
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports

Computing semantic similarity
of texts based on deep graph
learning with ability to use
semantic role label information
Majid Mohebbi, Seyed Naser Razavi* & Mohammad Ali Balafar

We propose a deep graph learning approach for computing semantic textual similarity (STS) by
using semantic role labels generated by a Semantic Role Labeling (SRL) system. SRL system output
has significant challenges in dealing with graph-neural networks because it doesn’t have a graph
structure. To address these challenges, we propose a novel SRL graph by using semantic role labels
and dependency grammar. For processing the SRL graph, we proposed a Deep Graph Neural Network
(DGNN) based graph-U-Net model that is placed on top of the transformers to use a variety of
transformers to process representations obtained from them. We investigate the effect of using the
proposed DGNN and SRL graph on the performance of some transformers in computing STS. For the
evaluation of our approach, we use STS2017 and SICK datasets. Experimental evaluations show that
using the SRL graph accompanied by applying the proposed DGNN increases the performance of the
transformers used in the DGNN.

The problem of similarity learning is a significant issue in pattern recognition. The goal of similarity learning
is to learn a measure to reflect the semantic distance according to a specific task1. Similarity learning includes
looking for similarity patterns to find complicated and implicit semantic patterns. Similarity learning in the text
area is studied in the STS computation field. STS measures the degree of semantic overlap between two texts2.
The ability to determine the semantic relationship between two texts is an integral part of machines that under-
stand and infer natural language3 hence STS is a directly or indirectly significant component of many applica-
tions such as information retrieval4, recognition of paraphrases5, textual entailment6, question answering7, text
 summarization8, measuring the degree of equivalence between a machine translation output and a reference
 translation9 and also text summarization evaluation, text classification, document clustering, topic tracking, essay
scoring, short answer scoring, etc. STS is also closely related to paraphrase identification and textual entailment
recognition. Numerous research studies have been carried out on computing semantic similarity score between
two sentences. The goal of the research studies in these fields is to construct a system that is able to predict the
results having maximum adequateness with those assigned by human annotators. Due to the limited amount
of available annotated data, variable length of sentences, and complex structure of natural language, computing
semantic similarity remains a hard problem10. An effective step was taken by computing word embeddings11.
Using word embeddings has led to valuable results in various Natural Language Processing (NLP) tasks. In
recent years, in deep learning models, a variety of approaches have been proposed. These models have different
architectures; therefore, their powers to detect implicit patterns for recognizing similarity are different. Some
models utilized linear structure based on Recurrent Neural Network (RNN) architecture including Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) models6,10,12–14; some of them use a grammar tree
accompanied by input text. However, it was not clear how to effectively capture the relationships among multiple
words of a sentence in such a way that yields the meaning of the sentence. Efforts to obtain embeddings for larger
chunks of text had not been so successful15. The NLP community had not found the best supervised approach
for embedding that captures the semantics of a whole sentence15. With the introduction of BERT16, the design
of a new generation of powerful models has begun. These models are collected under the name of Transform‑
ers such as BERT, RoBERTa17, etc. Transformers provide general-purpose architectures for natural language
understanding and natural language generation18. Transformers are trained on a large corpus while handling
long-range dependencies between input sequences and output sequences and they can capture the meaning of the

OPEN

Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz,
Tabriz 51666-16471, Iran. *email: n.razavi@tabrizu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19259-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

sentence effectively. They are trained on a specific dataset to be adapted for the specific task. Transformers have
high power in detecting implicit patterns, so they produce state-of-the-art results in most tasks including STS.

Along with the computational power of transformers, there are supplementary representations that can be
used for processing in neural networks. These representations are generated by systems developed in the typical
field of NLP including dependency grammar (DG). Various models based on DG have been presented in com-
puting STS and semantic relations tasks including Tree-LSTM19, recursive autoencoders20 and tree-structured
attentive encoder21. The most important feature that the DG offers is the graph structure of the text, which can
be used in neural networks.

Another representation is produced by Semantic Role Labeling (SRL). SRL systems operation falls into the
semantic domain. SRL process assigns semantic roles to words or phrases in a sentence and produces predicate-
argument structures. In most cases predicates are verbs, and arguments are phrases that determine essential
details including "who?", "did what?", "with what?", "to whom?", "where?", "when?", etc. State-of-the-art systems
lack any explicit modeling of SRL system output for computing STS. One potential reason why SRL system
output has not been used for computing STS is the lack of effective methods for applying and incorporating SRL
information in neural networks.

