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A probability prediction method 
for the classification of surrounding 
rock quality of tunnels 
with incomplete data using 
Bayesian networks
Junjie Ma 1,2, Tianbin Li1,2*, Xiang Li1,2, Shuanglong Zhou1,2, Chunchi Ma1,2, 
Daqiang Wei1,2 & Kunkun Dai1,2

The classification of surrounding rock quality is critical for the dynamic construction and design of 
tunnels. However, obtaining complete parameters for predicting the surrounding rock grades is 
always challenging in complex tunnel geological environment. In this study, a new method based on 
Bayesian networks is proposed to predict the probability for the classification of surrounding rock 
quality of tunnel with incomplete data. A database is collected with 286 cases in 10 tunnels, involving 
nine parameters: rock hardness, weathering degree, rock mass integrity, rock mass structure, 
structural plane integrity, in-situ stress, groundwater, rock basic quality, and surrounding rock level. 
Moreover, the Bayesian network structure is built using the collected database and quantitatively 
verified by strength analysis. Then, the accuracy, precision, recall, F-measure and receiver operating 
characteristic (ROC) curves are utilized for model evaluation. The average values of accuracy, 
precision, recall, F-measure, and area under the curve (AUC) are approximately 89.2%, 91%, 92%, 
91%, and 0.98, respectively. These results indicate that the established classification model has high 
accuracy, even with small sample size and imbalanced samples. Ten additional sets of tunnel cases 
(incomplete data) are also used for verification. The results reveal that compared with the traditional 
Q-system (Q) and rock mass rating (RMR) classification methods, the proposed classification model 
has the lowest error rate and is capable of using incomplete data to predict sample results. Finally, 
sensitivity analysis suggests that the rock hardness and rock mass integrity have the strongest impact 
on the quality of tunnel surrounding rock. Overall, the findings of this study can serve as a useful 
reference for future rock mass quality evaluation in tunnels, underground powerhouses, slopes, etc.

List of symbols
Rc  Saturated uniaxial compressive strength
kr  Wave velocity ratio
kf  Weathering coefficient of rock
Kv  Rock mass integrity coefficient
Vpm  Elastic longitudinal wave velocity of rock mass
Vpr  Elastic longitudinal wave velocity of rock (block)
Jv  Volume joint number of rock mass
σmax  Maximum initial stress perpendicular to the hole axis
p  Water pressure of surrounding rock fissures
q  Water output per 10 m hole length
W  Weathering degree
D  Structural plane integrity
S  Rock mass structure
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H  Rock hardness
C  Rock mass integrity
I  In-situ stress
B  Basic quality of rock mass (BQ)
G  Groundwater
L  Surrounding rock level
A  A hypothetical space point
T  A hypothetical space point
K1  Correction factors for groundwater
K2  Correction factors for most unfavorable structural plane attitude
K3  Correction factors for initial geo-stress field
TP  True positive
FN  False negative
FP  False positive
TN  True negative

Rock mass classification is widely used for assessing rock quality and performance based on the inherent struc-
tural parameters. According to the nature and requirements of engineering applications, the mechanical and 
geological properties of the rock mass are comprehensively considered in the classification of its  quality1. In 
tunnel engineering, this process is called the classification of tunnel surrounding rock quality, which is one of 
the most important methods to evaluate the stability of surrounding rocks of tunnels, and it also plays a crucial 
role in the optimization of tunnel construction plan and design parameters. Since the 1920s, rock mass qual-
ity classification has received considerable research attention, and numerous classification methods have been 
 proposed2–9. Table 1 lists several internationally recognized classification methods. Since the twenty-first century 
has witnessed a rapid development of underground engineering, especially the construction of a large number 
of deep-buried and ultra-long tunnels, the challenges encountered in the classification of tunnel surrounding 
rock quality must be urgently resolved. Therefore, it is necessary to further test the applicability of commonly 
used methods in tunnel construction and to develop new interdisciplinary methods for predicting the quality 
of surrounding rocks in tunnels and other underground projects.

The predictive classification of tunnel surrounding rock quality can be divided into long-term and short-term 
prediction. The long-term prediction aims to assess the quality of surrounding rock in the initial tunnel design 
stage and provide a reference for the preliminary design of  tunnel14. It is generally used to provide a preliminary 
assessment of the basic quality (BQ) of rock mass based on its strength and integrity. The short-term prediction 
aims to evaluate the quality of surrounding rock in real-time based on various geological information revealed 
by tunnel excavation, which can serve as a reference for the dynamic design of tunnel  support14. This study 
focuses on short-term classification prediction of tunnel surrounding rock quality, and it also utilizes long-term 
prediction.

Artificial intelligence (AI) was proposed at the Dartmouth Conference in 1956. Since then, it has been 
widely used in civil engineering applications, such as the prediction of pile bearing  capacities15, peak particle 
 velocity16, tunnel boring machine (TBM) penetration  rate17, safety  factor18, rock tensile  strength19, Schmidt 
hammer rebound  numbers20, and compressive strength of  mortars21. Further, different AI algorithms have been 
employed for the prediction of rock mass classification, such as fuzzy  mathematics22,23, neural  networks24,25, sup-
port vector  machines26,27, and random  forest28. However, most of the existing intelligent rock mass classification 
methods focus on the construction stage (short-term prediction of rock mass quality), while the design stage 
is often ignored (long-term prediction of rock mass quality). More importantly, these existing methods require 
complete rock mass parameters to predict the rock mass quality. Due to the complex geological environment at 
the tunnel construction site, it is difficult to obtain the complete surrounding rock parameters. Therefore, it is 
imperative to further verify the applicability of the existing intelligent classification methods for surrounding 
rock quality.

The main problem in using the existing methods to predict the quality of tunnel surrounding rock is the 
difficulty in obtaining the indicators and missing data. Further, the geological information revealed by under-
ground engineering excavation has great uncertainty. To solve this problem, Bayesian networks (BNs) have been 
introduced in intelligent surrounding rock classification (SRC). The advantage of BNs is that they can handle 
the conditional dependence between observed or unobserved random variables in the statistical model and can 
provide accurate probabilistic predictions based on a limited dataset. Therefore, BNs are widely used in pat-
tern recognition, classification, and decision-making  problems29. Furthermore, they are becoming increasingly 
popular in environmental  science29,  medicine30,31,  agriculture32, and industrial  fields33,34, and they are also being 
used in rock mechanics and rock  engineering35–38. Notably, to establish a BN model, it is crucial to determine a 
reasonable BN structure. However, in the existing studies on BNs, the network structure is automatically gen-
erated by software or established by qualitative analysis. Therefore, it is necessary to quantitatively analyze the 
rationality of the network structure in future research.

