
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14864  | https://doi.org/10.1038/s41598-022-19212-6

www.nature.com/scientificreports

3D convolutional neural network 
for machining feature recognition 
with gradient‑based visual 
explanations from 3D CAD models
Jinwon Lee, Hyunoh Lee & Duhwan Mun*

In the manufacturing industry, all things related to a product manufactured are generated and 
managed with a three-dimensional (3D) computer-aided design (CAD) system. CAD models created 
in a 3D CAD system are represented as geometric and topological information for exchange between 
different CAD systems. Although 3D CAD models are easy to use for product design, it is not suitable 
for direct use in manufacturing since information on machining features is absent. This study proposes 
a novel deep learning model to recognize machining features from a 3D CAD model and detect feature 
areas using gradient-weighted class activation mapping (Grad-CAM). To train the deep learning 
networks, we construct a dataset consisting of single and multi-feature. Our networks comprised 
of 12 layers classified the machining features with high accuracy of 98.81% on generated datasets. 
In addition, we estimated the area of the machining feature by applying Grad-CAM to the trained 
model. The deep learning model for machining feature recognition can be utilized in various fields 
such as 3D model simplification, computer-aided engineering, mechanical part retrieval, and assembly 
component identification.

The smart factories control the production automation, process plan, physical distribution, and services in an 
integrated way by fusing IT systems with traditional manufacturing industries1. For factories of manufacturing 
industries to be converted into smart factories, all the things that are manufactured must be managed using 
computer-aided design (CAD). The three-dimensional (3D) CAD model of the boundary representation (B-rep) 
form widely used in the field includes geometric information (for example, NURBS, cylinder, and circle) that 
expresses shapes and topology information (for example, faces, edges, and vertices) that expresses the neighbor-
hood relationship between geometric elements2. Although it is easy to express the design result of a product using 
such a 3D CAD model, it is not suitable as a computer-aided manufacturing model for physical products. For a 
cutting work that processes a part by cutting material, a set of high-level machining features such as slots, holes, 
and chamfers, not a B-rep model comprising geometric or topology information, are required as input data. In 
this study, the focus was on the recognition of different machining features in a 3D CAD model.

Studies on feature recognition methods have been actively conducted for 40 years3 in both the industrial world 
and academic4,5. Although various conventional methods are introduced for machining feature recognition, 
there was a limitation that recognition was only possible under certain conditions. Recently, there have been 
various attempts to apply deep learning technology to the 3D CAD field6–8. FeatureNet utilized the voxel dataset 
and 3D convolutional neural networks to recognize machining features9. They recognized single machining 
features with 96.7% accuracy, but multi-features, where more than one feature exists in a single model, could 
not be distinguished. In addition, they only could classify whether the machining features were included and 
could not estimate area of the feature.

In this paper, we propose a novel 3D convolutional neural network (3D-CNN) to recognize machining fea-
tures and to detect feature areas from a 3D CAD model. A CAD model that includes single- and multi-features is 
converted into a voxel, and then the machining features are classified using a 3D-CNN. To improve the accuracy 
of classification, we utilize various network methods that have not been applied in other studies; (1) applying 
general conv layer- pooling layer in the voxel network; (2) adjusting network hyperparameter such as 1 stride 
set to the first conv layer; (3) using 1 × 1 conv filter as the last layer; (4) using the global average pooling layer 
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instead of fully connected layer. In addition, the feature area of each model is estimated by applying class activa-
tion mapping without an additional network model that utilizes a bounding box annotation.

The proposed network is well designed using several deep learning techniques to achieve the goal of rec-
ognizing single- and multi-machining features in 3D voxels, which clearly shows the combinational novelty of 
this study. The specific contributions of this study are as follows: (1) a novel network to classify the machining 
features with high accuracy; (2) feature area detection by analyzing the gradient of the network. In particular, 
gradient-weighted class activation mapping (Grad-CAM) is applied to 3D voxels to recognize machined features 
area detection; (3) constructing 3D CAD datasets with machining features for deep learning; (4) simultaneous 
training and classification of single- and multi-features, in contrast to the existing studies that have trained only 
single features; and (5) a deep learning model capable of being expanded to various fields such as 3D model 
simplification, computer-aided engineering, mechanical part retrieval, and assembly component identification.