Our goal is to propose a method for applying SRL information and to provide a model with access to rich
SRL information so that it could make a decision about which aspects of SRL information are beneficial for STS
computation. SRL system output does not have a graph structure thus, it has significant challenges in dealing
with graph-neural networks. We propose a novel SRL graph by using the semantic roles generated by SRL system
and graph structure obtained from DG. We intend to use the computational power of graph-neural networks to
process the SRL graph hence, we propose a DGNN based g-U-Net22 by devising Graph-Convolutional Network
(GCN) to extract information from the SRL graph and to achieve our desired performance. GCNs are multilayer
neural networks that have been developed to process graph data and they are able to compute the representation
of a vertex based on the kth neighboring nodes’ representations.

We extract a sequence of representations from the GCN layers of the DGNN. These representations have a
similar function to Weisfeiler–Lehman23 sequence of graphs, except that the representations are produced by
neural networks instead of kernels. These representations capture label information of vertices and edges in the
SRL graph to be used to produce a prediction. To compute these representations, we generate a score for each
vertex by assigning scores to the edges of each vertex in the SRL graph. This approach attempts to find a pattern
that is matched for all of sentences to assign scores to the edges to compute a score for each vertex. Each vertex’s
score shows a degree of participation vertex’s representation in the formation of the result. Since transformers
have provided state-of-the-art results, our goal is to incorporate information obtained from the semantic roles in
the SRL graph into representation vectors generated by transformers, and thus, potentially improve the quality
of the STS computation output. To do this, we put the layers of our proposed network on top of the transformer
layers to be able to use the power of transformers. The DGNN learns with a semi-supervised strategy to utilize
both the representations obtained from a transformer and labeled data. The DGNN deeply mines the relationship
of the different structures to improve the performance of semi-supervised regression. Since the DGNN operate on
the SRL graph and uses a transformer, we are eager that our proposed DGNN improves the quality of predictions
compared with the bare transformer used in the model. Experimental evaluations show that our proposed DGNN
operating on the SRL graph improves Pearson and Spearman correlation coefficients of the bare transformer
used in the DGNN for STS20172 dataset and Sentences Involving Compositional Knowledge (SICK)24 dataset.

Our contributions can be summarized as follows:

A. we introduce an approach for computing semantic similarity of texts by utilizing semantic role label informa-
tion.

B. we introduce a method for constructing the SRL graph based on the SRL process output and DG.
C. we offer a deep graph neural network placed on top of a transformer’s layers to process the SRL graph.
D. we show that creating the SRL graph is beneficial for STS computation on STS2017 and SICK datasets.

Materials and methods
In this section, we offer our proposed method for constructing the SRL graph based on the SRL process output
and DG. Then we present g-U-Net as the basic architecture and we offer our proposed network for processing
the SRL graph.

SRL graph. One of the useful information obtained from a text is DG describing grammatical relations
between words. The graph structure is a popular structure for data. This structure determines how the vertices
connect to each other. Each vertex or edge can have its own representation. In the graph structure of DG, the ver-
tices are words and the edges having grammatical labels connect the governor vertices to the dependent vertices.
This representation is very suitable for use in neural networks because various operations on the representation
of vertices can be easily run. By using the graph structure obtained from a DG, words can be accessed and pro-
cessed beyond the linear arrangement of the words in a text. To depict the graph structure of DG of a text, we
take the first text of the 2196th pair from STS2017 train set, "If the universe has an explanation of its existence,
that explanation is God.". Figure 1 shows the graph structure of DG for the selected example that is provided by
Stanford dependency grammar25 implemented in Stanford Core NLP26.

A piece of information obtained from a text is predicate-argument structures produced by an SRL system.
By performing an SRL system, semantic roles are assigned to predicates and arguments. We use an SRL system
proposed by Shi and Lin27 and implemented in AllenNLP28. Figure 2 shows the output of the SRL system for the
selected example. In Fig. 2, two predicates including "has" and "is" along with their arguments are illustrated.

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

Our goal is to generate an SRL graph by using the semantic roles assigned to arguments and also the graph
structure obtained from the DG. We propose 4 steps for generating an SRL graph.

Step 1: Converting each predicate‑argument structure to an SRL initial graph. In this step, we set the predicate
as root vertex and arguments as children that are connected to their predicate with an edge. We assign the role
of each argument to the edge connecting the same argument to its predicate. Figure 3 shows two initial graphs
based on the predicates and the arguments illustrated in Fig. 2. As shown in Fig. 3, each predicate is identified as
a root and the arguments are identified as children connected to their own predicates.

Step 2: Extracting the graph structure of each argument. In this step, we use DG to specify the graph structure
of the arguments. Our goal is to select a token or tokens as a root vertex or root vertices in each argument. The
root means a vertex that its father is not inside the corresponding argument. To do this, we need to extract the
graph structure between the tokens in the argument; hence, we connect two tokens in the argument which are
connected in the DG graph with an edge. With respect to existing tokens in the argument, it is possible to obtain
more than one subgraph. Figure 4 shows the graph structures of the arguments illustrated in Fig. 3.