For our analysis, we have compiled a case database containing 286 sets of data from 10 different tunnels with 
nine parameters: rock hardness, weathering degree, rock mass integrity, rock mass structure, structural plane 
integrity, in-situ stress, groundwater, rock basic quality, and surrounding rock level. Then, Bayesian search and 
expectation–maximization (EM) algorithms are used to learn the (SRC-BN) structure and parameters, respec-
tively. Moreover, strength analysis is utilized to quantify the rationality of the learned SRC-BN structure. In 
addition, we examine and revise the learned conditional probability tables (CPTs) based on the expert experi-
ence, thereby improving the performance of the SRC-BN model in the case of small sample size and imbalanced 
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samples. Finally, ten-fold cross-validation method and confusion matrix (including accuracy, precision, recall, 
F-measure, and receiver operating characteristic (ROC) curves) are used to evaluate the performance of the 
model. Furthermore, ten sets of other underground engineering cases are used to verify the feasibility of proposed 
SRC-BN model, and sensitivity analysis is employed to evaluate the importance of each input parameter in the 
model. The specific workflow of this study is shown in Fig. 1. The SRC-BN model can probabilistically predict 
the quality grade of tunnel surrounding rock with incomplete data. Moreover, the SRC-BN model overcomes 
the influence of small and unbalanced samples on the accuracy of SRC. In general, this probabilistic method for 
predicting rock mass quality grades is of immense significance for tunnel and underground engineering applica-
tions under the condition of large buried depth and high in-situ stress.

Predictive analysis and data set description
Inputs of SRC-BN. Since 1920, numerous methods have been proposed for rock mass  classification39. The 
internationally acceptable methods for evaluating the rock mass quality include rock structure rating (RSR), 
rock mass rating (RMR), Q-system (Q), geological strength index (GSI), and modified basic quality ([BQ]) clas-
sification methods, etc. The indicators of these classification methods are shown in Table 1. According to the 

Table 1.  Rock mass quality classification methods.

Method Origin Indictors

RSR Wickham et al.5 Rock type, rock hardness, geologic structure, joint spacing, joint attitude, direction of tunnel drive, 
groundwater

RMR Bieniawski6 Rock strength, rock quality designation (RQD), joint spacing, joint state, groundwater, relationship 
between joint attitude and tunnel axis

Q Barton10 RQD, joint set number, joint roughness number, joint alteration number, joint water reduction factor, 
stress reduction factor

RMi Palmstrøm8 Uniaxial compressive strength of rock, joint state

GSI Hoek and  Brown11 Rock mass structure, structural surface characteristics

HC Gong et al. 12 Rock strength, rock mass integrity, groundwater, state of main structural plane, relationship between 
structural plane attitude and tunnel axis

[BQ] Chen et al.13 Rock strength, rock mass integrity, groundwater, in-situ stress, relationship between weak structural plane 
attitude and tunnel axis

Figure 1.  Workflow of the SRC-BN model.
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existing studies on rock mass quality classification, the main influencing factors can be divided into physical and 
mechanical properties of rock, rock mass structural states, and other geological environment factors, as shown 
in Fig. 2.

Tunnel excavation is a dynamic process, and the changes in underground geological conditions are also 
uncertain. Therefore, the quality evaluation of tunnel surrounding rock is a dynamic probabilistic problem. BN 
is a powerful method to dynamically deal with datasets containing multiple variables and missing data as well 
as with conditional dependencies among the variables. It can also be used to quickly calculate the posterior 
probability of each state of the target node. It can be seen from Table 1 and Fig. 2 that the main factors affect-
ing the surrounding rock quality of tunnels are rock hardness, rock integrity, in-situ stress, and groundwater. 
Hence, based on previous  work14, we consider seven parameters that have a direct or indirect impact on the 
tunnel surrounding rock quality evaluation: weathering degree, rock hardness, structural plane integrity, rock 
mass structure, rock mass integrity, in-situ stress, and groundwater. Another parameter called BQ is used as an 
intermediate variable or as a categorical variable in the network. A brief description of these parameters and 
their acquisition methods are presented in the following subsections.

Rock hardness. Rock hardness is an important indicator to measure the quality of rock mass. The harder the 
rock, the better the rock  quality40. The rock hardness can be measured by qualitative or quantitative methods, 
as shown in Table 2. The qualitative assessment is mainly based on the sound and rebound of geological ham-
mer hitting the rock and the rock condition after immersion. The quantitative measurement of rock hardness is 
based on the saturated uniaxial compressive strength (Rc) of rock. Rc can be obtained by uniaxial compressive 

Figure 2.  Classification of factors affecting rock mass quality.

Table 2.  Qualitative and quantitative categorization of rock hardness.

Hardness Qualitative characteristics Rc (MPa)

Hard The hammering sound is crisp with rebound, shaking hands, harder to break; after soaking in water, usually 
there is no water absorption reaction (60, 250]

Slightly hard The hammering sound is slightly crisp with slightly rebound, slightly shaking hands, hard to break; after 
soaking in water, slight water absorption reaction (30, 60]

Slightly soft The hammering sound is not clear and crisp, no rebound, easy to break; after soaking in water, nails can be 
imprinted (15, 30]

Soft The hammering sound is dumb, no rebound, dents, easier to break; after soaking in water, the hand can be 
broken (5, 15]

Extremely soft The hammering sound is dumb, no rebound, deep dents, and the hands can be crushed; after soaking in 
water, it can be crushed into a ball (0, 5]
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strength test. The point load strength or rebound value of the rock can also be measured on site, and finally Rc is 
calculated by using empirical  formula41,42. We recommend using on-site point load test or rebound test to obtain 
the Rc value indirectly and quantitatively.