This paper is organized as follows: “Related works” section introduces the studies related to feature recogni-
tion and deep learning-based area detection. “Data generation and preprocessing” section describes the data 
generation and conversion processes used for network learning. “3D-CNN for machining feature classification” 
section proposes a new form of 3D-CNN, and “Class activation mapping for feature area detection” section 
describes the method for estimating feature areas using class activation mapping. “Experiments and discussion” 
section analyzes the results of the feature recognition classification and feature area detection performed in the 
experiment. In Sect. 7, we conclude with a summary of this study and provide the potential for future work.

Related works
Conventional 3D feature recognition.  Conventional methods for recognizing the features of 3D CAD 
models can be divided into graph-based, volume decomposition, hint-based, and similarity-based methods10. 
The graph-based method expresses the relationship between a face and an edge in a graphic structure and per-
forms recognition by analyzing whether the graph of the model corresponds to the specific pattern of a feature. 
Elinson et al. evaluated the similarity by expressing the relationship of machining features in a graph11. However, 
as certain simple forms of machining features for milling and drilling were considered as the targets of similarity 
comparison, it was difficult to apply them to complicated shapes. In addition, Kim et al. proposed a wrap-around 
algorithm that removes a feature by expanding the faces adjacent to the feature or generating a new face and 
a smooth-out algorithm that simplifies the model by removing the features that have relatively small volumes 
among the features that comprise the model12. The similarity was compared after changing the complicated 
shape model that was input to a base feature using this algorithm. Although computation may be reduced if the 
similarity is compared after changing the features to simple base features, the accuracy deteriorates because the 
major features of the shape model that have been entered are removed.

The volume decomposition method decomposes a complicated model into different types of simple volumes 
and feature-recognizes simple shapes. Woo proposed fast volume decomposition (FVD) to improve the existing 
cell-based decomposition method, which requires significant time for calculations13. They generated volumes 
after conducting cellular decomposition by localized face extension and cell collection using seed cells. Kim and 
Mun proposed a non-overlapping volume decomposition method that minimizes the overlap of the volumes 
decomposed from a solid model14.

The hint-based method defines the hint of a feature in the object to be recognized and determines the feature 
using the geometric inference of the shape that corresponds to the hint. It was proposed by Vandenbrande and 
Requicha for the first time, and an object-oriented feature finder (OOFF) was introduced to determine the hint 
from the faces of slots, holes, and pockets15. Han and Requicha proposed an incremental feature finder (IF2) 
developed by improving the function of the OOFF16.

The similarity-based method determines features by evaluating the similarities between the two models. 
Hong, Lee, and Kim generated a high-resolution model and a low-resolution model from a 3D CAD model 
comprising B-rep using multi-resolution modeling and then used the low-resolution and high-resolution models 
to compare the overall shape and detailed shape of the model, respectively17. Ohbuchi et al. evaluated the similari-
ties by generating the distances of the model areas distributed in reference to the axis of rotation as a histogram 
using the moment of inertia18. However, this method exhibited a good similarity recognition rate only when the 
shape was symmetrical. Jeon et al. extracted the features of a shape model that exhibited a geometric nature and 
evaluated the similarity between an existing shape model and a new model using the probability distribution 
histogram generated using this feature19.

Deep learning‑based 3D feature recognition.  As CNNs have exhibited excellent performance in 2D 
image classifications, researchers have begun studies on using deep learning for 3D feature classifications. A 3D 
CAD model comprising irregular and unordered point clouds was converted into a standardized voxel grid, 
which was then classified using a 3D convolution filter6,7. Maturana and Scherer designed a network in such a 
way that it is rotationally invariant to allow the voxel data to maintain a consistent orientation20. For this, they 
augmented the training dataset by performing the rotation of the model. Qi et al. classified a model by combin-
ing two types of networks21. The first network prevented overfitting by employing the structure of simultane-
ously learning the whole and a part of a 3D model using the multilayer perceptron convolution (MLPConv) 
layer, and the second network exhibited an effect similar to that of the multi-view method by projecting 3D 
voxels onto a 2D image using the end-to-end method.