Step 3: Building a base graph. In this step, we construct a base graph by specifying the roots of the subgraphs
extracted for each argument. In each argument, we hold the roots of the subgraphs and eliminate the remaining
vertices. Then we connect the destination of the edge placed between a predicate and an argument to the roots
obtained for the corresponding argument. As a result, for each semantic role produced by the SRL system, there
will be at least one edge connecting the corresponding predicate to the root or roots obtained for its argument.
Figure 5 shows the constructed base graph based on the semi graph illustrated in Fig. 4.

Step 4: The final step of making an SRL graph. At this point, we construct an SRL graph. We use the graph
structure of the graph obtained from the DG. We use the DG graph in two forms; the DG graph with only one
label for all of the edges and the DG graph with ordinary form. To use the former form, we replace the label of all
edges with one label. Figure 6 shows all edges obtained from the DG graph have label S (’S’ stands for ’Simple’).
This indicates that all of these edges belong to the DG graph and have the same type. Then, we add the edges of
the base graph generated in the previous step to this graph. If an edge in the base graph connects two vertices that
were connected by one S edge, the S edge is replaced with the edge of the base graph. We denominate this SRL

has

universe

the

if

an

explanation

of
its

existence
,

that

explanation is

God

.

nsubj

det

mark obj

det
nmod

case nmod:poss

advcl

punct
copnsubj

punct

amod

Figure 1. Graph structure of an example produced by Stanford dependency grammar.

has

VERB

the universeIf an explanation of its existence , that explanation is God.

ARG0 ARG1

If the universe has an explanation of its existence , that explanation is God .

ARG1 ARG2VERBARGM-ADV

Figure 2. SRL system output, first and second rows illustrate arguments of first and second predicates
respectively. Predicates are shown with red labels.

has

the universe an explanation of its existence

ARG0 ARG1

is

that explanation God

ARG1 ARG2

If the universe has an explanation of its existence

ARGM-ADV

Figure 3. SRL initial graphs.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

graph as SRL + SDG. In Fig. 6, the edges of the base graph are added to the graph structure to form the final SRL
graph. To use the ordinary form of DG graph, we repeat the same steps for construction SRL + SDG, except that
we do not change the labels of the edges of DG graph. We denominate this SRL graph as SRL + DG. As shown in
Fig. 6, adding the edges of the base graph to the graph structure obtained from DG changes the graph structure
and changes information flow in the graph, consequently.

G-U-Net. The U-Net architecture29 is highly regarded due to its high performance. This architecture is gen-
erally suitable for grid-like data such as images. Gao and Ji22 proposed graph-U-Net (g-U-Net) architecture by
utilizing the U-Net architecture accompanied by GCN and introducing the graph pooling (gPool) and graph
unpooling (gUnpool) layer. G-U-Net has several GCN and gPool layers on the decoder side. Several gUnpool
layers corresponding with gPool layers are on the encoder side. GCN itself can have various architectures to
produce a new representation for the vertices and edges. gPool layer generates a score for each vertex in the
graph and selects some vertices based on selecting k-max scores, and produces a smaller graph by eliminating
the remaining vertices corresponding to unselected scores. gUnpool layer operates on the opposite of the corre-
sponding gPool layer. It defines a zero matrix with the same size as the graph which is fed into the corresponding
gPool layer and restores the selected vertices to the zero matrix by using selected indexes, then gUnpool layer
imports all the representations transmitted through skip connection to the produced matrix.

To be able to use the features of U-Net on the graph structure, we propose a g-U-Net based architecture.

The proposed DGNN’s architecture. Our proposed DGNN is organized based on graph-U-Net’s archi-
tecture with an optional number of layers to produce a new representation for each vertex and edge in each
GCN layer. By using graph-U-Net’s architecture, the DGNN can extract a sequence of representations to pro-

has

ARG0 ARG1

universe

the

det
an

explanation

of
its

existence

det
nmod

case nmod:poss

is

God

ARG1 ARG2ARGM-ADV

that

explanation
amod

has

universe

the

if

an

explanation

of
its

existence

nsubj

det

mark obj

det
nmod

case nmod:poss

Figure 4. The subgraph of the arguments illustrated in Fig. 3.

has

universe explanation

ARG0 ARG1

is

explanation
God

ARG1
ARG2

has

ARGM-ADV

Figure 5. SRL base graph.

has

universe

the

if

an

explanation

of
its

existence
,

that

explanation is

God

.