Weathering degree. The weathering degree refers to the degree of damage to the rock by weathering. The higher 
the weathering degree, the lower the rock strength. The weathering degree is also often used to classify the sur-
rounding rock quality of  tunnels43. The qualitative and quantitative classification criteria of rock weathering 
degree are shown in Table 3. Qualitative classification is a comprehensive judgment based on the characteristics 
of rock structure, mineral composition, degree of fragmentation, etc. Quantitative classification is based on the 
wave velocity ratio (kr) or weathering coefficient (kf) of the  rock44. kr refers to the ratio of compressional wave 
velocity between weathered rock and fresh rock. kf refers to the ratio of the saturated uniaxial compressive 
strength between weathered rock and fresh rock.

Rock mass integrity. The rock mass integrity is one of the most important parameters that affect the tunnel 
surrounding rock  quality45. The rock mass integrity reflects the development of structural planes, including 
the number of joint sets, joint spacing, and the degree of combination of main structural planes that affect the 
stability of the surrounding rock. The quantitative classification of rock mass integrity is shown in Table 4. This 
classification is based on the rock mass integrity coefficient (Kv). Kv is the square of the ratio of elastic longitu-
dinal wave velocity (Vpm) of rock mass to the elastic longitudinal wave velocity (Vpr) of rock (block)44. In actual 
engineering, it is more common to measure the volume joint number (Jv) of the rock mass to obtain the Kv value 
and finally obtain the rock mass integrity. It is worth noting that the unit of Jv is number of joints per  m3.

Rock mass structure. The rock mass structure is composed of structural plane and structural body, which 
reflects the development degree of structural plane and the fragmentation of rock mass. The structural plane 
is divided into weak plane surface and hard structural plane. The structural body is divided into block shape 
and plate shape according to the mechanical action. Structural plane and body are combined and arranged dif-
ferently in the rock mass to form different types of structures. The rock mass structure can be comprehensively 
judged according to the rock mass integrity, characteristics of rock mass, and development of structural plane. 
Determination of the type of rock mass structure plays an important role in evaluating the stability of the rock 
mass under engineering loads. The Chinese hydropower industry has proposed the classification and semi-
quantitative identification methods of rock mass structure (see Table 5)44.

Structural plane integrity. Structural plane integrity is comprehensively assessed according to the opening 
degree, roughness, and filling of the structural plane. It reflects the characteristics of the structural surface, 
including the degree of opening and filling, and it is closely related to the rock mass integrity. Rock mass with 
good integrity usually has a better degree of structural plane integration. The Ministry of Water Resources of the 
People’s Republic of China (2014) proposed a semi-quantitative classification standard for the structural plane 
 integrity44, as shown in Table 6.

In‑situ stress. In-situ stress is the stress confined in a rock formation before excavations or other perturbations. 
It is an important mechanical property, which affects the bearing capacity of rock mass. For rock mass existing 
in a certain in-situ stress environment, the greater the confining pressure formed by in-situ stress, the greater the 
bearing capacity of rock  mass46. At the same time, under high in-situ stress conditions, hard rocks are prone to 

Table 3.  Qualitative and quantitative classification of rock weathering degree.

Degree Qualitative characteristics kr kf
Fresh The rock structure does not change, and the rock quality is fresh (0.9, 1.0] (0.9, 1.0]

Slight The rock structure, mineral composition, and color are basically unchanged, and some fracture surfaces 
contain iron and manganese or are slightly discolored (0.8, 0.9] (0.8, 0.9]

Medium The rock structure is partially destroyed; the mineral composition and color are obviously changed, and 
the fracture surface is severely weathered (0.6, 0.8] (0.4, 0.8]

Severe Most of the rock structure is destroyed, and the mineral composition and color are obviously changed. 
The feldspar, mica, and iron-magnesium minerals are weathered and altered (0.4, 0.6] (0, 0.4]

Extreme
The rock structure is completely destroyed, disintegrated, and decomposed into loose soil or sand. All 
minerals are discolored, and the luster disappears. Most of the minerals except quartz particles are 
weathered and eroded into secondary minerals

[0.2, 0.4] –

Table 4.  Quantitative classification of rock mass integrity.

Rank Complete Slightly complete Slightly broken Broken Extremely broken

Jv [0, 3) [3, 10) [10, 20) [20, 35) [35, + ∞)

Kv (0.75, 1] (0.55, 0.75] (0.35, 0.55] (0.15, 0.35] (0, 0.15]
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rockburst disasters, while soft rocks are prone to large deformation  disasters47,48. Therefore, the in-situ stress has 
a significant influence on the quality of tunnel surrounding rock. The internationally popular Q and [BQ] meth-
ods consider the correction of in-situ stress to evaluate the surrounding rock quality. The quantitative classifica-
tion of in-situ stress is shown Table 7. Here, σmax is the maximum initial stress perpendicular to the hole axis.

Groundwater. As an important environmental factor, groundwater affects the deformation and destruction of 
rock mass, thereby influencing its stability. Expansive soft rock is a disaster for underground engineering, and 
its mechanical properties depend on the degree of interaction between soft rock and water. It can be seen from 
Table 1 that the methods such as Q, RMR, and [BQ] also consider the impact of groundwater on the surrounding 
rock quality. However, in most methods, the impact of groundwater on the surrounding rock quality is evaluated 
by quantifying the water pressure, which is often impossible in actual engineering applications. Therefore, based 
on engineering experience, a qualitative description of different water emergence conditions from the tunnel 
excavation surface is presented in Table 8, where p is the water pressure of surrounding rock fissures (MPa), and 
q is the water output per 10 m hole length (L/min∙10 m).

Table 5.  Classification of rock mass structure.

Type Subtype Characteristics of rock mass structure

Block structure

Integral structure The rock mass is complete with huge-block shape and undeveloped structural plane, and the spacing is greater than 
1 m

Block structure The rock mass is slightly complete with block shape and slightly developed structural plane, and the spacing is gener-
ally 1–0.5 cm

Fractured block structure The rock mass is slightly complete with fractured block shape and moderately developed structural plane, and the spac-
ing is generally 0.5–0.3 m

Layered structure

Extremely-thick layered structure The rock mass is complete with extremely-thick layered shape and no developed layers, and the spacing is greater than 
1 m

Thick layered structure The rock mass is slightly complete with thick layered shape and slightly developed layers, and the spacing is generally 
1–0.5 cm

Medium-thick layered structure The rock mass is slightly complete with medium-thick layered shape and moderately developed layers, and the spacing 
is generally 0.5–0.3 cm

Interlayer structure The rock mass is slightly complete or has poor integrity with inter-layered shape and slightly developed or developed 
layers, and the spacing is generally 0.3–0.1 m

Thin layered structure The rock mass has poor integrity with thin-layered shape and developed layers, and the spacing is generally less than 
0.1 m

Mosaic structure The rock mass integrity is poor, the rock blocks are tightly embedded, and the structural plane is slightly developed to 
developed. The spacing is generally 0.3–0.1 m

Fragmented structure The rock mass is broken, the structural plane is well developed, and the spacing is generally less than 0.1 m

Granular structure The rock mass is broken. Rocks, cuttings, and mud are mixed together

Table 6.  Classification and characteristics of the structural plane integrity.