Recently, researchers have conducted studies on recognizing the machining features in a stock model. Zhang 
et al. proposed FeatureNet, which utilizes a 3D-CNN to determine the machining features of a machine part9. 
They generated a dataset comprising 24 machining features, such as holes, slots, steps, chamfers, and rounds, 
which were converted into voxels of a fixed size to train a network. They achieved a classification accuracy of 
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97.4% when the voxel resolution was 64. Peddireddy et al. learned feature recognition with a 3D-CNN to identify 
the machining process in a CAD model and expanded the trained network using deep transfer learning22. Nine 
milling features and seven drilling features were used for feature recognition, and it exhibited a classification 
accuracy of 93.47% after learning 20,000 epochs. However, the classification accuracy of the validation dataset 
deteriorated owing to excessively trained overfitting in the training dataset. Shi et al. generated a feature based 
on a heat kernel signature and expressed the feature as a graph using a percentage similarity clustering technique 
and a node embedding technique23. Subsequently, they recognized the feature by applying a 2D-CNN based on 
the graph. Ning et al. proposed a method of recognizing 14 features using a 3D-CNN and a method of establish-
ing the relationship between quantity and cost by expressing the identified feature in quantity24. They applied 
a support vector machine (SVM) and back-propagation (BP) networks to establish the relationship between 
quantity and cost. Nie et al. proposed a new network that employs a deep multi-attention network for multi-view 
images25. They were able to efficiently extract information by considering the correlations among multi-views 
in an attention network. Certain studies captured images while rotating a 3D model at different angles as input 
data for feature recognition26,27. After learning the 2D image neural network based on the captured images, the 
information obtained at different angles was combined. Ghadai et al. applied a 3D-CNN to classify manufactur-
ability in a model comprised of drilled holes28. They augmented the voxel data in the normal vector direction of 
the object boundary to augment insufficient data. A comparison between our method and previous works on 
deep learning-based feature recognition is shown in Table 1.

Class activation mapping.  As the studies that used deep learning exhibited good performance in the 
image field, researchers attempted diverse studies to interpret the basis on which networks are trained. However, 
most studies have been conducted only at the level of the filter, such as visualizing each filter or determining 
the input that has the maximum activation in a specific filter29,30. Zhou et al. proposed class activation mapping 
that obtains localization by using global average pooling (GAP) even when there is only a label for classification, 
with no label information for each pixel31. They identified the rationale for explaining the selection of the area on 
which the network performed classification by conducting the matrix multiplication of the feature maps before 
performing each weight and GAP in softmax, the last layer, and then combining them. They accomplished 37.1% 
(based on top-5) for the object location detection of the ImageNet Large Scale Visual Recognition Competition 
(ILSVRC) 2014 with no pixel information. Models did not have GAP cannot be utilized in the existing class 
activation mapping. To resolve this problem, Selvaraju et al. proposed Grad-CAM that uses the gradient of back-
propagation32. Chattopadhay et al. changed the gradient generation process in such a way that areas were esti-
mated irrespective of the estimated object size to improve the situation where Grad-CAM identified only certain 
areas without covering the entire area of the object33. Fukui et al. applied visual explanation obtained using class 
activation mapping to improve network performance34. They created an attention map with a feature map at the 
attention branch using a method similar to that of class activation mapping and predicted class probability with 
the feature map and the attention map at the perception branch using an attention mechanism. Omeiza et al. 
tried to alleviate saliency map noise and visual diffusion by adding noise to the inputs35. However, such maps are 

Table 1.   Comparison between our method and related works.