ARG0

S

S ARG1

S
S

S

S

S
SS

S

S
S

ARGM-ADV

ARG1

ARG2

Figure 6. SRL + SDG graph.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

duce a prediction commensurate with a specific task. We have several components including GCN, Pooling,
and unPooling because of the use of the graph-U-Net’s architecture. The DGNN’s architecture has two sides, an
encoder and a decoder; accordingly, each layer in this architecture includes these two sides. On the encoder side,
each layer contains a GCN layer and a Pooling layer, and on the decoder side, each layer contains an unPooling
layer and a GCN layer. Figure 7 illustrates the DGNN’s architecture in 3 layers. Each GCN layer has a downj or
 upj label to specify the encoder or decoder side respectively. Indicator j indicates layer number. The last layer
doesn’t have any pooling layer; it only contains the GCN layer.

In the j th layer, GCN_downj takes H and EW as inputs. H contains the representations produced by the trans-
former and EW contains the representations for the edges. H and EW are described in detail in Supplementary
Sect. 1. Then GCN_downj processes the entire graph and outputs HandEW as new representations for all of
the vertices and edges. Poolingj takes the output of GCN_downj and assigns a score to each edge; then Poolingj
produces a score for each vertex by using the scores of the edges belonging to the vertex. Based on the generated
score for each vertex, Poolingj divides the index of the vertices into selected and unselected indices. The loss of
this division is computed by Grouping_loss. Unselected vertices and their associated edges are removed from
the output of GCN_downj to form a smaller graph. The smaller graph is sent to the GCN_downj+1. In Fig. 7 outj
is the size of the representation generated by GCN in the jth layer. Snj and Sej are numbers of selected vertices
and edges respectively in the jth layer. NSnj is number of unselected vertices in the jth layer.

n1×1024e1×1024

GCN_down1

n1×out1e1×out1

Pooling1

Sn1×out1Se1×out1

Selected ids

NSn1×out1NSn1×1

Unselected ids

Sn1×1

GCN_down2

Sn1×out2Se1×out2

Pooling2

Sn2×out2Se2×out2NSn2×out2NSn2×1 Sn2×1

Unselected ids
Selected ids

GCN_down3

Sn2×out3Se2×out3

VAE

GCN_up3

Sn2×out2

unPooling2

GCN_up2

unPooling1

Sn1×out1

GCN_up1

n1×1024

Reconstraction
loss

Variation
loss

Grouping_loss

Grouping_layer

g1 g2 g3

Task lossResult

H

EW

Score

L
ay

er
 1

L
ay

er
 2

L
ay

er
 3

Figure 7. An illustration of our proposed DGNN’s architecture in 3 layers.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

In each layer of the proposed U-Net, the representation of unselected vertices along with their generated
scores are sent to Grouping_layer. unPoolingj layer has two inputs. First, the representation obtained from GCN_
upj+1 belonging to the selected vertices. Second, the representation of the unselected vertices from GCN_downj.
unPoolingj expands the graph obtained from GCN_upj+1 into its initial size in the jth layer by producing the
representation based on its input representations. GCN_upj takes the representation of the vertices obtained
from unPoolingj, and the edge representations from GCN_downj to produce a new representation for each vertex.

We apply Variational Autoencoders (VAE)30 to process the representations moved from the encoder side to
the decoder side in the last layer. Intuitively, the VAE learns representations as soft ellipsoidal regions in latent
space instead of single points. VAE forces the representations to fill the space rather than memorizing the train-
ing data as single representations31. Here, we define lossVAE similar to the loss defined by Kingma and Welling30.
As well as we define lossreconstraction in Eq. (1).

where, input is the input of GCN_down1 in the first layer (the representations obtained from a transformer), and
output is the output of GCN_up1 in the first layer.lossreconstraction causes the DGNN learns with a semi-supervised
strategy to utilize both the representations obtained from a transformer and labeled data. lossreconstraction uses
SmoothL1Loss32 to bring the representation of input and output closer together. These losses are used to calculate
the total loss, which is described in Supplementary Sect. 7.

Supplementary Sects. 1–7 describe all of the components of the DGNN’s architecture in detail.

Results
In this section, we introduce the datasets and transformers used in the proposed DGNN and then present the
results of the experimental evaluations.

DataSet. We use two datasets to evaluate the DGNN.

• STS2017 benchmark is provided to evaluate STS systems. STS2017 consists of 8628 sentence pairs. The sen-
tence pairs were split up into 5749, 1500, 1379 for train, dev, and test sets respectively. STS is collected from
the three categories captions, news, and forums. The label of each sentence pair is a score in the interval [0.0,
5.0]. Score 0.0 indicates there is no relation between sentences in a pair, and score 5.0 indicates sentences are
semantic equivalence. We evaluate the DGNN on STS2017 using Pearson and Spearman correlation coef-
ficients.

