xn − 1)2
[

1+ sin2(2πxm)
]

}+
∑m

i=1u(xi , 5, 100, 4) [− 50, 50]m 30 0

Table 3.  Information about fixed-dimensional multimodal objective functions.

Objective function Range Dimensions ( m) Fmin

14. F14(x) =

(

1
500 +

∑25
j=1

1

j+
∑2

i=1(xi−aij)
6

)−1

[− 65.53, 65.53]2 2 0.998

15. F15(x) =
∑11

i=1

[

ai −
x1(b

2
i +bix2)

b2i +bix3+x4

]2
[− 5, 5]4 4 0.00030

16. F16(x) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42 [− 5, 5]2 2 − 1.0316

17. F17(x) =
(

x2 −
5.1
4π2 x

2
1 +

5
π
x1 − 6

)2
+

10
(

1− 1
8π

)

cosx1 + 10
[− 5, 10]×[0, 15] 2 0.398

18. F18(x) = [1 
+(x1 + x2 + 1)2

(

19− 14(x1 − x2)+ (x1 + x2)
2
)

] · [30+ (2x1 − 3x2)
2 · (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

[− 5, 5]2 2 3

19. F19(x) = −
∑4

i=1ciexp(−
∑3

j=1aij
(

xj − Pij
)2
) [0, 1]3 3 − 3.86

20. F20(x) = −
∑4

i=1ciexp(−
∑6

j=1aij
(

xj − Pij
)2
) [0, 1]6 6 − 3.32

21. F21(x) = −
∑5

i=1

[

(X − ai) · (X − ai)
T + 6ci

]−1
[0, 10]4 4 − 10.1532

22. F22(x) = −
∑7

i=1

[

(X − ai) · (X − ai)
T + 6ci

]−1
[0, 10]4 4 − 10.4029

23. F23(x) = −
∑10

i=1

[

(X − ai) · (X − ai)
T + 6ci

]−1
[0, 10]4 4 − 10.5364
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The CBOA and each of the competing algorithms are tested on benchmark functions in twenty independ-
ent implementations while each execution contains 1000 iterations. Optimization results are reported using six 
indicators: mean, best, standard deviation (std), median, execution time (ET), and rank.

The CBOA and each competing algorithm are tested on benchmark functions in twenty independent imple-
mentations, while each execution contains 1000 iterations. Optimization results are reported using six indicators: 
mean, best, standard deviation (std), median, execution time (ET), and rank.

Evaluation unimodal objective function. The optimization results of the unimodal functions F1 to F7 
using CBOA and competitor algorithms are given in Table 5. The optimization results show that the CBOA has 
performed very well in optimizing F1 , F2 , F3 , F4 , and F6 and has been able to converge to the global optimal of 
these functions. In optimizing the functions F5 and F7 , the CBOA has been able to deliver good results and rank 
the best optimizer among the compared algorithms. The simulation results show that CBOA has a self-evident 

Table 4.  Adopted values for control parameters of competitor metaheuristic algorithms.

Algorithm Parameter Value

GA

Population size 100

Type Real coded

Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic ( Probability = 0.8 , α ∈ [− 0.5, 1.5])

Mutation Gaussian (Probability = 0.05)

PSO

Population size 50

Topology Fully connected

Cognitive and social constant (C1,C2) = (2, 2),

Inertia weight Linear reduction from 0.9 to 0.1

Velocity limit 10% of the dimension range

GSA
Population size 50

Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO

Population size 50

TF : teaching factor TF = round(1+ rand), where

random number rand is a random number in [0, 1]

GWO
Population size 30

Convergence parameter (a) a: Linear reduction from 2 to 0

MVO

Population size 30

Wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1

Exploitation accuracy over iterations (p) p = 6

WOA

Population size 30

Convergence parameter (a) a: Linear reduction from 2 to 0

r is a random vector in the interval [0, 1]

l is a random number in [− 1, 1]

TSA

Population size 30

Pmin and Pmax 1, 4

c1, c2, c3 Random numbers from the interval [0, 1]

MPA

Population size 30

Constant number P = 0.5

Random vector R is a vector of uniform random numbers from the interval [0, 1]

Fish aggregating devices (FADs) FADs = 0.2

Binary vector U = 0 or 1

HBA

Population size 30

The ability of a honey badger to get food β = 6

Constant number C = 2

DE

Population size 100

Scaling factor 0.5

Crossover probability 0.5

CMA

Num taps 5

Step size 0.05

Leakage factor 1

CBOA Population size 30
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superiority over competitor algorithms and, with high exploitation ability, has converged to very suitable solu-
tions.

Evaluation high‑dimensional multimodal objective function. Results of CBOA and all competitor 
algorithms on high-dimensional multimodal functions of F8 to F13 are reported in Table 6. CBOA has achieved 
precisely the global optimal solution for F9 and F11 , which shows us the high exploration power of CBOA. In 
optimizing the function F10 , the proposed CBOA has performed well, and for this function is ranked as the first 
best optimizer in competition with the compared algorithms. The simulation results indicate the high explora-
tion power of CBOA in identifying the best optimal region and the superiority of CBOA compared to competi-
tor algorithms.

Table 5.  Results of optimization of CBOA and competitor metaheuristics on the unimodal function.

CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F1

Mean 0 3.87E−12 2.65E−12 4.4E−277 2.95E−50 1.41E−46 2.5E−154 0.165132 8.49E−59 9.24E−74 1.06E−16 0.168284 32.30955

Best 0 1.08E−12 1.09E−12 2.4E−287 1.55E−52 2.63E−51 1E−164 0.098704 3.66E−61 6.41E−77 4.4E−17 2.32E−06 17.01188

Std 0 1.8E−12 1.13E−12 0 4.89E−50 4.47E−46 1E−153 0.044016 1.53E−58 3.28E−73 5.98E−17 0.377572 9.537409

Median 0 3.55E−12 2.25E−12 1.8E−279 6.52E−51 5E−48 2.1E−157 0.157209 2.47E−59 8.67E−75 8.71E−17 0.002097 29.40147

ET 2.172735 6.092415 5.748222 0.553321 3.445383 1.148152 0.568891 3.074551 1.93628 1.905436 3.862345 0.537751 0.815548

Rank 1 10 9 2 6 7 3 11 5 4 8 12 13

F2

Mean 0 7E−06 3.25E−08 4.4E−146 8.73E−28 6.93E−29 7.1E−106 0.267917 1.08E−34 6.48E−39 8.26E−08 1.186001 2.812708

Best 0 3.82E−06 1.65E−08 5E−150 3.2E−30 7.49E−30 7.4E−115 0.137216 1.36E−35 8.26E−40 4.05E−08 0.141104 1.815701

Std 0 2.94E−06 8.52E−09 1.5E−145 1.65E−27 8.97E−29 1.8E−105 0.057929 8.92E−35 8.58E−39 1.18E−07 2.235033 0.477151

Median 0 5.8E−06 3.11E−08 7.1E−148 1.95E−28 3.51E−29 6.1E−108 0.261335 8.56E−35 3.94E−39 5.22E−08 0.664504 2.832172

ET 2.219213 6.066346 5.848163 0.564548 3.160192 1.175819 0.597698 2.799057 2.012479 2.011396 3.873261 0.531398 0.779758

Rank 1 10 8 2 7 6 3 11 5 4 9 12 13

F3

Mean 0 6.83E−05 24,716.62 7.9E−204 9.31E−13 1.9E−11 15,520.85 13.69663 8.79E−16 3.76E−25 479.0439 898.3863 2271.434

Best 0 1.15E−05 18,432.73 9.2E−220 4.38E−17 1.83E−19 3015.781 7.076154 3.09E−19 4.18E−29 214.1529 46.09636 1199.627

Std 0 5.08E−05 3946.206 0 1.73E−12 7.11E−11 9780.884 5.317871 1.73E−−15 7.87E−25 140.3307 1516.41 827.2212

Median 0 5.93E−05 24,419.55 1.6E−208 2.79E−14 2.97E−14 12,635.08 12.11916 1.09E−16 1.98E−26 463.5805 502.566 2112.874