Research category Related works Our method

Deep learning- based feature recognition

9

Machining feature classification with 3D-CNN for single feature
Networks consisting of 7 layers (4 conv, 1 pooling, and 2 fully 
connected layers)
Releasing open dataset for machining feature consist of 24 
categories

Machining feature classification for single- and multi- features
Networks consisting of 11 layers (5 conv, 3 pooling, 1 dropout, 1 
GA, and 1 fully connected layers)
Applying general conv-pooling block in the voxel network
To minimize the loss of information, 1 stride set to the first conv 
layer
Using the 1 × 1 conv filter as the last conv layer
Using the global average pooling layer to prevent overfitting

28
Manufacturability analysis of drilled holes with deep learning
Networks consisting of 4 layers (2 conv, 1 pooling, and 1 fully 
connected layers)

22

Classification of nine milling features and seven drilling features
Networks consisting of 6 layers (3 conv, 1 pooling, and 2 fully 
connected layers)
Transfer learning applied to use the layer trained for feature clas-
sification as the machining process recognition layer

23

Manufacturing feature recognition with 2D-CNN
Networks consisting of 4 parallel conv-polling blocks
(for each, 2 conv, 2 pooling, and 2 dropout layers)
Mesh converted into graph data using heat kernel for use as 
input to 2D-CNN

Explainable deep learning

31

Extracting the area of the object in the feature map with class 
activation mapping
Obtaining the localization feature by using global average pool-
ing (GAP)

Applying the Grad-CAM for 3D voxels
Estimating the area of single- and multi-feature
Extracting the visual explanation for multi conv layers

32

Applying gradient-weighted class activation mapping (Grad-
CAM) for networks that don’t have GAP
Extracting the visual explanation for conv layer regardless of 
GAP

34
Improving the network performance with visual explanation
Introducing attention mechanism with the result of class activa-
tion mapping as input
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low in quality and typically have considerable noise. A comparison between our method and previous works on 
explainable deep learning is shown in Table 1.

Data generation and preprocessing.  To train models using deep learning, datasets that include machin-
ing features are required. In some studies using 3D-CNN to classify machining features, datasets with only single 
features were considered9,22. However, datasets with only single machining features are difficult to learn informa-
tion for multi-features and, thus, the accuracy for multiple features was low.

In this study, we construct a dataset consisting of single feature and multi-feature (multi-instance of a single 
feature, multi-instances of multi-feature). Figure 1 shows the four single features and four multi-instances of 
single features defined in this study. The single features selected were the basic and widely used hole, pocket, fil-
let, and chamfer. Multi-instance of a single feature means that multiple holes and pockets are duplicated in one 
model. Multi-instance of multi-feature represents a combination of single feature and multi-instance of a single 
feature. Whereas the fillet and chamfer cannot be included simultaneously in a model, the hole and pocket are 
arranged to be included simultaneously in a model.

Figure 2 presents the data generation and conversion processes from a commercial 3D CAD system (Dassault 
Systèmes’ CATIA) to HDF536, a data format for machine learning. Parametric modeling is used to create many 
3D CAD models with machining features. Table 2 presents the parameters used for model generation. Values 
are randomly selected as the parameter values within the predefined range. For example, to generate a model 
for which a hole and fillet are used, two Booleans (fillet and stock round) and eight parameters are sampled: Sw , 
Sh , Sd , Sr , F , Xh , Yh , Rh , Dh , and Oh.

Figure 1.   Types of machining features used in our study.

Figure 2.   3D CAD model generation and conversion processes.
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A CNN learns the spatial information of the structured data expressed in the form identifiable by a computer. 
For 3D CAD models expressed in B-rep, unlike 2D images, CNNs learning is difficult because of their complexity 
in element composition and relation amongst them, as well as non-uniform data size. Accordingly, they have to 
be converted to voxels of a 3D occupancy grid that are easy to learn the network. Voxels are created by extending 
the dimension of 2D pixels to 3D volumes, and it represents element with the same cube volume within a fixed 
grid. Voxels can be easily applied to a CNN because it is expressed as one if a voxel has a shape within the grid 
and zero if it has no shape.

The constructed dataset consists of 119,320 features; the number of single features is 56,100, and the number 
of multi-features consisting of two or more features is 63,220. Table 3 summarizes the amount of data in each 
dataset category. The table parentheses indicate the amount of data with fillets or chamfers applied. For example, 
there are 7020 multi-feature data with one hole and three pockets simultaneously, and 1020 of those include 
fillets or chamfers.