• SICK had been offered by Marelli et al.24. SICK consists of 9927 sentence pairs. The sentence pairs were split
up into 4500, 500, 4927 for train, dev, and test sets respectively. These sentence pairs had been collected from
image and video description datasets. The label of each sentence pair is a score in the interval [1.0, 5.0]. Score
1.0 indicates that the two sentences are completely unrelated, and score 5.0 indicates that the two sentences
are wholly related. Similar to STS2017 benchmark, we evaluate the DGNN on SICK using Pearson and Spear-
man correlation coefficients.

Transformers. Abundant transformers have been proposed such as BERT, RoBERTa, etc. In order to reduce
the workload in this article, we only use BERT and RoBERTa in our experiments and refuse to utilize the other
transformers. BERT is a bidirectional transformer that computes representation by jointly conditioning on
both left and right contexts in all layers. BERT was offered with 12 and 24 layers. BERT uses a self-attention
 mechanism33 in each layer. In the training phase, BERT combines masked language modeling (MLM) objec-
tive and next sentence prediction (NSP). RoBERTa proposed the same architecture as BERT. In RoBERTa, NSP
objective is omitted, hyperparameters are modified which have a significant impact on the final results, and
larger mini-batches are chosen for training.

We use the transformers library18 in Pytorch. We use BERT with bert‑base‑uncased config. The general char-
acteristics of this config are as follows,

• 12-layer,
• 768-vector dimension,
• 110M parameters.

We use BERT with bert‑large‑cased config. The general characteristics of this config are as follows,

• 24-layer,
• 1024-vector dimension,
• 335M parameters.

We use RoBERTa with roberta‑large‑mnli config. The general characteristics of this config are as follows,

• 24-layer,
• 1024-vector dimension,
• 355M parameters
• fine-tuned on MNLI34.

(1)lossreconstraction = SmoothL1Loss(output, input),

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

We put our proposed layers on top of the transformer’s layers.
For the test phase, we pick the weights of the model with the highest mean of Pearson and Spearman for

development set of STS2017 and SICK.

Experiments.

1. Determining the number of GCN layers in the DGNN’s architecture

Since the representations of the kth hop neighborhoods affect the computation of the representation of a
vertex in the proposed GCN, determining the number of layers is important. Hence, we must determine the
number of layers in order to achieve the highest efficiency. We examine the efficiency of the DGNN with differ-
ent layers over SRL + SDG, SRL + DG, and DG graphs to determine the appropriate number of layers for each
graph. We train the DGNN with several layers on top of RoBERTa (roberta‑large‑mnli config) on STS2017 dataset.
Table 1 shows the results of the DGNN on the dev part of STS2017 over SRL + SDG, SRL + DG, and DG graphs.

According to Table 1, the results of the DGNN with 4 layers on the SRL + SDG graph have the highest perfor-
mance. Also, the proposed approach with 5 layers and 4 layers has the highest performance over the SRL + DG
and the DG graph respectively.

2. Comparing SRL + SDG, SRL + DG, and DG graphs

By specifying the number of layers for each graph, we examine the performance of the DGNN over
SRL + SDG, SRL + DG, and DG graphs to determine on which graph the performance of the DGNN is higher
than the others. To investigate the performance of the DGNN on sentence length, we categorize the pair of
sentences with mean length in the window [−2, 2] . Therefore we get several categories including 5, 10, 15, and
so on. We train the DGNN with the specified number of layers (see the results of the previous subsection) over
SRL + SDG, SRL + DG, and DG graphs with RoBERTa (roberta‑large‑mnli config) on STS2017 dataset. Figure 8
shows the results of bare RoBERTa (roberta‑large‑mnli config) compared to the DGNN on top of RoBERTa
(roberta‑large‑mnli config) over SRL + SDG, SRL + DG, and DG graph on the test part of STS2017. According
to Pearson results in Fig. 8, in category 15, the results of the DGNN over SRL + DG is lower than RoBERTa, but
the DGNN over DG graph offers better results than both RoBERTa and the DGNN over SRL + DG. The DGNN

Table 1. Results of the DGNN with various numbers of the levels on top of RoBERTa over SRL + SDG,
SRL + DG, and DG graphs in terms of Pearson/Spearman on STS2017/Dev.

SRL + SDG SRL + DG DG

Pearson Spearman Pearson Spearman Pearson Spearman

RoBERTa

+ 2-layer system 0.9263 0.9251 0.9256 0.9239 0.925 0.9236

+ 3-layer system 0.9258 0.9249 0.9272 0.9261 0.9243 0.9233

+ 4-layer system 0.9267 0.9253 0.9272 0.9259 0.9275 0.9264

+ 5-layer system 0.9232 0.9214 0.9282 0.9268 0.9235 0.9233

+ 6-layer system 0.9217 0.9225 0.9251 0.9237 0.9210 0.9201

Figure 8. The results of RoBERTa and the DGNN on top of the RoBERTa over SRL + SDG, SRL + DG, and DG
graphs on STS2017/Test in terms of Pearson (left) and Spearman (right). The pair of sentences with mean length
is categorized in the window [−2, 2].