ET 6.621329 7.408674 7.488921 2.055253 7.210372 2.876052 2.174281 6.278508 3.558108 6.204809 5.127676 1.936225 2.226537

Rank 1 7 13 2 5 6 12 8 4 3 9 10 11

F4

Mean 0 0.000159 1.983901 9.5E−120 3.17E−19 0.009342 28.50847 0.500893 1.71E−14 3E−30 1.345517 6.592888 3.143331

Best 0 8.69E−05 1.316701 3.5E−124 4.5E−20 0.000147 0.001866 0.247351 1.28E−15 6.86E−32 1.54E−08 4.131017 1.999125

Std 0 5.52E−05 0.343872 1.9E−119 2.31E−19 0.012302 31.87155 0.135805 2.66E−14 3.42E−30 1.598979 2.599888 0.582495

Med 0 0.000151 2.000134 3.7E−121 2.92E−19 0.002038 16.99128 0.51331 8.78E−15 1.55E−30 0.805803 6.449158 3.157808

ET 2.134919 6.048563 5.446143 0.553277 3.030702 1.113022 0.564871 2.946676 1.425534 1.915917 3.81435 0.541684 0.748298

Rank 1 6 10 2 4 7 13 8 5 3 9 12 11

F5

Mean 0.000306 62.99214 52.93904 21.83121 23.47877 28.18633 27.05095 336.8397 26.69749 27.00714 40.06591 113.1056 445.1666

Best 7.21E−05 17.59206 26.21261 20.89173 22.33217 26.36048 26.42674 27.57318 25.25594 25.76632 25.87646 22.77282 231.7436

Std 0.00023 142.2852 27.60379 0.511057 0.472798 0.82398 0.363525 649.711 0.669329 0.992995 53.68502 90.0744 177.5128

Median 0.000232 19.38299 39.00547 21.94289 23.49991 28.63377 27.05451 45.72737 27.09079 26.51047 26.16945 86.01345 380.1141

ET 2.910138 6.151182 5.975958 0.820889 3.802344 1.386446 0.876656 3.45164 1.849231 2.616349 544.2818 0.765122 0.998529

Rank 1 10 9 2 3 7 6 12 4 5 8 11 13

F6

Mean 0 4.49E−12 2.65E−12 9.74E−08 1.6E−09 3.225523 0.094859 0.155856 0.65113 1.170598 1.04E−16 0.230787 31.80092

Best 0 1.55E−12 5.64E−13 5.49E−09 8.41E−10 2.295798 0.003153 0.058846 2.06E−05 0.243967 4.72E−17 6.24E−05 17.06432

Std 0 1.99E−12 1.2E−12 1.27E−07 7.43E−10 0.530484 0.118184 0.047567 0.436312 0.46836 3.05E−17 0.969372 14.38352

Median 0 4.18E−12 2.88E−12 4.64E−08 1.48E−09 3.069241 0.050352 0.152637 0.621537 1.1358 1E−16 0.004883 26.29787

ET 2.213583 6.045107 5.258846 0.629315 3.078155 1.132735 0.691941 2.934654 2.037816 2.064517 1555.628 0.566689 0.766043

Rank 1 4 3 6 5 12 7 8 10 11 2 9 13

F7

Mean 4.26E−05 0.032899 0.027278 5.31E−05 0.000759 0.00571 0.001145 0.011238 0.000888 0.002197 0.058194 0.168787 0.008934

Best 5.39E−06 0.017076 0.019679 3.7E−05 0.000128 0.001473 9.36E−06 0.007012 0.000149 0.000448 0.021831 0.078608 0.004354

Std 2.38E−05 0.009295 0.004461 2.78E−05 0.000428 0.003007 0.001365 0.00353 0.000638 0.001353 0.021042 0.068875 0.002685

Median 3.84E−05 0.029407 0.027521 4.44E−05 0.000718 0.004762 0.00054 0.010196 0.000704 0.002016 0.053531 0.14742 0.008549

ET 4.444716 6.626775 5.918818 1.427673 4.863401 1.857502 1.622592 4.414998 2.362614 4.26488 4.553437 1.232753 1.46431

Rank 1 11 10 2 3 7 5 9 4 6 12 13 8

Sum rank 7 58 62 18 33 52 49 67 37 36 57 79 82

Mean rank 1 8.285714 8.857143 2.5714285 4.714286 7.428571 7 9.571429 5.285714 5.142857 8.142857 11.28571 11.71429

Total rank 1 9 10 2 3 7 6 11 5 4 8 12 13
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Evaluation fixed‑dimensional multimodal objective function. The results of the CBOA and com-
petitor algorithms for the fixed-dimensional multimodal functions F14 to F23 are presented in Table 7. The opti-
mization results show that the CBOA, based on the “mean index’’, alone is the best optimizer to tackle the func-
tions F14 , F20 , and F18.

In the other cases where the CBOA has the same conditions in terms of the “mean index’’, it performs more 
efficiently than the alternative algorithms due to better values for the “std index’’. Analysis of the simulation 
results shows that the CBOA performs better than competitor algorithms and has a remarkable ability to strike 
a balance between exploration and exploitation.

In other cases where the CBOA has the same conditions in terms of the “mean index’’, it has more efficient 
performance than the alternative algorithms due to better values for the “std index’’. Analysis of the simulation 
results shows that the CBOA performs better than competitor algorithms and has a remarkable ability to strike 
a balance between exploration and exploitation.

The performance of CBOA and competitor algorithms in evaluating the benchmark functions F1 to F23 is 
shown in Fig. 2 using the box plot diagrams.

Table 6.  Results of optimization of CBOA and competitor metaheuristics on the high-dimensional 
multimodal function.

CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F8

Mean  − 11,416.7  − 4,801,045  − 12,454.5  − 8544.1  − 9692.45  − 6130.76  − 9160.03  − 7682.93  − 6049.79  − 5508.84  − 2618.05  − 6579.01  − 8661.75

Best  − 12,332.6  − 4.4E+07  − 12,569.5  − 10,097.4  − 10,570.1  − 7089.62  − 11,847.1  − 8717.73  − 7464.67  − 6946.93  − 3587.57  − 8062.67  − 9997.91

Std 608.3322 10,233,996 124.9645 1197.938 453.6502 540.5303 1934.878 518.1982 718.0628 860.7038 541.5419 813.4314 727.7971

Median  − 11,572.6  − 608,750  − 12,451  − 8477.34  − 9710.72  − 6223.05  − 8800.53  − 7736.1  − 5876.46  − 5527.42  − 2448.32  − 6554.02  − 8708.15

ET 3.32474 6.272527 5.682899 0.9268 3.733725 1.363383 1.03715 2.590324 1.651692 3.011316 4.237375 0.816449 1.100977

Rank 3 1 2 7 4 10 5 8 11 12 13 9 6

F9

Mean 0 44.71531 61.37856 0 0 176.2674 0 97.68891 1.42E−14 0 27.46085 60.91495 59.92033

Best 0 21.88908 53.01217 0 0 73.64015 0 53.80054 0 0 17.90926 41.78905 29.99069

Std 0 34.17988 6.678404 0 0 54.01573 0 26.56134 2.53E−14 0 6.328985 15.30696 19.0714

Median 0 34.82353 59.66433 0 0 179.0786 0 98.10387 0 0 26.86388 59.20266 56.10198

ET 2.538358 6.205782 5.169585 0.716117 3.369601 1.28455 0.76484 3.217982 1.464147 2.281739 3.880075 0.667393 0.898574

Rank 1 4 7 1 1 9 1 8 2 1 3 6 5

F10

Mean 8.88E−16 7.25E−07 4.66E−07 3.983745 4.09E−15 1.701773 3.73E−15 0.501389 1.62E−14 4.26E−15 7.76E−09 3.003923 3.519331

Best 8.88E−16 4.64E−07 2.39E−07 8.88E−16 8.88E−16 1.51E−14 8.88E−16 0.082022 1.51E−14 8.88E−16 5.52E−09 1.340457 2.591243

Std 0 2.12E−07 1.26E−07 8.174475 1.09E−15 1.597276 2.47E−15 0.532278 2.33E−15 7.94E−16 1.64E−09 1.002929 0.345136