Integration degree Characteristics

Good
(1) The opening degree of structural plane is less than 1 mm, and the filling is siliceous, iron, or calcium cement. 
Otherwise, the structure plane is rough and there is no filling
(2) The opening degree of structural plane is 1–3 mm, and the filling is siliceous or iron cement
(3) The structural plane is rough and the opening degree is greater than 3 mm, and the filling is siliceous cement

Ordinary

(1) The structural plane is straight and the opening degree is less than 1 mm, and the filling material is cement with 
calcareous mud or there is no filling material
(2) The opening degree of the structural plane is 1–3 mm, and the filling is calcium cement
(3) The structural plane is rough and the opening degree is greater than 3 mm, and the filling is iron or calcium 
cement

Bad
(1) The structural plane is straight and the opening degree is 1–3 mm, and the filling is argillaceous cement or 
calcium argillaceous cement
(2) The opening degree of structural plane is greater than 3 mm, and the filling is mostly muddy or rock debris

Very bad The filling is muddy or mud with rock cuttings, and the thickness is greater than the undulation difference

Table 7.  Classification of in-situ stress.

Level Low Medium High Extremely high

Rc/σmax [9, + ∞) [7, 9) [4, 7) (0, 4)
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Rock mass basic quality. The [BQ] method uses the hardness and the integrity of rock mass to make a prelimi-
nary assessment of its quality. The classification of BQ is shown in Table 9. The [BQ] method is widely used in 
China, where the determination of BQ value is the basis for the final quality assessment of tunnel surrounding 
rock. BQ is also crucial for the preliminary design of the initial support structure of tunnel. Generally, due to the 
urgency of tunnel construction, the strength and integrity of rock mass are not determined early enough at the 
construction site. In the tunnel design stage, the quality grade of tunnel surrounding rock is often judged pre-
liminarily. When the strength and integrity of rock mass are not measured, the surrounding rock quality grade 
obtained from the tunnel design stage can be input as the BQ value into the model. In this way, more parameters 
can be input in the SRC-BN model to improve its reliability. Similarly, in the tunnel planning stage, the strength 
and integrity of rock mass can be approximated based on the geological information revealed by the borehole, 
and then the BQ value can be preliminary assessed using the proposed SRC-BN model.

Description of database. We have collected a tunnel surrounding rock quality evaluation database con-
taining nine parameters: rock hardness, weathering degree, rock mass integrity, rock mass structure, structural 
plane integrity, in-situ stress, groundwater, BQ and surrounding rock level. In this database, BQ are expressed in 
terms of the quality grade and not the quality score of the surrounding rock. Surrounding rock level is the quality 
grade of surrounding rock referenced by the actual support at the tunnel construction site. In the construction of 
traffic tunnels in China, surrounding rock level is mainly determined by [BQ] method (see Appendix A for [BQ] 
method). The parameter BQ can be used as an intermediate or categorical parameter in the established SRC-BN 
structure. Most of tunnel surrounding rock quality evaluation cases have been collected from  Niu14, and a few 
cases are from unpublished scientific reports. These data enabled us to compile a new database of tunnel sur-
rounding rock quality, which is used in our analysis. The database has a total of 286 cases, which are from ten 
typical tunnels in China (Niba mountain tunnel, Zhegu mountain tunnel, Erlang mountain tunnel, Wangjian-
gling tunnel, Zaozilin tunnel, Longxi tunnel, Futang tunnel, Miyaluo #3 tunnel, Shiziping tunnel, and Micang 
mountain tunnel). Figure 3 shows the distribution of nine parameters in the 286 cases. Our database covers a 
wide range of values for these nine parameters. Therefore, in principle, it has a good applicability within the 
scope of considered cases. With the emergence and addition of new data in the future, this method is expected 
to become more generalized and practical.

Parameters excluded in the SRC-BN model. Except the parameters mentioned in “Inputs of SRC-BN”, 
other parameters can also be used to predict the surrounding rock quality level of tunnels. However, we do not 
consider them in the SRC-BN model due to the following reasons:

RQD. RQD was proposed by Deere et al.4 to quantify the rock quality. The internationally used Q and RMR 
methods for the surrounding rock quality classification use RQD indicator. However, RQD has certain limita-
tions. Firstly, a specific size of drill bit and coring equipment must be used to obtain the standard RQD value. 
Because cores are considered in weak and unintegrated rock masses, the RQD values obtained by using different 
drill bits and coring equipment vary  greatly49–51. Secondly, RQD roughly counts cores with lengths greater than 
10 cm and less than 10  cm52. Finally, since we have selected the index of rock mass integrity, the impact of rock 
mass completeness on the tunnel surrounding rock quality is considered. Therefore, RQD is not considered in 
the established SRC-BN model.

Table 8.  Classification of water outflow from tunnel excavation face.

Type Qualitative description Quantitative division

Dry Excavation face is completely dry
p ∈ [0, 0.01] or q ∈ [0, 5]

Wet Wet marks can be seen in some areas of the excavation face

Moist Water can be seen or leached from the excavation face
p ∈ (0.01, 0.1] or q ∈ (5, 25]

Dripping Water drips from the excavation face

Rain-like dripping There are drops of water resembling rain on the excavation face
p ∈ (0.1, 0.5] or q ∈ (25, 125]

Linear water The excavation face has similar water pipes, and the water column is smaller (the water volume and water pressure are smaller)

Tubular water The excavation face has similar water pipes, and the water column is relatively thick (the water volume and water pressure are 
very large)

p ∈ (0.5, ∞) or q ∈ (125, ∞)
Gushing water There is a large water outlet on the excavation face; the flow and velocity are large, which often causes great damage to the 

project

Table 9.  Classification of BQ. 