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

over SRL + SDG has the best result compared to the SRL + DG, DG, and bare RoBERTa. As shown in Fig. 8, the
Spearman results of the DGNN over DG, SRL + DG, and RoBERTa almost are the same, and the DGNN over
SRL + SDG offers the best Spearman results.

In short, the SRL + SDG graph offers higher performance results than the SRL + DG and DG graphs. The
reason for the better results of the SRL + SDG to DG graph is the existence of additional paths created in the
graph and the existence of more efficient information flow in the SRL + SDG graph.

Due to the better results of using the SRL + SDG graph than the rest, in other experiments, we leave out the
SRL + DG and DG graphs and examine the DGNN only with the SRL + SDG graph.

3. Using the SRL + SDG graph on SICK dataset

We show the result of using the SRL + SDG graph on SICK dataset. We train the DGNN over SRL + SDG with
RoBERTa (roberta‑large‑mnli config) on SICK dataset. Figure 9 shows the results of bare RoBERTa (roberta‑large‑
mnli config) compared to the DGNN on top of RoBERTa (roberta‑large‑mnli config) over SRL + SDG graph on
the test part of SICK.

Figure 9 shows the Pearson and Spearman curves of the DGNN over the SRL + SDG graph are placed upper
than RoBERTa’s curves in each point of mean sentence length. These results indicate that the use of the DGNN
over SRL + SDG graph improves the quality of RoBERTa’s results.

4. The SRL + SDG graph on top of the other transformer

We use the SRL + SDG graph over STS2017 and SICK datasets on the other transformer. We want to compare
the results of a bare transformer compared to the DGNN on top of that transformer. We use BERT with bert‑
large‑cased config as a transformer in our experimental evaluations. The results of bare BERT (bert‑large‑cased)
compared to the DGNN on top of BERT (bert‑large‑cased) over SRL + SDG graph on the test part of SICK and
STS2017 are shown in Figs. 10 and 11 respectively.

Figures 10 and 11 show the use of the SRL + SDG graph with the DGNN improves the Pearson and Spear-
man correlation coefficients of the bare transformer in the most point of mean sentence length for both SICK
and STS2017 dataset.

In a further experimental evaluation, we use BERT with bert‑base‑uncased config as a transformer. Figures 12
and 13 show the results of bare BERT (bert‑base‑uncased) compared to the DGNN on top of BERT (bert‑base‑
uncased) over SRL + SDG graph on the test part of SICK and STS2017 respectively. Figures 12 and 13 show the
results of using the SRL + SDG graph with the DGNN in terms of Pearson and Spearman correlation coefficients
compare to BERT with bert‑base‑uncased config.

As shown in Figs. 12 and 13 in the most point of mean sentence length, the DGNN by using the SRL + SDG
graph improves the bare transformer’s results for both SICK and STS2017 datasets.

Concluding remarks and future work
In this article, we proposed SRL graph to compute STS. We introduced two types of SRL graph; SRL + DG and
SRL + SDG. The SRL + DG uses the DG graph as the base graph. The SRL + SDG uses the DG graph in such a
way that the type of all edges of the DG is considered as one type. We proposed a DGNN for computing the SRL
graph that is placed on top of a transformer. We studied the effect of using the SRL graph on the performance
of transformers on STS2017 and SICK datasets. Experimental evaluations showed that running the DGNN
over the SRL + SDG graph increases the performance of those transformers compared to the SRL + DG and DG
graphs. We observed that the DGNN over the SRL + SDG improves the quality of results compared with the bare
transformers used in the model. We examined the degree of improvement in the quality of results for different

Figure 9. The results of RoBERTa and the DGNN on top of the RoBERTa over SRL + SDG on SICK/Test in
terms of Pearson (left) and Spearman (right). The pair of sentences with mean length is categorized in the
window [−2, 2].

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

categories of sentence lengths. Our observations showed that for one transformer and one dataset, the improve-
ment is obtained for all categories of sentence lengths. However, by changing the transformer or the dataset,
in a few categories of the sentence lengths, the obtained results are similar to the results of the transformer but
in the rest of the categories, better results are produced than the transformer’s results. Using the DGNN over

Figure 10. The results of BERT with bert‑large‑cased config and the DGNN on top of the BERT on SICK/Test
in terms of Pearson (left) and Spearman (right). The pair of sentences with mean length is categorized in the
window [−2, 2].