Median 8.88E−16 6.94E−07 4.57E−07 8.88E−16 4.44E−15 2.542805 4.44E−15 0.150768 1.51E−14 4.44E−15 7.64E−09 2.997188 3.461528

ET 2.493472 6.140622 6.096217 0.74041 3.261045 1.263234 0.810686 3.316977 1.495081 2.358528 3.971348 0.670133 0.930872

Rank 1 8 7 13 3 10 2 9 5 4 6 11 12

F11

Mean 0 0.001108 2.13E−10 0 0 0.005297 0.003099 0.393366 0.002687 0 8.937934 0.155581 1.52779

Best 0 5.91E−11 3.33E−12 0 0 0 0 0.201826 0 0 4.884369 0.012736 1.217033

Std 0 0.003615 6.53E−10 0 0 0.007265 0.013861 0.087275 0.006679 0 3.012101 0.147889 0.242677

Median 0 1.8E−10 3.01E−11 0 0 0 0 0.398108 0 0 8.251011 0.116847 1.468467

ET 3.256439 6.444046 7.498936 1.002643 3.606022 1.436769 1.091555 3.741729 1.735395 3.150524 4.587756 0.913732 1.177281

Rank 1 3 2 1 1 6 5 8 4 1 10 7 9

F12

Mean 1.96E−09 2.18E−12 3.95E−13 8.45E−09 1.99E−10 6.305474 0.005405 1.231756 0.035924 0.079774 0.28432 1.662913 0.201968

Best 3.96E−10 6.95E−13 1.16E−13 3.34E−10 5.48E−10 0.264734 0.001423 0.000924 0.013184 0.056662 6.02E−19 0.000169 0.058181

Std 1.23E−09 8.82E−13 2.71E−13 1.47E−08 7.9E−09 3.766997 0.004457 1.21416 0.013328 0.020464 0.363627 1.723156 0.125589

Median 1.73E−09 2.14E−12 3.19E−13 4.05E−09 1.98E−09 6.493901 0.00338 0.8514 0.037334 0.075443 0.103669 0.960977 0.175433

ET 9.718521 7.946868 8.937058 3.303009 7.479572 3.532742 3.727992 7.699429 4.874407 9.291213 6.513698 2.878026 3.056695

Rank 3 2 1 5 4 13 6 11 7 8 10 12 9

F13

Mean 5.05E−08 5.11E−11 2.27E−12 0.114684 0.002561 2.648762 0.246551 0.02783 0.487249 1.052281 0.006549 4.893821 2.342733

Best 6.18E−09 1.42E−11 5.44E−13 1.57E−08 1.42E−09 1.949438 0.031826 0.009919 0.100058 0.500205 5.54E−18 0.012249 1.205092

Std 7.54E−08 2.68E−11 1.16E−12 0.134062 0.004919 0.381937 0.207692 0.012327 0.220038 0.253877 0.010866 4.946219 0.868383

Median 2.26E−08 4.68E−11 2.35E−12 0.097372 3.66E−09 2.494033 0.221514 0.027171 0.583629 1.087803 1.83E−17 4.264547 2.307728

ET 9.253492 7.923011 8.270599 3.27416 7.552763 3.531932 3.678267 7.733775 4.754169 8.792697 6.567627 2.870053 3.094304

Rank 3 2 1 7 4 12 8 6 9 10 5 13 11

Sum rank 12 20 20 34 17 60 27 50 38 36 47 58 52

Mean rank 2 3.333333 3.333333 5.666667 2.833333 10 4.5 8.333333 6.333333 6 7.833333 9.666667 8.666667

Total rank 1 3 3 5 2 12 4 9 7 6 8 11 10
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CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F14

Mean 0.998004 6.468644 1.097407 1.974522 0.998004 9.754139 1.692637 0.998004 5.011135 1.29562 3.977845 3.596373 1.001145

Best 0.998004 1.149956 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

Std 6.62E−17 3.807911 0.305955 3.005658 7.2E−17 5.084877 0.916108 5.7E−12 4.396499 0.72687 2.839185 3.748318 0.010488

Median 0.998004 6.574582 0.998004 0.998004 0.998004 12.67051 0.998004 0.998004 2.982105 0.998004 2.890313 0.998004 0.998004

ET 8.263481 7.439983 11.49533 5.927204 12.84467 5.237797 6.893766 9.8159 5.559464 15.56081 6.505227 4.960642 5.409746

Rank 1 12 5 8 2 13 7 3 11 6 10 9 4

F15

Mean 0.000344 0.0034 0.000686 0.005788 0.006988 0.006334 0.000594 0.002723 0.002313 0.002482 0.002868 0.002183 0.010056

Best 0.000308 0.001084 0.000451 0.000307 0.00032 0.000308 0.000309 0.000308 0.000307 0.000309 0.001183 0.000307 0.001759

Std 6.05E−16 3.94E−14 1.43E−15 9.18E−14 1.03E−13 1.39E−13 3.77E−15 6.04E−14 6.17E−14 6.12E−14 2.03E−14 4.98E−14 9.09E−14

Median 0.00032 0.002026 0.000678 0.000765 0.000772 0.000487 0.000459 0.000724 0.000307 0.000316 0.002326 0.000307 0.005585

ET 1.021564 4.023251 5.574032 0.536539 1.728231 0.564211 0.637955 1.323245 0.60876 1.95416 1.90813 0.435123 0.717282

Rank 1 9 3 10 12 11 2 7 5 6 8 4 13

F16

Mean  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.02847  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163

Best  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163

Std 1.41E−16 2.28E−15 2.28E−15 2.04E−15 1.84E−15 9.74E−14 8.92E−12 3.45E−11 4.44E−14 1.32E−10 1.44E−10 1.14E−10 1.62E−10

Median  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163

ET 1.341562 3.836853 5.448002 0.452356 1.663918 0.497087 0.576034 1.14112 0.489379 1.733055 1.756584 0.328678 0.632265

Rank 1 1 1 1 1 7 2 4 3 6 1 1 5

F17

Mean 0.397887 0.397887 0.397887 0.397887 0.397887 0.397904 0.397888 0.397887 0.397888 0.400341 0.397887 0.672818 0.409121

Best 0.397887 0.397887 0.397887 0.397887 0.397887 0.397888 0.397887 0.397887 0.397887 0.397899 0.397887 0.397887 0.397887

Std 0 0 0 0 0 1.88E−16 1.68E−17 7.31E−19 4.57E−18 1.03E−13 0 6.27E−12 4.94E−13

Median 0.397887 0.397887 0.397887 0.397887 0.397887 0.397897 0.397888 0.397887 0.397888 0.397956 0.397887 0.397887 0.397891

ET 2.015974 3.879041 5.777031 0.42436 1.65395 0.482376 0.567438 1.066481 0.479291 1.579686 2.054971 0.281283 0.577906

Rank 1 1 1 1 1 5 4 2 3 6 1 8 7

F18

Mean 3 3 3 3 3 8.400016 3.000012 3 3.000008 3.000002 3 3 3.001894

Best 3 3 3 3 3 3 3 3 3 3 3 3 3

Std 1.19E−17 7.96E−27 4.2E−27 6.98E−27 1.07E−26 1.88E−10 1.72E−16 6.04E−18 6.08E−17 2.99E−17 1.92E−26 2.82E−26 3.37E−14

Median 3 3 3 3 3 3.000008 3.000006 3 3.000006 3 3 3 3.00035

ET 2.652104 3.793405 5.677689 0.379509 1.501908 0.467816 0.494053 1.017728 0.412652 1.523375 1.922881 0.264965 0.567245

Rank 1 1 1 1 1 9 7 4 6 5 3 2 8

F19

Mean  − 3.86278  − 3.86278  − 3.86278  − 3.86121  − 3.86278  − 3.86273  − 3.86002  − 3.86278  − 3.86112  − 3.86175  − 3.86278  − 3.86278  − 3.86272

Best  − 3.86278  − 3.86278  − 3.86278  − 3.86278  − 3.86278  − 3.86278  − 3.86277  − 3.86278  − 3.86278  − 3.86269  − 3.86278  − 3.86278  − 3.86278