Rank 5 4 3 2 1

Score (0, 250] (250, 350] (350, 450] (450, 550] (550, 710]
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Occurrence of main weak structural plane. The relationship between the occurrence of main weak structural 
plane and the tunnel axis has a certain influence on the surrounding rock  stability53,54. This parameter is a cru-
cial indictor in the design of tunnel in the active area of neotectonic movement. This parameter is considered 
in the [BQ], HC, and RMR methods, but it is not considered in Q, GSI, and RMi methods. Since this parameter 
is also missing in the collected data samples, we did not consider it in the established SRC-BN model. In future 
research, we will consider including this parameter in the SRC-BN model.

Joint features. The joint characteristics include joint set number, joint spacing, joint length, joint roughness, 
and joint filling. Some joint features are considered in both Q and RMR methods. The five main joint features 
essentially reflect the structural characteristics and integrity of rock mass. In particular, the structure and integ-
rity of rock mass have been considered in the established SRC-BN model. Joint roughness and joint filling basi-
cally reflect the completeness of structural plane. They are also indirectly considered in the established SRC-BN 
model. Hence, the five joint features are not employed in the SRC-BN model.

Figure 3.  Histograms of the eight parameters considered to predict the quality of tunnel surrounding rock. 
The numbers on the X-axis represent the characteristic of different parameters. (1) The numbers 1, 2, 3, 4, and 
5 for rock hardness represent hard, slightly hard, slightly soft, soft, and extremely soft, respectively. (2) 1, 2, 3, 
4, and 5 for rock mass integrity represent complete, slightly complete, slightly broken, broken, and extremely 
broken, respectively. (3) 1, 2, 3, 4, and 5 for rock mass structure represent integral/extremely-thick layered, 
block/thick layered, fractured block/medium-thick layered/interlayer/thin layered/mosaic, fragmented, and 
granular, respectively. (4) 1, 2, 3, 4, and 5 for weathering degree represent fresh, slight, medium, severe, and 
extreme, respectively. (5) 1, 2, 3, and 4 for structural plane integrity represent good, ordinary, bad, and very bad, 
respectively. (6) 1, 2, 3, and 4 for groundwater represent dry/wet, moist/dripping, rain-like dripping/linear water, 
and tubular water/gushing water, respectively. (7) 1, 2, 3, and 4 for in-situ stress represent low, medium, high, 
and extremely high, respectively.
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Other parameters. Traffic tunnels passing through areas with special geological structures may encounter dis-
tinct problems such as high ground temperature and karst. These geological issues should also be considered in 
the quality evaluation of tunnel surrounding rock. However, there is no case with such issues in the collected sur-
rounding rock samples. Thus, these issues cannot be considered in the established SRC-BN model. Fortunately, 
we have collected some samples under high in-situ stress environment, so our model considers the impact of 
high in-situ stress on the tunnel surrounding rock quality. In subsequent studies, we will further consider the 
effect of special geological issues on the tunnel surrounding rock quality.

Establishment of SRC-BN structure and parameter learning
SRC-BN structure definition. BN model is probabilistic graphical model, which was proposed by Judea 
Pearl in  198655. BN is a directed acyclic graph composed of nodes and arrows connecting nodes. The nodes in 
BN indicate random variables, and the arrows connecting nodes represent the relationship between two vari-
ables. This relationship is quantitatively expressed by conditional probability distributions. Therefore, there is no 
arrow between two conditionally independent  variables56.

In the BN model, the network structure must be defined first to carefully consider the conditional independ-
ence and independent relations among the input variables. BN structure can be defined through structural 
 learning56 or experience. After the BN structure is defined, the conditional probability between the variables must 
be defined. The CPTs can be used to represent the quantitative dependence among the discrete variables. When 
new evidence (observed variable) is introduced into the BN or the existing evidence is updated, the Bayesian 
method is used to calculate the changes in CPTs of unobserved variables. This process is called “belief updating,” 
which is described in “Belief updating”.

BN can be used to solve an uncertain problem, such as classification of tunnel surrounding rock quality. 
Here, Y is used to represent the class variable, which is divided into five levels (Y = 1, 2, 3, 4, 5). X is used as an 
input vector, which includes n observed or unobserved input variables that affect the class variable Y (X = (X1, 
X2, …, Xn)). In this work, X is given by the seven input variables mentioned in “Inputs of SRC-BN”. In addition, 
the variable BQ can be used as an intermediate variable or a categorical variable. Subsequently, the collected 286 
cases (mentioned in “Description of database”) are used to train the SRC-BN model.

A structural learning algorithm, called Bayesian Search, is used to establish the BN  structure56,57. Before 
examining the BN structure, we are allowed to increase the professional background knowledge to obtain a 
reasonable network structure. Since the input parameters are qualitative indicators or discretized continuous 
indicators, the calculation of the statistical correlation between the input parameters has little reference value. 
Fig. 4 illustrates the SRC-BN structure for predictive classification of tunnel surrounding rock quality, given 
seven input parameters: weathering degree, rock hardness, structural plane integrity, rock mass structure, rock 
mass integrity, in-situ stress, and groundwater. In addition, BQ can be used as an intermediate parameter. It is 
especially useful when the rock hardness or rock mass integrity input parameters are missing.

Discretization of parameters. Among the eight parameters, rock mass structure, structural plane integ-
rity, and groundwater are the qualitative indicators (discrete variables), while the remaining five parameters 
are continuous variables. To use the continuous variables in BN, it is necessary to discretize them or specify a 
density function for  them58. Under limited sample conditions, it is difficult to specify an accurate density func-
tion for the input parameters. Therefore, the discretization method is used to deal with continuous variables. The 
discretization method divides the continuous value into several ranges. In this article, we adopt the parameter 
division range recommended by the industry guide “Standard for Engineering Classification of Rock Mass.” The 
eight parameters have been discussed in “Inputs of SRC-BN”. The interval range and possible states of each node 
in SRC-BN are shown in Table 10.

Learning parameters. Based on the model structure defined in Fig.  4, the SRC-BN model can learn 
parameters from dataset. In other words, the CPTs of each node in the SRC-BN model can be obtained through 
training and learning. Generally, the expectation–maximization (EM) algorithm is used to estimate the CPTs of 
each node in the  BN59. The EM algorithm can find the maximum likelihood estimate of a set of parameters even 
when some variables in the dataset are  missing58,60. The workflow of the EM algorithm is show as Fig. 5.