Figure 11. The results of BERT with bert‑large‑cased config and the DGNN on top of the BERT on STS2017/
Test in terms of Pearson (left) and Spearman (right). The pair of sentences with mean length is categorized in
the window [−2, 2].

Figure 12. The results of BERT with bert‑base‑uncased config and the DGNN on top of the BERT on SICK/Test
in terms of Pearson (left) and Spearman (right). The pair of sentences with mean length is categorized in the
window [−2, 2].

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

the SRL + SDG allows us to improve the performance of the transformers to construct a system that is able to
predict high-quality results.

In this research, we used DG graph to construct the SRL graph. It is suggested that future researches in
this area can be an attempt to include other structure grammars for constructing the SRL graph, for example,
constituency parse tree, link grammar, etc. Future research studies may focus on combining these grammars to
construct a base graph and the effect of utilizing these base graphs can be studied on constructing the SRL graph
to compute STS and other NLP tasks.

Data availability
The datasets for this study are available through: STS2017: http:// ixa2. si. ehu. eus/ stswi ki/ index. php/ STSbe nchma
rk. SICK: https:// marco baroni. org/ compo ses/ sick. html.

Received: 31 May 2022; Accepted: 26 August 2022

References
 1. Gao, N., Huang, S.-J., Yan, Y. & Chen, S. Cross modal similarity learning with active queries. Pattern Recognit. 75, 214–222 (2018).
 2. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I. & Specia, L. SemEval-2017 Task 1: Semantic textual similarity multilingual and

crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval‑2017) 1–14
(Association for Computational Linguistics, 2017). https:// doi. org/ 10. 18653/ v1/ S17- 2001.

 3. Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiský, T. & Blunsom, P. Reasoning about Entailment with Neural Attention.
arXiv.org (2015).

 4. Lobo, L. M. R. J. & Birbal, K. M. A novel method for analyzing best pages generated by query term synonym combination. In
Proceedings of International Conference on Data Science and Applications (eds. Saraswat, M., Roy, S., Chowdhury, C. & Gandomi,
A. H.) 441–455 (Springer, 2022). https:// doi. org/ 10. 1007/ 978- 981- 16- 5120-5_ 33.

 5. Kong, L., Han, Z., Han, Y. & Qi, H. A deep paraphrase identification model interacting semantics with syntax. Complexity 2020,
e9757032 (2020).

 6. Tien, N. H., Le, N. M., Tomohiro, Y. & Tatsuya, I. Sentence modeling via multiple word embeddings and multi-level comparison
for semantic textual similarity. Inf. Process. Manag. 56, 102090 (2019).

 7. Zhao, F., Li, Y., Hou, J. & Bai, L. Improving question answering over incomplete knowledge graphs with relation prediction. Neural
Comput. Appl. https:// doi. org/ 10. 1007/ s00521- 021- 06736-7 (2022).

 8. Alami, N., Mallahi, M. E., Amakdouf, H. & Qjidaa, H. Hybrid method for text summarization based on statistical and semantic
treatment. Multimed. Tools Appl. 80, 19567–19600 (2021).

 9. Lavie, A. & Denkowski, M. J. The Meteor metric for automatic evaluation of machine translation. Mach. Transl. 23, 105–115 (2009).
 10. Mueller, J. & Thyagarajan, A. Siamese recurrent architectures for learning sentence similarity. In AAAI’16: Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence 2786–2792 (2016).
 11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compo-

sitionality. In Advances in Neural Information Processing Systems 3111–3119 (2013).
 12. He, H. & Lin, J. Pairwise Word interaction modeling with deep neural networks for semantic similarity measurement. In Pro‑

ceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies 937–948 (Association for Computational Linguistics, 2016). https:// doi. org/ 10. 18653/ v1/ N16- 1108.

 13. He, H., Gimpel, K. & Lin, J. Multi-perspective sentence similarity modeling with convolutional neural networks. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing 1576–1586 (Association for Computational Linguistics,
2015). https:// doi. org/ 10. 18653/ v1/ D15- 1181.

 14. Yang, Y. et al. Learning semantic textual similarity from conversations. In Proceedings of The Third Workshop on Representation
Learning for NLP 164–174 (Association for Computational Linguistics, 2018). https:// doi. org/ 10. 18653/ v1/ W18- 3022.

 15. Conneau, A., Kiela, D., Schwenk, H., Barrault, L. & Bordes, A. Supervised learning of universal sentence representations from
natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing 670–680
(Association for Computational Linguistics, 2017). https:// doi. org/ 10. 18653/ v1/ D17- 1070.

 16. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understand-
ing. In Proceedings of NAACL‑HLT 4171–4186 (2019).