Std 1.86E−16 2.28E−26 2.28E−26 3.23E−14 2.28E−26 3.95E−16 2.86E−14 9.56E−19 3.07E−14 2.17E−14 1.95E−26 2.03E−26 1.23E−15

Median  − 3.86278  − 3.86278  − 3.86278  − 3.86278  − 3.86278  − 3.86274  − 3.86119  − 3.86278  − 3.86275  − 3.86252  − 3.86278  − 3.86278  − 3.86277

ET 3.1452930 4.084194 5.110906 0.562827 1.844683 0.61375 0.691191 1.336033 0.618499 2.048364 2.215913 0.434463 0.743604

Rank 1 1 1 6 1 3 8 2 7 5 1 1 4

F20

Mean  − 3.322  − 3.26255  − 3.3099  − 3.24296  − 3.322  − 3.25141  − 3.24583  − 3.23852  − 3.26038  − 3.27726  − 3.322  − 3.28245  − 3.19973

Best  − 3.322  − 3.322  − 3.322  − 3.322  − 3.322  − 3.32129  − 3.32194  − 3.322  − 3.32199  − 3.31657  − 3.322  − 3.322  − 3.30608

Std 1.78E−16 6.1E−13 3.65E−13 7.89E−13 4.08E−27 1.16E−12 1.26E−12 5.61E−13 8.32E−13 4.92E−13 4.2E−27 7.22E−13 7.02E−13

Median  − 3.32199  − 3.26255  − 3.322  − 3.2031  − 3.322  − 3.31986  − 3.32047  − 3.2029  − 3.32199  − 3.30137  − 3.322  − 3.322  − 3.19502

ET 2.546312 4.168919 5.611372 0.591109 1.961109 0.666685 0.717402 1.586025 0.719107 2.123327 2.376263 0.464815 0.75444

Rank 1 5 2 9 1 7 8 10 6 4 1 3 11

F21

Mean  − 10.1532  − 6.79155  − 9.88592  − 9.31345  − 10.1532  − 6.3241  − 8.49107  − 7.87273  − 9.13554  − 6.28747  − 6.70335  − 5.2634  − 5.65214

Best  − 10.1532  − 10.1532  − 10.1532  − 10.1532  − 10.1532  − 10.1049  − 10.1531  − 10.1532  − 10.1531  − 9.91428  − 10.1532  − 10.1532  − 9.91577

Std 1.52E−16 3.81E−11 1.13E−11 2.6E−11 2.19E−15 3.21E−11 2.65E−11 2.59E−11 2.09E−11 1.83E−11 3.6E−11 3.08E−11 2.71E−11

Median  −  − 10.1532  − 10.1532  − 10.1532  − 10.1532  − 10.1532  − 4.86615  − 10.1479  − 10.1531  − 10.1528  − 6.73438  − 7.90835  − 5.0552  − 5.63103

ET 2.146528 4.163368 5.270078 0.74175 2.364909 0.742612 0.896988 1.823964 0.775067 2.447205 2.386266 0.586512 0.87221

Rank 1 8 3 4 2 10 6 7 5 11 9 13 12

F22

Mean  − 10.4029  − 10.0211  − 10.4006  − 9.25738  − 10.4029  − 7.26663  − 9.11739  − 9.60765  − 10.1367  − 8.07294  − 10.1831  − 7.0107  − 6.10828

Best  − 10.4029  − 10.4029  − 10.4029  − 10.4029  − 10.4029  − 10.3162  − 10.4029  − 10.4029  − 10.4029  − 9.75254  − 10.4029  − 10.4029  − 10.017

Std 1.12E−16 1.71E−11 9.58E−14 2.8E−11 3.65E−15 3.38E−11 2.58E−11 1.94E−11 1.19E−11 1.59E−11 9.83E−12 3.85E−11 2.61E−11

Median  − 10.4029  − 10.4029  − 10.4029  − 10.4029  − 10.4029  − 10.0266  − 10.3988  − 10.4029  − 10.4025  − 8.49275  − 10.4029  − 10.4029  − 6.26211

ET 2.165974 4.267036 5.149368 0.828738 2.47023 0.830113 0.991285 2.111943 0.881028 2.686496 2.167587 0.666191 0.974745

rank 1 6 3 8 2 11 9 7 5 10 4 12 13

Continued
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Statistical analysis. In this subsection, a statistical analysis of the performance of the CBOA compared to 
competitor algorithms is provided to determine whether the superiority of the CBOA is statistically significant. 
To provide this analysis, the Wilcoxon test of rank  sums32 with the significance level 5% has been used. In this 
test, the values of the “ p-value’’ indicate whether there is a significant difference between the means of the two 
data samples (thus, if the “ p-value’’ is less than 0.05, then between two data samples is significant difference). 
The results of the Wilcoxon test of rank sums for the CBOA and competitor algorithms are released in Table 8. 
Consequently, since all values obtained for the p-value are less than 0.05, the CBOA has a significant statistical 
superiority over all twelve compared algorithms.

Sensitivity analysis. The proposed CBOA is a stochastic optimizer that can achieve the optimal solution by 
using its members’ search power in an iteration-based process. Therefore, the values of the parameters N and T , 
which represent the number of CBOA members and the total number of iterations of the algorithm, respectively, 
affect the performance of the CBOA. To study this effect, we analyze the sensitivity of CBOA to changes in values 
of the N and T parameters in this subsection.

In the first study, to analyze the sensitivity of CBOA to the parameter N , the proposed algorithm in inde-
pendent performance for different values of the parameter N equal to 20, 30, 50, and 100 is used to optimize the 
functions of F1 to F23 . Results of this analysis are presented in Table 9, and CBOA convergence curves to opti-
mize these objective functions under the influence of the changes of the parameter N are shown in Fig. 3. Based 
on simulation results obtained from the sensitivity analysis of the parameter N , it is clear that CBOA presents 
similar results in most objective functions when the parameter N is changed, indicating that the CBOA is less 
affected by the parameter N . In other cases of the objective functions, it can be seen that when the value of the 
parameter N increases, then the values of objective functions decrease.

In the second study, to analyze the sensitivity of CBOA to the parameter T , the proposed method is imple-
mented in independent performances for different values of the parameter T equal to 200, 500, 800, and 1000 on 
the objective functions F1 to F23 . The results of this analysis are reported in Table 10, and the CBOA convergence 
curves affected by this study are plotted in Fig. 4. What is clear from the results of the CBOA sensitivity analysis 
to changes in the parameter T is that by increasing the values of the parameter T , the performance of CBOA is 
improved and as a result, the values of objective functions are decreased.

Discussion
Metaheuristic algorithms are random approaches with which their main idea employed in the optimization 
process is random search in the problem-solving space. This random search at both local and global levels is the 
key to the success of metaheuristic algorithms. In optimization studies, the local search power, which indicates 
the potential for exploitation, causes the algorithm to look for better solutions around promising candidate solu-
tions and move closer to the optimal global solution. The capability of the “exploitation phase’’ in metaheuristic 
algorithms is best tested when implemented on functions that have only one main solution. Unimodal functions 
with this feature are good options for evaluating the exploitation ability. The optimization results of unimodal 
functions F1 to F7 indicate the high exploitation capability of CBOA, especially in handling F1 to F4 , and F6 . 
Therefore, the simulation finding from the results of the unimodal functions is that the CBOA has high efficiency 
in local search and a high potential for exploitation.

The power of global search, which demonstrates the exploration potential of metaheuristic algorithms, allows 
the algorithm to scan different areas of the search space to discover the optimal global area. The capability of the 
“exploration phase’’ in metaheuristic algorithms designed for optimization can best be evaluated using optimiza-
tion problems with several local optimal solutions. Therefore, high-dimensional multimodal functions are a good 
choice for evaluating exploration ability. The implementation results of CBOA and competitor algorithms on 
functions F8 to F13 show the high exploration ability of CBOA to global search in various areas of the problem-
solving space. This CBOA capability is especially evident in the optimization results of the functions F9 and F11 . 
The finding from simulations of the CBOA and competitor algorithms on the fixed-dimensional multimodal 

Table 7.  Results of optimization of the CBOA and competitor metaheuristics on fixed-dimensional 
multimodal function.

CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F23

Mean  − 10.5364  − 9.72522  − 10.4914  − 9.79563  − 10.5364  − 6.27469  − 8.13732  − 9.05875  − 9.58937  − 7.44495  − 10.3652  − 6.10808  − 6.58071

Best  − 10.5364  − 10.5364  − 10.5364  − 10.5364  − 10.5364  − 10.4786  −  − 10.5357  − 10.5364  − 10.5363  − 9.81289  − 10.5364  − 10.5364  − 9.95588

Std 1.63E−16 2.5E−11 2.01E−12 2.29E−11 2.7E−16 3.9E−11 3.08E−11 2.69E−11 2.37E−11 2.11E−11 7.66E−12 3.77E−11 2.75E−11

Median  − 10.5364  − 10.5364  − 10.5364  − 10.5364  − 10.5364  − 5.12692  − 10.5292  − 10.5363  − 10.5357  − 8.67305  − 10.5364  − 3.83543  − 7.68126

ET 2.314952 4.380511 5.227086 0.966058 2.820167 0.956041 1.130458 2.209019 1.011938 3.055197 2.329461 0.801659 1.083483

Rank 1 6 3 5 2 12 9 8 7 10 4 13 11

Sum rank 10 50 23 53 25 88 62 54 58 69 42 66 88

Mean rank 1 5 2.3 5.3 2.5 8.8 6.2 5.4 5.8 6.9 4.2 6.6 8.8

Total rank 1 5 2 6 3 12 9 7 8 11 4 10 12
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functions F8 to F13 is that the CBOA, with its high power in global search and exploration, can avoid getting 
stuck in locally optimal solutions and identify the main optimal region.

The critical point in the capability of metaheuristic algorithms is that in addition to having the desired ability 
in exploitation and exploration, there must be a balance between these two capabilities so that the algorithm can 
find the main optimal region and converge towards the global optimal. Fixed-dimensional multimodal functions 
are good options for testing the ability of metaheuristic algorithms to strike a balance between exploitation and 
exploration. Optimizing the F14 to F23 functions shows that the CBOA has a high potential to strike a balance 
between exploitation and exploration. Based on the fixed-dimension multimodal function optimization results, 

Figure 2.  The boxplot diagram of CBOA and competitor algorithms performances on F1 to F23.
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CBOA, with its ability to balance exploitation and exploration, can first discover the main optimal region by 
global search without getting entangled in locally optimal solutions, then converge to the global optimum by 
local search. The execution time of CBOA and competing algorithms in optimizing each objective function shows 
that CBOA is faster than some competing algorithms. But some other competing algorithms, although faster, 
did not converge to the desired results. Therefore, CBOA has an acceptable execution time when optimizing 
the objective functions.

The simulation findings show that CBOA has a high quality in exploitation, exploration, and balance between 
them, which has led to its superior performance compared to similar competing algorithms.

Table 8.  Results of Wilcoxon test of rank sums.

Compared algorithm

Objective function type

Unimodal High-dimensional multimodal Fixed-dimensional multimodal

CBOA vs. CMA 1.01E−24 7.53E−03 5.75E−03

CBOA vs. DE 1.01E−24 8.25E−03 2.75E−07

CBOA vs. HBA 1.21E−11 3.91E−11 4.14E−06

CBOA vs. MPA 1.01E−24 0.170913 1.63E−14

CBOA vs. TSA 1.01E−24 1.28E−19 1.88E−32

CBOA vs. WOA 2.49E−24 5.46E−10 2.36E−31

CBOA vs. MVO 1.01E−24 1.97E−21 9.13E−25

CBOA vs. GWO 1.01E−24 3.55E−16 5.16E−25

CBOA vs. TLBO 1.01E−24 1.04E−14 1.96E−30

CBOA vs. GSA 1.01E−24 3.61E−17 0.0169847

CBOA vs. PSO 1.01E−24 1.97E−21 0.0201922

CBOA vs. GA 1.01E−24 1.97E−21 1.2E−33

Table 9.  Results of CBOA sensitivity analysis to parameter N.

Objective functions

Number of population members

20 30 50 100

F1 0 0 0 0

F2 0 0 0 0

F3 0 0 0 0

F4 0 0 0 0

F5 0.000378 0.000306 0.000144 4.23E−05

F6 0 0 0 0

F7 7.06E−05 4.26E−05 2.97E−05 1.60E−05

F8  − 11,071  − 11,416.7  − 12,119.4  − 12,504.3

F9 0 0 0 0

F10 2.84E−15 8.88E−16 8.88E−16 8.88E−16

F11 0 0 0 0

F12 5.62E−09 1.96E−09 4.14E−10 1.16E−10

F13 7.12E−08 5.05E−08 6.46E−09 1.49E−09

F14 4.194612 0.998004 0.998004 0.998004

F15 0.001348 0.000344 0.000332 0.000321

F16  − 1.03163  − 1.03163  − 1.031630  − 1.031630

F17 0.397892 0.397887 0.397887 0.397887

F18 3 3 3 3

F19  − 3.86235  − 3.86278  − 3.86278  − 3.8628

F20  − 3.30339  − 3.3220  − 3.3220  − 3.3220

F21  − 9.13349  − 10.1532  − 10.1532  − 10.1532

F22  − 10.4027  − 10.4029  − 10.4029  − 10.4029

F23  − 10.2659  − 10.5364  − 10.5364  − 10.5364
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Evaluation CEC 2017 test suite. To analyze the capability of the proposed CBOA approach in complex 
optimization problems, the proposed algorithm is implemented on the CEC 2017 test suite. This set includes 
three unimodal objective functions C1 to C3 , seven multimodal objective functions C4 to C10 , ten hybrid objec-
tive functions C11 to C20 , and ten composition objective functions C21 to C30 . Complete information and details 
of the CEC 2017 test suite are described in Ref.33. The C2 function has been removed from the CEC 2017 set due 
to its unstable behavior. The implementation results of CBOA and competitor algorithms on the CEC 2017 test 
suite are published in Table 11. Based on the analysis of simulation results, it is clear that the proposed CBOA 

Figure 3.  CBOA convergence curves in the study of sensitivity analysis to parameter N.
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approach is the first best optimizer for C1 , C3 , C4 , C6 to C8 , C10 to C20 , C22 , C24 , C25 , C27 , and C28 functions com-
pared to competitor algorithms.

CBOA for real world applications
In this section, we will show the effectiveness of CBOA in solving real-world problems. To this end, CBOA 
and competing algorithms are used in the optimization of four engineering applications: (i) pressure vessel 
design (PVD), (ii) speed reducer design (SRD), (iii) welded beam design (WBD), and (iv) structural tension/
compression springs (TCSD). Mathematical models, details, and information about these technical challenges 
are expressed for PVD in Ref.34, for SRD in Refs.35,36, and for WBD and TCSD in Ref.16. The optimization results 
of these four engineering optimization problems are published in Table 12. Based on the analysis of the results, 
it is clear that the CBOA approach is the first best optimizer in solving all four studied problems compared to 
competing algorithms.

Conclusions and future works
This paper introduced a new human-based metaheuristic algorithm called the chef-based optimization algo-
rithm (CBOA) and designed it to address optimization issues. The process of learning cooking skills by people 
who attend training cooking courses inspired the implementation of the proposed CBOA. Different phases of 
the cooking training process were mathematically modeled to design the CBOA implementation. The CBOA’s 
performance was evaluated on fifty-two benchmark functions, including seven unimodal functions, six high-
dimensional multimodal functions, ten fixed-dimensional multimodal functions, and 29 functions of the CEC 
2017 test suite The optimization results showed that CBOA could be used effectively in solving optimization 
problems due to its ability to maintain a balance between exploration and exploitation. Moreover, the simula-
tion results showed that CBOA is more efficient and competitive than the twelve compared algorithms because 
it usually provides better solutions.

Table 10.  Results of the CBOA sensitivity analysis to parameter T.