The standard calculation framework of EM algorithm is composed of expectation-step (E-step) and max-
imization-step (M-step). E-step mainly estimates the parameters by observing data and existing models, and 
then this estimated parameter value is used to calculate the expected value of the likelihood function. M-Step is 
to find the corresponding parameter when the likelihood function is maximized. Further details about the EM 
algorithm can be found in Jensen and  Nielsen58.

Belief updating. After obtaining SRC-BN parameters by using EM algorithm, belief updating is the next 
step. Belief updating is also called probabilistic inference, and it is used to calculate the posterior probability of 
a given evidence (observations)60. In particular, for predictive analysis of the tunnel surrounding rock quality, 
this method is used to compute the posterior probability of a given evidence, where the evidence may be a set of 
incomplete observations about the input parameter vector. Generally, the junction tree (JT) algorithm is used to 
calculate the posterior  probability61. The workflow of the JT algorithm is show as Fig. 6.

The calculation steps of the JT algorithm in belief updating are summarized as follows: (1) a junction tree 
is constructed based on the existing BN; (2) a message passing algorithm is used to convey messages along the 
junction tree; (3) response to queries are provided when introducing evidence. Further details of the JT algorithm 
can be found in Jensen and  Nielsen58 and Korb and  Nicholson60.
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Figure 4.  SRC-BN structure of tunnel surrounding rock quality.

Table 10.  Intervals of the input parameters of SRC-BN.

Parameter Intervals

Rock hardness

Intervals [MPa] (0, 5], (5, 15], (15, 30], (30, 60], (60, 250]

States Hard, slightly hard, slightly soft, soft, extremely soft

Weathering degree

Intervals [kr] [0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 0.9], (0.9, 1]

States Fresh, slight, medium, severe, extreme

Rock mass integrity

Intervals [Kv] (0, 0.15], (0.15, 0.35], (0.35, 0.55], (0.55, 0.75], (0.75, 1]

States Complete, slightly complete, slightly broken, broken, extremely broken

Rock mass structure

States Integral/extremely-thick layered, block/thick layered, fractured block/medium-thick layered/interlayer/thin 
layered/mosaic, fragmented, granular

Structural plane integrity

States Good, ordinary, bad, very bad

In-situ stress

Intervals [Rc/σmax] [9, + ∞), [7, 9), [4, 7), (0, 4)

States Low, medium, high, extremely high

Groundwater

States Dry/wet, moist/dripping, rain-like dripping/linear water, tubular water/gushing water

BQ

Intervals (0, 250], (250, 350], (350, 450], (450, 550], (550, 710]

States 5, 4, 3, 2, 1
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Strength analysis. The established SRC-BN structure is a tree structure. Therefore, we need to analyze the 
influence strength of parent node on the child node in this tree structure. Then, the result can be used to quanti-
tatively judge the rationality of the SRC-BN structure (the relationship between the input parameters of SRC-BN 
are analyzed from a qualitative perspective in “Inputs of SRC-BN”, which is the expert background knowledge 
before the establishment of the SRC-BN structure). The influence strength is calculated based on the CPT of 
child node, which essentially expresses the distance between various conditional probability distributions over 
the child node conditional on the states of the parent  node62. We use the Euclidean distance in GeNIe to calculate 
the influence  strength63. Suppose A and T are two points in n-dimensional space, and their discrete probability 
distributions are shown in Eq. (1).

The calculation of spatial distance (normalized) between two points is shown in Eq. (2).
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Figure 5.  Workflow of the EM algorithm.

Figure 6.  Workflow of the JT algorithm.
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Figure 7 shows the strength analysis results obtained using GeNIe. Average indicates the average value of 
the distance. Maximum is the largest distance from the distribution. Weighted is the edge probability of the 
parent node to measure the distance. We usually only focus on the average and maximum values. The larger the 
calculated value, the stronger the influence. According to Fig. 7, the following conclusions can be drawn: (1) the 
average value of node H (rock hardness) and node C (rock mass integrity) on node B (BQ) exceeds 0.6, and the 
maximum value is also above 0.9. From the description in “Inputs of SRC-BN”, it can be seen that BQ is mainly 
judged based on the hardness and integrity of rock mass. Therefore, the qualitative and quantitative assessments 
of the structure are consistent. (2) The average value of node B to node L (classification of tunnel surround-
ing rock quality) exceeds 0.5, and the maximum value also reaches above 0.9. According to the description in 
“Inputs of SRC-BN”, BQ is a preliminary judgment of the surrounding rock quality. In addition, the maximum 
value of node G (groundwater) and node I (in-situ stress) to node L are both above 0.8. Consequently, the 
qualitative (in “Inputs of SRC-BN”) and quantitative judgment results of the structure are coincident. (3) The 
quantitative calculation results of the tree structure at D → C (gomphosis → rock mass integrity), S → C (rock 
mass structure → rock mass integrity), and W → H (weathering → rock hardness) are also consistent with the 
expert background knowledge. Therefore, the established SRC-BN structure is reasonable from both qualitative 
and quantitative perspectives.

Results and discussion
Learned SRC-BN model. Based on the collected 286 cases for the classification of tunnel surrounding rock 
quality cases, we use the GeNIe software to train the SRC-BN model. The SRC-BN structure is established by 
combining expert background knowledge and Bayesian search algorithm. The EM algorithm is used to learn the 
network parameters, and the JT algorithm is used to update beliefs to convey the uncertainty (before parameter 
learning, we assume that there is no prior knowledge, so the prior probability of each state of the node is the 
same). In addition, the learned CPTs in the SRC-BN model are also evaluated and revised based on the expert 
experience, which improves the model performance in the case of small and imbalanced samples. The trained 
SRC-BN model is shown in Fig. 8. Due to the complex SRC-BN structure, the CPTs of each node are listed in 
Appendix B.