Figure 13. The results of BERT with bert‑base‑uncased config and the DGNN on top of the BERT on STS2017/
Test in terms of Pearson (left) and Spearman (right). The pair of sentences with mean length is categorized in
the window [−2, 2].

http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://marcobaroni.org/composes/sick.html
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.1007/978-981-16-5120-5_33
https://doi.org/10.1007/s00521-021-06736-7
https://doi.org/10.18653/v1/N16-1108
https://doi.org/10.18653/v1/D15-1181
https://doi.org/10.18653/v1/W18-3022
https://doi.org/10.18653/v1/D17-1070

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:14777 | https://doi.org/10.1038/s41598-022-19259-5

www.nature.com/scientificreports/

 17. Zhuang, L., Wayne, L., Ya, S. & Jun, Z. A Robustly optimized BERT Pre-training approach with post-training. In Proceedings of
the 20th Chinese National Conference on Computational Linguistics 1218–1227 (Chinese Information Processing Society of China,
2021).

 18. Transformers. Transformers https:// huggi ngface. co/ trans forme rs/ v2.9. 1/.
 19. Tai, K. S., Socher, R. & Manning, C. D. Improved semantic representations from tree-structured long short-term memory networks.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers) 1556–1566 (Association for Computational Linguistics, 2015). https://
doi. org/ 10. 3115/ v1/ P15- 1150.

 20. Socher, R., Huang, E., Pennin, J., Manning, C. D. & Ng, A. Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection. In Advances in Neural Information Processing Systems vol. 24 (Curran Associates, Inc., 2011).

 21. Zhou, Y., Liu, C. & Pan, Y. Modelling sentence pairs with tree-structured attentive encoder. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers 2912–2922 (The COLING 2016 Organizing Com-
mittee, 2016).

 22. Gao, H. & Ji, S. Graph U-Nets. IEEE Trans. Pattern Anal. Mach. Intell. https:// doi. org/ 10. 1109/ TPAMI. 2021. 30810 10 (2021).
 23. Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K. & Borgwardt, K. M. Weisfeiler–Lehman graph kernels. J. Mach.

Learn. Res. 12, 2539–2561 (2011).
 24. Marelli, M. et al. SemEval-2014 Task 1: Evaluation of compositional distributional semantic models on full sentences through

semantic relatedness and textual entailment. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014) 1–8 (Association for Computational Linguistics, 2014). https:// doi. org/ 10. 3115/ v1/ S14- 2001.

 25. Stanford CoreNLP. GitHub https:// github. com/ stanf ordnlp/ CoreN LP.
 26. Manning, C. D. et al. The stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics

(ACL) System Demonstrations 55–60 (2014).
 27. Shi, P. & Lin, J. Simple BERT models for relation extraction and semantic role labeling. ArXiv190405255 Cs (2019).
 28. AllenNLP. https:// allen nlp. org.
 29. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Com‑

puting and Computer‑Assisted Intervention—MICCAI 2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241
(Springer International Publishing, 2015).

 30. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. (2014).
 31. Bowman, S. R. et al. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Conference on Computa‑

tional Natural Language Learning 10–21 (Association for Computational Linguistics, 2016). https:// doi. org/ 10. 18653/ v1/ K16- 1002.
 32. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) 1440–1448 (2015).
 33. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (eds. Guyon, I. et al.) vol. 30

(Curran Associates, Inc., 2017).
 34. Williams, A., Nangia, N. & Bowman, S. A broad-coverage challenge corpus for sentence understanding through inference. In Pro‑

ceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers) 1112–1122 (Association for Computational Linguistics, 2018). https:// doi. org/ 10. 18653/ v1/
N18- 1101.

Author contributions
Conceptualization, all authors; methodology, M.M.; experimental designs, all authors; model development and
writing—original draft preparation, M.M.; writing—review and editing, all authors; Supervision, S.N.R.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 022- 19259-5.

Correspondence and requests for materials should be addressed to S.N.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://huggingface.co/transformers/v2.9.1/
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.1109/TPAMI.2021.3081010
https://doi.org/10.3115/v1/S14-2001
https://github.com/stanfordnlp/CoreNLP
https://allennlp.org
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1038/s41598-022-19259-5
https://doi.org/10.1038/s41598-022-19259-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Computing semantic similarity of texts based on deep graph learning with ability to use semantic role label information
	Materials and methods
	SRL graph.
	Step 1: Converting each predicate-argument structure to an SRL initial graph.
	Step 2: Extracting the graph structure of each argument.
	Step 3: Building a base graph.
	Step 4: The final step of making an SRL graph.

	G-U-Net.
	The proposed DGNN’s architecture.

	Results
	DataSet.
	Transformers.
	Experiments.

	Concluding remarks and future work
	References