Objective functions

Maximum number of iterations

200 500 800 1000

F1 1.30E−146 0 0 0

F2 5.04E−76 8.40E−192 0 0

F3 1.10E−127 0 0 0

F4 2.46E−72 6.60E−184 4.20E−294 0

F5 0.081809 0.003117 0.000586 0.000306

F6 0 0 0 0

F7 0.00019 7.75E−05 5.91E−05 4.26E−05

F8  − 11,338.3  − 11,357.2  − 11,406.8  − 11,416.7

F9 0 0 0 0

F10 2.31E−15 1.42E−15 1.15E−15 8.88E−16

F11 0 0 0 0

F12 3.84E−05 3.66E−08 3.81E−09 1.96E−09

F13 0.000369 3.68E−07 6.48E−08 5.05E−08

F14 2.480011 2.130218 1.542754 0.998004

F15 0.001379 0.000377 0.000376 0.000344

F16  − 1.03163  − 1.03163  − 1.03163  − 1.03163

F17 0.39789 0.397888 0.397889 0.397887

F18 3 3 3 3

F19  − 3.86235  − 3.86243  − 3.86267  − 3.86278

F20  − 3.31573  − 3.31604  − 3.31603  − 3.3220

F21  − 10.1531  − 10.1531  − 10.1532  − 10.1532

F22  − 10.4027  − 10.4028  − 10.4029  − 10.4029

F23  − 10.5361  − 10.5363  − 10.5364  − 10.5364
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Figure 4.  CBOA convergence curves in the study of sensitivity analysis to parameter T.
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CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C1

Mean 101.2 3108.912 3.25E+09 1.1E+10 110.9548 1.88E+09 6,961,876 8111.161 95,212,633 1.59E+08 799.093 3387.4 12,792,740

Std 1.35E−05 3271.819 7.25E+08 1.63E+09 4.824002 1.64E+09 1,733,856 3184.727 1.68E+08 1.51E+08 789.2879 4480.944 4,907,280

ET 2.669477 1.060814 2.741406 6.984978 3.742614 1.420908 1.267498 2.243143 1.496543 5.170083 3.504213 1.654582 2.221838

Rank 1 4 12 13 2 11 7 6 9 10 3 5 8

C3

Mean 101.2 247,961.2 3.87E+09 1.06E+10 112.0599 4.74E+09 5,042,647 6350.138 92,201,634 85,680,111 606.3214 1660.034 13,171,473

Std 9.42E-06 456,774.1 1.01E+09 2.25E+09 2.827652 3.07E+09 2,196,191 2081.009 1.82E+08 30,546,657 817.5146 1234.834 12,142,481

ET 2.513491 1.052585 2.633707 6.744735 3.241847 1.349695 1.157729 1.744399 1.384935 5.078677 3.00369 1.505888 1.589703

Rank 1 6 11 13 2 12 7 5 10 9 3 4 8

C4

Mean 303.6 470.0877 6557.026 10,391.17 303.6 12,068.64 1846.57 303.6589 3291.494 763.5923 11,049.4 334.5206 15,922.03

Std 4.64E-14 257.8634 1675.101 3802.403 4.61E-11 5302.915 1378.411 0.052941 2170.273 199.4561 3332.523 7.473065 10,711.33

ET 2.607193 1.044459 2.636024 6.724772 3.308203 1.369852 1.187209 1.660072 1.4016 5.100191 2.948115 1.373677 1.653028

Rank 1 5 9 10 2 12 7 3 8 6 11 4 13

C5

Mean 414.3606 412.1832 714.3499 1431.825 404.8017 595.334 431.9613 408.4013 417.4771 414.7045 409.7174 426.738 420.6968

Std 1.926314 0.618212 105.8268 461.7888 0.003466 113.116 34.96135 1.853898 11.96904 0.592914 1.245504 36.41708 3.195525

ET 2.622783 1.029484 2.639928 6.76956 3.440196 1.349224 1.182745 1.778327 1.407783 5.035687 2.897966 1.447792 1.605425

Rank 5 4 12 13 1 11 10 2 7 6 3 9 8

C6

Mean 513.8433 524.1366 551.5381 585.3227 558.7895 576.1053 550.596 531.7634 536.8321 543.0554 564.6515 536.3466 536.4685

Std 1.321151 2.951072 7.033816 17.97259 32.28185 25.69122 27.24099 12.61261 30.47843 4.324143 8.676174 20.46161 5.170309

ET 2.752942 1.049288 2.710091 6.841018 3.405888 1.443739 1.256369 1.835352 1.504136 5.302203 3.010028 1.466968 1.725688

Rank 1 2 9 13 10 12 8 3 6 7 11 4 5

C7

Mean 607.2005 608.0567 625.7126 651.7765 667.2729 634.3909 632.5699 609.5542 608.4342 614.7151 626.0413 615.3363 618.4357

Std 0.000362 0.92784 2.462733 3.674113 23.00177 11.97368 17.37205 1.890297 0.509057 2.688245 16.833 8.893649 3.689074

ET 3.280764 1.266268 2.926952 7.050865 3.8106 1.644312 1.449149 2.069021 1.741808 5.997119 3.147501 1.675329 1.895828

Rank 1 2 8 12 13 11 10 4 3 5 9 6 7

C8

Mean 724.5491 747.7368 784.9913 821.7705 751.0584 848.1839 775.4688 741.2936 735.9656 764.4844 750.7485 743.3355 747.8592

Std 1.089227 23.78253 9.986853 13.32549 41.61996 38.82131 21.52091 15.21458 13.1403 6.219753 27.77594 9.382105 7.716694

ET 2.998274 1.138406 2.809196 7.021971 3.545909 1.495996 1.323537 1.910198 1.575269 5.486644 3.073433 1.453913 1.751502

Rank 1 5 11 12 8 13 10 3 2 9 7 4 6

C9

Mean 832.4164 818.4122 844.1283 868.3161 820.6759 862.389 849.3245 822.4432 826.8465 850.8005 831.2483 834.4307 827.8797

Std 5.688899 5.288314 6.336957 8.355853 3.767465 17.32405 14.07283 4.143453 4.726786 8.355722 7.284064 7.299423 5.822149

ET 2.763709 1.115557 2.733269 6.851644 3.439406 1.436942 1.277088 1.851924 1.524415 5.569266 2.968746 1.437815 1.79004

Rank 7 1 9 13 2 12 10 3 4 11 6 8 5

C10

Mean 910.8 940.4649 1208.774 1532.356 910.8 1437.488 1431.553 911.6781 923.8767 923.7591 982.0398 915.4483 916.4008

Std 0 35.31109 75.87706 108.8322 2.37E-08 237.4952 268.5616 1.690314 16.73681 6.150759 25.37577 5.975467 3.11235

ET 3.05801 1.160071 2.777339 6.882568 3.556943 1.515257 1.347831 2.134891 1.548243 5.434826 3.089326 1.443124 1.820621

Rank 1 8 10 13 2 12 11 3 7 6 9 4 5

C11

Mean 1286.22 1626.486 2049.993 2724.324 1453.429 2131.957 2123.707 1858.522 1798.419 2283.273 2398.428 2037.753 1787.846

Std 114.1865 402.2849 117.5223 268.4464 61.60307 302.0841 577.3136 434.7159 209.3108 313.6769 203.0563 353.1798 324.2988

ET 2.94732 1.080666 2.743516 6.831648 3.497469 1.500188 1.270246 2.487187 1.559109 5.573976 3.039886 1.479923 1.764071

Rank 1 3 8 13 2 10 9 6 5 11 12 7 4

C12

Mean 1115.37 1137.514 3098.063 4239.627 1249.513 5838.905 1168.437 1143.017 1173.114 1168.387 1155.684 1160.384 2503.703

Std 0.588853 6.537338 592.0687 2445.697 38.35352 110.5968 30.10533 23.48768 53.94393 16.13176 22.65592 15.99788 2599.637

ET 2.732119 1.070258 2.737073 6.951227 3.429757 1.440446 1.239599 1.850855 1.484072 5.379859 2.98204 1.487207 1.780409

Rank 1 2 11 12 9 13 7 3 8 6 4 5 10

C13

Mean 1242.671 2371.454 1.92E+08 7.67E+08 1376.876 1,129,898 2,558,443 1,118,413 1,538,184 5,491,479 1,108,928 8691.271 657,472.1