After learning the structure and parameters of SRC-BN model, when a set of new observation values for 
the input variables are given, JT algorithm can be used for probabilistic inference to obtain the probability 
distribution of the target node state. For instance, let us assume that we obtain the following set of input data 
regarding the tunnel surrounding rock parameters: W = Medium, Rc = 25 MPa (H = Slightly soft), D = Ordinary, 
S = Medium-thick layered structure (State 3), Kv = 0.40 (C = Slightly broken), G = Wet, Rc/σmax = 3 (I = Low). Using 
these variable values for the predictive classification of tunnel surrounding rock quality with the trained SRC-BN 
model, the probability of nodes B and L are updated, and we obtain that P (B = 4|W = Medium, H = Slightly soft, 
D = Ordinary, S = State 3, C = Slightly broken) = 97.6%, and P (L = IV|W = Medium, H = Slightly soft, D = Ordinary, 
S = State 3, C = Slightly broken, G = Wet, I = Low) = 86.5%. This implies that IV is the most likely grade for such 
tunnel surrounding rock. SRC-BN model can also make prediction with incomplete input data. For example, 
H, C, B, and I are not known in the previous example, and we can recalculate the probability of the target node 
under the given input parameters as P (L = IV|W = Medium, D = Ordinary, S = State 3, G = Wet) = 42.9% (the 
probability of IV is also the largest among all states of the node). The estimated change in the probability of 
tunnel surrounding rock quality grade has practical significance for tunnel support and design. In addition, the 
results of probability of tunnel surrounding rock quality grade vary with our knowledge of the input parameters.

The predicted probability can also be manually calculated using CPTs (Appendix B) of each node variable in 
SRC-BN model. The posterior probability of L = IV given X, i.e., P(L = IV|X), is expressed as follows:

Figure 7.  Results of strength analysis of the SRC-BN model.
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where X = (x1, x2, …, xn) is the input vector, which represents the input variables (nmax = 8 in this study); j is the 
state of target node L, and j = I, II, III, IV, V.

Now, we illustrate how to use Eq. (3) to classify the quality of tunnel surrounding rock. The above example 
is used as the input data, i.e., X = (W = Medium, H = Slightly soft, D = Ordinary, S = State 3, C = Slightly broken, 
G = Wet, I = Low). Combining CPTs in Appendix B and Eq. (3), the posterior probability of B = 4 under given X 
is calculated as follows:

The posterior probability of L = IV under given X is calculated as follows:

The result of manual calculation is the same as that of GeNIe. Thus, based on Eq. (3) and CPTs in Appendix 
B, the classification-probability of tunnel surrounding rock quality can be easily predicted without any software.

SRC-BN model validation. Ten‑fold cross‑validation. According to the influencing factors of surround-
ing rock quality, it can be known that the corresponding samples are inherently imbalanced. Therefore, the 
ten-fold cross-validation method is used to validate the proposed model, and the accuracy, precision, recall, 
F-measure, and ROC curves are used to evaluate the performance of the model. The details of model evaluation 
methods and indicators are provided in Appendix C. Firstly, all the data (286 sets) are randomly divided into 10 
groups. Then, nine groups are used as training sets, and the remaining one group is used as the verification set. 
Finally, the process is repeated 10 times to maximize the use of each set of data to train and validate the model. 
The average accuracy of the 10 validation sets is used as the performance measure of the model. In the estab-
lished SRC-BN model, B and L are used as the classification variables, so the average accuracy of the established 

(3)P(L = IV|X ) =
P(X|L = IV )P(L = IV)

P(X)
=

n
∏

i=1

P(xi|L = IV )

∑
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n
∏

i=1

P
(

xi
∣

∣L = j
)

P(B = 4|X ) =
0.405 · 0.309 · 0.635 · 0.502 · 0.42 · 0.976
0.405 · 0.309 · 0.635 · 0.502 · 0.42 · 1

= 0.976

P(L = IV|X ) =
0.405 · 0.309 · 0.635 · 0.502 · 0.42 · 0.266 · 0.443

0.405 · 0.309 · 0.635 · 0.502 · 0.42 · 0.266 · 0.443 · 1

·
0.006 · (0.025+ 0.015+ 0.029+ 0.029)+ 0.976 · 0.886

0.006 · 4+ 0.976
= 0.865

Figure 8.  SRC-BN model after parameter learning using EM algorithm. State1, state2, state3, state4, and state5 
of rock mass structure represent integral/extremely-thick layered, block/thick layered, fractured block/medium-
thick layered/interlayer/thin layered/mosaic, fragmented, and granular, respectively.
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model for these variables is measured in the model test. The results of ten-fold cross-validation are shown in 
Fig. 9. The values on the diagonal of the heatmap in Fig. 9 indicate the number of correct predictions. It is clear 
that the average accuracies of the model for classification variables B and L are 100% and 89.2%, respectively. 
Since the accuracy of variable B is 100%, only the prediction of the learned model for variable L is analyzed in 
detail. It can be seen in Fig. 10 that the prediction precision and recall of the learned model for each sub-state of 
the variable L are both above 85%, except the state IV, whose prediction precision is approximately 78%. Then, 
the learned model’s F-measure for each sub-state of the variable L is greater than 90%, except that for the state 
IV is nearly 82%. The average values of precision, recall and F-measure are approximately 91%, 92%, and 91%, 
respectively. Generally, the closer the precision, recall, and F-measure to 100%, the better the learned model. In 
addition, Fig. 11 shows that the area under the curve (AUC) of the learned model for each sub-state of the vari-
able L is close to 1. The average value of AUC is 0.98. This verifies the feasibility of the proposed model for pre-
dicting the classification-probability of surrounding rock quality, even under a small and imbalanced database.

Validation with new samples. To further verify the effectiveness of the learned SRC-BN model, the Q and RMR 
methods are used to test 10 cases from three underground engineering projects, including hydropower and 
railway tunnel projects. Because the Q and RMR methods are inconsistent with the grading standards used in 
this article, according to previous  studies64–67, the Q and RMR grades are standardized (see Table 11). The input 
parameters and quality classification results of surrounding rock related to the proposed SRC-BN model are 
shown in Table 12. It is worth noting that the Q and RMR value scoring in Table 12 are based on the existing 
literature, and not on this study. In addition, all the 10 test cases do not include the rock mass integrity param-
eter, and some test cases lack the groundwater and in-situ stress parameters. The above learned SRC-BN model 
is capable of handling incomplete data.

Figure 9.  Confusion matrix of ten-fold cross-validation.