Std 34.81118 1339.775 1.48E+08 5.92E+08 22.58375 377,867.2 1,886,333 1,618,529 1,039,514 4,371,092 575,601.5 5641.408 398,429.3

ET 2.750974 1.159016 2.719459 6.770772 3.412868 1.434666 1.227595 1.963578 1.51061 5.446068 2.996924 1.515922 1.768249

Rank 1 3 12 13 2 8 10 7 9 11 6 4 5

C14

Mean 1321.672 1345.379 9,353,580 37,362,843 1452.289 13,745.31 8138.937 7214.729 11,095.13 18,079.89 10,847.64 7098.111 59,078.95

Std 0.905728 23.47823 14,486,856 57,908,805 53.42611 5906.827 5881.728 6188.384 3509.635 1665.486 4197.729 7394.17 91,052.23

ET 2.987458 1.140728 2.762242 6.849603 3.566721 1.508286 1.301149 2.112364 1.546674 5.534626 3.041972 1.531272 1.76199

Rank 1 2 12 13 3 9 6 5 8 10 7 4 11

C15

Mean 1420.829 1440.266 3294.843 5710.918 1569.994 3578.13 1546.269 1603.793 2446.452 1624.394 5948.724 3152.854 13,995.64

Std 2.599676 12.39114 687.4668 1133.047 51.76615 2370.315 42.81284 305.9188 1898.234 54.4611 1504.696 2813.783 10,186.7

ET 2.845627 1.206945 2.785167 6.874761 3.576565 1.517747 1.305058 2.015353 1.537448 5.567527 3.05451 1.553163 1.859887

Rank 1 2 9 11 4 10 3 5 7 6 12 8 13

Continued
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CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C16

Mean 1518.303 1540.237 7560.294 14,980.49 1659.677 7504.47 6651.267 1563.504 6211.694 1745.582 25,866.69 9674.444 4836.23

Std 0.18902 7.627427 3842.977 13,122.67 17.88227 4781.062 5421.678 13.28443 1664.527 114.6471 12,793.27 5421.193 3312.171

ET 2.761322 1.084223 2.716524 6.880903 3.401858 1.432233 1.260428 2.404585 1.466779 5.319318 3.003796 1.475542 1.672515

Rank 1 2 10 12 4 9 8 3 7 5 13 11 6

C17

Mean 1620.33 1651.546 1897.385 2072.1 1794.952 2105.687 2000.377 1854.36 1758.913 1702.789 2133.828 1971.181 1839.25

Std 0.413013 59.12325 88.70904 216.3476 42.53324 182.3609 162.1172 69.66636 94.10053 40.68201 158.7172 131.4634 60.70065

ET 2.922317 1.104349 2.750624 6.929148 3.46053 1.466667 1.256555 2.35024 1.499318 5.430021 3.026472 1.504192 1.723349

Rank 1 2 8 11 5 12 10 7 4 3 13 9 6

C18

Mean 1739.769 1759.38 1809.104 1849.202 1940.462 1831.594 1874.797 1875.756 1794.966 1783.928 1880.1 1777.377 1781.317

Std 9.390864 19.15441 17.27001 12.63976 69.12122 12.20181 54.70165 88.60647 75.1563 10.82718 124.9458 6.216098 2.739942

ET 3.422864 1.373381 2.961349 7.028175 3.942321 1.707681 1.543518 2.528669 1.731379 6.260958 3.26785 1.687528 1.957027

Rank 1 2 7 9 13 8 10 11 6 5 12 3 4

C19

Mean 1822.393 1843.219 1,555,684 6,182,483 1980.379 12,953.85 25,158.44 22,596.97 21,467.39 31,882.7 10,407.72 23,605.32 13,773.29

Std 0.654604 10.52135 2,046,315 8,174,037 64.62466 3980.99 15,769.55 12,776.37 15,003.12 6443.527 2530.639 21,206.51 7131.201

ET 2.914595 1.113373 2.765405 6.883858 3.491219 1.497679 1.288268 2.305685 1.562607 5.506185 3.025709 1.527084 1.736712

Rank 1 2 12 13 3 5 10 8 7 11 4 9 6

C20

Mean 1923.272 1928.873 226,966.5 763,650 2131.778 136,058.9 37,628.15 1938.779 5703.18 4957.527 43,724.1 26,929.86 6569.977

Std 0.369818 4.100448 196,422.4 717,757.5 29.81473 154,801.6 24,971.29 7.622458 6158.53 5637.36 23,097.21 37,993.29 3433.467

ET 5.681011 2.198231 3.872663 7.996336 5.715268 2.626269 2.383587 3.433651 2.66522 8.937754 4.250877 2.666788 2.843785

Rank 1 2 12 13 4 11 9 3 6 5 10 8 7

C21

Mean 2067.076 2067.046 2197.937 2265.97 2031.928 2248.994 2248.143 2175.404 2208.342 2102.103 2299.254 2207.326 2078.461

Std 12.47033 23.77396 41.12687 60.83282 9.028956 98.45771 98.31852 89.32691 56.29458 9.756751 83.94788 30.1848 11.08937

ET 3.495783 1.364452 3.013562 7.143803 3.98272 1.719226 1.574374 2.453979 1.822637 6.275645 3.285749 1.73905 1.986589

Rank 3 2 7 12 1 11 10 6 9 5 13 8 4

C22

Mean 2226.4 2284.466 2324.208 2299.285 2458.014 2362.314 2345.687 2284.106 2349.418 2334.645 2409.16 2355.396 2332.995

Std 1.12E-05 64.10826 16.92359 32.51713 90.23298 76.53896 67.04678 66.63367 4.098373 69.9699 15.79384 8.338653 52.5004

ET 3.450832 1.401169 2.995836 7.09781 3.970771 1.713638 1.508972 2.28657 1.765494 6.173443 3.298679 1.661932 1.972283

Rank 1 3 5 4 13 11 8 2 9 7 12 10 6

C23

Mean 2347.789 2331.702 2611.25 2996.763 2327.955 2777.291 2353.455 2312.14 2336.94 2348.862 2327.6 2342.014 2347.076

Std 32.62054 1.802696 88.39054 165.7393 0.319001 229.1817 5.979814 40.81921 10.56695 8.954942 4.84E-11 23.3774 3.410703

ET 3.98756 1.527526 3.143476 7.226233 4.214015 1.932928 1.632912 2.323814 1.882882 6.522159 3.433647 1.846398 2.072976

Rank 8 4 11 13 3 12 10 1 5 9 2 6 7

C24

Mean 2640.107 2660.734 2703.659 2740.655 2696.217 2765.507 2684.208 2697.026 2776.933 2677.491 2839.94 2679.387 2692.296

Std 1.129135 10.68091 22.13161 35.48547 107.6211 65.64839 22.30794 78.50251 174.1397 9.670808 104.13 9.485398 14.66617

ET 4.261043 1.473416 3.139665 7.218091 4.388387 1.931915 1.671435 2.36283 1.931631 6.710749 3.452823 1.886706 2.105212

Rank 1 2 9 10 7 11 5 8 12 3 13 4 6

C25

Mean 2530 2659.97 2764.229 2900.871 2743.203 2703.2 2803.692 2719.557 2790.813 2798.492 2832.176 2809.082 2762.881

Std 6.57E-05 149.894 59.07219 41.23084 152.7406 166.5024 19.6523 126.547 18.09781 3.569194 100.1059 14.21019 140.1599

ET 4.214127 1.531454 3.208993 7.275993 4.411459 1.908476 1.737936 2.390203 2.116833 6.843712 3.484969 1.996938 2.187695

Rank 1 2 7 13 5 3 10 4 8 9 12 11 6

C26

Mean 2939.972 2957.344 3115.494 3342.127 2932.516 3186.417 2940.533 2956.37 2974.419 2968.799 2956.556 2957.712 2989.152

Std 77.54716 27.48258 116.453 66.54141 1.89E-08 385.9018 104.3606 27.47506 13.34528 20.98996 25.60616 27.44166 9.921065

ET 3.678597 1.413734 3.093918 7.17875 4.198947 1.909976 1.591243 2.284097 1.870087 6.480475 3.367676 1.786583 2.05537

Rank 2 6 11 13 1 12 3 4 9 8 5 7 10

C27

Mean 2862.955 2948.384 3467.513 3866.638 2909.502 3719.161 3242.777 2934.961 3332.336 3268.472 3981.274 2939.218 2931.771

Std 96.9765 91.33146 162.0792 310.1073 50.59636 598.8449 317.2958 0.038934 469.9391 488.6216 777.5515 89.98807 221.6715

ET 4.780488 1.621275 3.294333 7.413718 4.558512 2.093386 1.800535 2.440357 2.04527 7.057821 3.533837 1.97621 2.317277

Rank 1 6 10 12 2 11 7 4 9 8 13 5 3

C28

Mean 3126.15 3145.346 3202.102 3280.69 3375.87 3224.543 3241.297 3128.888 3155.531 3154.422 3275.144 3177.256 3203.298

Std 0.15309 10.0279 25.45743 142.6992 96.13972 58.84485 12.56083 2.689293 44.05881 40.76261 16.32711 39.49311 45.82105

ET 4.966231 1.564901 3.300359 7.489424 4.652527 2.036375 1.848247 2.489605 2.105183 7.322945 3.630412 2.008709 2.266859

Rank 1 3 7 12 13 9 10 2 5 4 11 6 8

C29

Mean 3199.763 3244.848 3547.719 3875.438 3137.2 3665.733 3340.237 3287.983 3403.426 3381.846 3518.427 3360.736 3296.269

Std 20.83825 126.6863 76.36163 71.49689 7.51E-05 215.8928 133.0303 174.2557 109.7254 91.61967 15.96006 105.1771 194.2335

ET 4.246133 1.48251 3.205908 7.422436 4.429292 1.928158 1.74264 2.408991 1.988376 6.931333 3.541678 1.885937 2.195382

Rank 2 3 11 13 1 12 6 4 9 8 10 7 5
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In addition, the employment of the CBOA on four engineering optimization issues demonstrated the high 
ability of the proposed approach to address real-world applications.

The proposed CBOA algorithm is a stochastic approach and therefore has some shortages and limitations. As 
with all metaheuristic algorithms, there is no guarantee that the solutions obtained from the CBOA for optimiza-
tion problems are equal to the global optima of those problems. Although the CBOA has provided reasonable 
solutions to most of the objective functions studied in this paper, according to the NFL theorem, there are no 
preconditions for its successful implementation in all optimization applications Therefore, of course, there is a 
shortage and limitation of the proposed CBOA that its application may fail in some optimization problems. Also, 
it is always possible that researchers will design newer metaheuristic algorithms to provide better solutions to 
real optimization problems than existing algorithms, such as the proposed CBOA method.

The introduction of the CBOA opens research directions and tasks for future work. The most specific research 
potential for the CBOA is the development of binary and multi-objective versions of this proposed approach. 
The employment of CBOA in optimization applications in various sciences and real-world challenges are other 
proposals in this paper.

Data availability
All data generated or analyzed during this study are included directly in the text of this submitted manuscript. 
There are no additional external files with datasets.

CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C30

Mean 3242.31 3218.034 3313.113 3434.28 3175.212 3283.043 3405.644 3246.523 3314.547 3257.359 3402.368 3315.496 3284.129

Std 13.50853 18.88143 44.05249 77.70265 3.260145 62.57449 118.6531 66.40669 98.04684 35.42945 210.7321 89.40796 44.90439

ET 4.240703 1.678074 3.287334 7.449646 4.542081 2.003263 1.783916 2.439172 2.014811 7.115835 3.578222 1.984954 2.229906

Rank 3 2 8 13 1 6 12 4 9 5 11 10 7

Sum rank 52 89 278 347 138 294 246 129 206 203 262 192 203

Mean rank 1.793103 3.068966 9.586207 11.96552 4.758621 10.13793 8.482759 4.448276 7.103448 7 9.034483 6.62069 7

Total rank 1 2 10 12 4 11 8 3 7 6 9 5 6

Table 11.  Assessment results of the IEEE CEC 2017 objective functions.

Table 12.  Assessment results of engineering optimization applications.

CBOA CMA DE HBA MPA TSA WOA MVO GWO TLBO GSA PSO GA

PVD

Mean 5882.405 5884.773 6041.266 6120.411 5891.389 5895.471 6069.081 6481.645 6331 6845.126 6268.202 6648.439 6429.323

Best 5883.117 5884.772 6033.975 6112.525 5916.011 5919.822 5921.851 6042.598 6169.107 11,610.02 5920.786 6583.892 6392.769

Std 23.71331 31.13375 31.20048 38.25817 28.94939 13.91933 66.66323 327.2262 126.6938 5794.505 496.4605 657.9637 351.4736

Median 5886.142 5887.641 6039.357 6118.226 5890.172 5894.597 6420.413 6401.767 6322.551 6842.214 6116.786 7591.092 6904.266

ET 1.123067 1.741255 1.602954 3.711218 2.214646 0.964079 0.87132 1.204496 0.994188 3.465667 1.770839 0.942969 1.097691

Rank 1 2 5 7 3 4 6 11 9 13 8 12 10

SRD

Mean 2999.639 3000.889 3000.081 3001.774 3011.639 3003.451 3009.664 3109.197 3032.689 3069.812 3174.361 3190.57 3299.515

Best 2996.001 2996.084 2996.082 2996.126 3004.747 3001.46 3004.2 3008.679 3005.841 3033.503 3054.081 3070.537 3031.941

Std 1.623508 4.163184 2.014972 5.218941 10.36777 1.934384 5.845356 79.73926 13.03514 18.09716 92.6902 17.14034 57.09594

Median 2998.672 3000.33 2999.746 3000.341 3010.25 3002.997 3008.336 3109.197 3030.877 3069.503 3160.762 3202.25 3292.835

ET 1.090244 0.810638 1.647167 3.706859 2.279256 1.046693 0.900268 1.220179 1.022635 3.528911 1.766919 0.988105 1.158639

Rank 1 3 2 4 7 5 6 10 8 9 11 12 13

WBD

Mean 1.696107 1.726626 1.726898 1.703194 1.891812 1.728636 1.729938 2.233938 1.732494 1.820613 2.548378 2.122687 1.765745

Best 1.724628 1.724686 1.724629 1.672383 1.865877 1.727431 1.728767 1.822263 1.727242 1.760978 2.175088 1.875894 1.838134

Std 0.004327 0.007131 0.005122 0.017423 0.007959 0.000287 0.001159 0.325054 0.004874 0.027587 0.256276 0.034876 0.139712

Median 1.725382 1.72563 1.7256 1.726194 1.883295 1.728595 1.729897 2.248315 1.73023 1.823089 2.499173 2.10046 1.938897

ET 1.125416 0.700585 1.497918 3.548905 1.985386 0.856819 0.754486 1.143285 0.882747 3.086722 1.64934 0.830966 0.986142

Rank 1 3 4 2 10 5 6 12 7 9 13 11 8

TCSD

Mean 0.012685 0.012715 0.012696 0.01279 0.013888 0.012793 0.012806 0.014945 0.014588 0.01295 0.013554 0.014156 0.013182

Best 0.012663 0.012705 0.012664 0.012758 0.013208 0.012776 0.01278 0.013299 0.01292 0.012812 0.012977 0.013141 0.012879

Std 0.001022 0.006146 0.001566 0.007412 0.006136 0.005667 0.004189 0.002292 0.001636 0.007825 0.000289 0.002091 0.000378

Med 0.012682 0.01271 0.01269 0.01278 0.013766 0.012796 0.012809 0.013306 0.014141 0.012955 0.013482 0.013113 0.013063

ET 1.191738 0.828262 2.062968 5.196861 2.595398 1.102364 0.942416 1.76268 1.124489 4.072516 2.269854 1.128144 1.292512

Rank 1 3 2 4 10 5 6 13 12 7 9 11 8
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Code availability
The source code of the CBOA is available at: https:// uk. mathw orks. com/ matla bcent ral/ filee xchan ge/ 114480- 
chef- based- optim izati on- algor ithm- cboa.
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