Figure 10.  Precision, recall, and F-measure for classification variable L. 
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The classification no. 1 in Table 12 is taken as an example to calculate the posterior probability of variable 
nodes through GeNIe (see Fig. 12). The nodes with a probability of 100% in Fig. 12 are known evidence, and the 
posterior probability distribution of nodes with unknown evidence can be obtained by calculation. As shown in 
Fig. 12, the probability of a slightly complete rock mass is approximately 98.7%, and that of grade III surround-
ing rock is nearly 84.0%.

It can be seen from Table 12 that the BN method predicts one case (case 9) incorrectly, which has more miss-
ing data, so the prediction results are conservative. In addition, the Q and RMR methods predicts three error 
cases. According to the surrounding rock quality classification results in Table 12, although the accuracy of the 
established SRC-BN model is not much different from the internationally popular Q and RMR methods, it has 
a wider application scope (especially with incomplete data).

Figure 11.  ROC curves for classification variable L. 

Table 11.  Relationship between [BQ], Q, and RMR rock mass classification methods.

Methods I II III IV V

[BQ] (550, 710] (450, 550] (350, 450] (250, 350] (0, 250]

Q [100, 1000] [10, 100) [1, 10) [0.1, 1) [0.001, 0.1)

RMR [70, 100] [60, 70) [40, 60) [20, 40) [0, 20)

Table 12.  Verification results of the new tunnel cases. The "Actual" in the last column of the table is the quality 
grade of surrounding rock referenced by the actual support at the tunnel construction site.

No Project W H (MPa) D S B G I BN Q RMR Actual

1

Baihetan hydropower station  PD6265

Medium 60 Good Fractured block 3 Dry Medium 84.0% III 3.65 III 61
II III

2 Medium 60 Good Fractured block 3 Wet Medium 84.0% III 1.36 III 66
II III

3 Medium 75 Good Block 2 Wet Medium 60.0% II 42.95 II 63
II II

4 Medium 70 Good Fractured block 2 Wet Medium 60.0% II 173.2
I

68
II II

5 Slight 100 Good Fractured block 2 Wet Medium 60.0% II 56.8 II 72
I II

6 Slight 100 Good Block 2 wet Medium 60.0% II 114
I

70
II II

7

Lenggu hydropower station  CPD0168

Slight – Ordinary Fractured block 3 – – 63.8% III 1.9 III 45
III III

8 Slight – Good Mosaic structure 3 – – 63.8% III 3.1 III 43
III III

9 Slight – Ordinary Fractured block 3 – – 63.8% III 1.1 III 38
IV IV

10 Duncun  tunnel69 Severe 15 – Fragmented structure 5 Moist Medium 90.9% V 0.06 V – V
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Sensitivity analysis. Since the SRC-BN structure is a tree structure, it is not a radial structure that con-
forms to the naive Bayesian theory (the input variables are independent of each other and are only related to 
the target node). Therefore, sensitivity analysis is used to determine which variables contribute the most to 
the prediction of surrounding rock quality levels. Mutual information (MI) and variance reduction (VR) are 
employed to measure the parametric sensitivity. The specific measurement indicators can be found in  Shannon70 
and  Pearl71. Fig. 13 shows the sensitivity analysis results calculated by Netica, including the influence of five 
input parameters on BQ (B) and the influence of eight input parameters on the classification of surrounding rock 
quality (L). Percent represents the contribution of each input variable to the target node. Here, nodes B and L 
are set as the target node. It is observed that the rock mass integrity (C) and rock hardness (H) have the highest 
contribution to the BQ (B). The B has the highest contribution to the L. Therefore, the hardness and integrity of 
rock mass have a greater impact on the final judgment of the surrounding rock quality. These results and param-
eter description in “Inputs of SRC-BN” are consistent with the strength analysis in “Strength analysis”. Of course, 
other parameters (W, D, S, G, and I) are also important for predicting the classification of surrounding rock 

Figure 12.  Posterior probability of target nodes in GeNIe.

Figure 13.  Results of sensitivity analysis based on the SRC-BN model.
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quality. Since the SRC-BN model has a tree structure (non-naive Bayesian structure), the calculated sensitivity 
value of the node that is not directly connected to the target node is small. Although the mutual information and 
variance reduction in Fig. 13 are relatively small, their influence on the classification of surrounding rock quality 
should also be taken into account.

Conclusion
In this study, we proposed a new method based on BNs to predict the classification-probability of tunnel sur-
rounding rock quality with incomplete information. The intelligent SRC model that can handle incomplete data 
is of great significance for the dynamic design and construction of tunnels. The main findings of this study can 
be summarized as follows.

(1) A probabilistic prediction model of surrounding rock quality grades was established through structural 
learning and parameter learning based on 286 sets of cases. Strength analysis was utilized to quantitatively 
verify the rationality of the learned SRC-BN structure.

(2) The ten-fold cross-validation results showed that the accuracy of categorical variables B and L was 100% 
and 89.2%, respectively. The average precision, recall, and F-measure values for variable L were over 91%. 
The AUC for each sub-state of variable L exceeded 0.96. The evaluation results verified the stable and good 
performance of the learned model for predicting the classification-probability of surrounding rock quality, 
even with a small and imbalanced database.

(3) The validation results with ten samples suggested that the error rate of the learned SRC-BN model was 
lower than that Q and RMR methods. The results indicated that the learned SRC-BN model could identify 
the surrounding rock grade more accurately and intelligently, even when the original information was 
incomplete.

(4) The sensitivity analysis results showed that the hardness and integrity of the rock mass were the main 
parameters that affected the quality of tunnel surrounding rock. Obviously, other parameters affected the 
quality of tunnel surrounding rock to a certain extent, among which the weathering degree had the lowest 
impact.

Overall, the proposed SRC-BN model can probabilistically predict the quality grade of tunnel surrounding 
rocks with incomplete data, which has great application value in the tunnel and underground engineering. 
Moreover, the results also have certain reference value for other rock mass engineering applications related to 
rock mass quality, such as slope engineering. However, since the training samples and verification projects of the 
SRC-BN model are mainly tunnels and underground projects in Southwest China, validating the applicability of 
the model for tunnels and underground projects in other regions needs further study. Therefore, in the future, we 
will collect more samples to improve the model’s performance. In addition, cloud technology may be integrated 
to establish a cloud platform for tunnel information management.

Data availability
The datasets generated or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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