Data encoding methods include label encoding and one-hot encoding. Label encoding defines data sequen-
tially by using integer-type values. This method deteriorates the prediction performance because the dependence 
between each class is ignored. One-hot encoding is a method that assigns a column corresponding to a unique 
value to one data type and marks the remaining columns with 0. This method is suitable for this study because 
the correlation between each class can be trained. We set multiple labels for the data. Table 4 presents the eight 
machining features which are expressed in one-hot encoding. Multi-features were generated by combining them 
through Boolean operations. For example, a 3D CAD model comprised of fillet, two holes, and two pockets is 
expressed as (1, 0, 0, 1, 0, 0, 1, 0).

3D‑CNN for machining feature classification.  For a long time, several researchers have been conduct-
ing studies to find machining features contained in CAD models. Conventional machining feature recognition 
has limitations in that it is difficult to generalize the method, and the recognition rate drops when the noise 
occurs with the data (interference between features). To resolve these issues, we propose a novel network for 

Table 2.   Parameters used to control the shape of a 3D CAD model. *Means Boolean parameter.

Type Parameters

Stock
Stock width ( Sw) Stock height ( Sh) Stock depth ( Sd)

Stock round ( Sr)

Edge Fillet ( F∗) Chamfer ( C∗)

Hole
Hole x-coordinate ( Xh) Hole radius ( Rh) Hole orientation ( Oh)

Hole y-coordinate ( Yh) Hole depth ( Dh)

Pocket
Pocket x-coordinate ( Xp) Pocket width ( Wp) Pocket depth ( Dp)

Pocket y-coordinate ( Yp) Pocket height ( Hp) Pocket orientation ( Op)

Table 3.   The amount of data by category for the dataset.

None Hole 1 Hole 2 Hole 3

None 0 14,000 (2000) 14,100 (2100) 0

Pocket 1 14,000 (2000) 12,600 (2100) 12,000 (2000) 7000 (1000)

Pocket 2 14,000 (2000) 12,600 (2100) 12,000 (2000) 0

Pocket 3 0 7,020 (1020) 0 0

Table 4.   Definition of one-hot vector label for machining features.

Index 1 2 3 4 5 6 7 8 One-hot vector

Type

Fillet 1 0 0 0 0 0 0 0 (1, 0, 0, 0, 0, 0, 0, 0)

Chamfer 0 1 0 0 0 0 0 0 (0, 1, 0, 0, 0, 0, 0, 0)

Hole 1 0 0 1 0 0 0 0 0 (0, 0, 1, 0, 0, 0, 0, 0)

Hole 2 0 0 0 1 0 0 0 0 (0, 0, 0, 1, 0, 0, 0, 0)

Hole 3 0 0 0 0 1 0 0 0 (0, 0, 0, 0, 1, 0, 0, 0)

Pocket 1 0 0 0 0 0 1 0 0 (0, 0, 0, 0, 0, 1, 0, 0)

Pocket 2 0 0 0 0 0 0 1 0 (0, 0, 0, 0, 0, 0, 1, 0)

Pocket 3 0 0 0 0 0 0 0 1 (0, 0, 0, 0, 0, 0, 0, 1)
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classifying the machining features in a CAD model using a 3D-CNN. Figure 3 depicts the proposed 3D-CNN 
architecture. The network includes 12 layers: one input layer, five 3D convolution layers, three max-pooling lay-
ers, one GAP layer, one dropout layer, and one fully connected (FC) layer. In each layer, the data size is indicated 
as (number of channels @ voxel size).

The input layer receives the data expressed in a voxel of a fixed size (I × J × K) as the input. The sizes of the input 
data used for the experiment were 64 × 64 × 64 (1@643) and 128 × 128 × 128 (1@1283). The input layer is followed 
by convolution layers and max-pooling layers. The 3D convolution layers extract the features of the adjacent 
data by receiving 4D data (width, height, length, and channel) and multiplying them with a 3D convolution filter 
(width, height, and length). The parameters of the convolution layer are the number of channels, filter size, and 
spatial stride length. The product of the convolution filter passes through an activation function that changes it 
to a nonlinear value. A rectified linear unit (ReLU) that efficiently learns in a deep neural network is used as the 
activation function. The 3D max-pooling layer reduces the data size while maintaining the spatial features of 
the data and extracts only the largest value within the predefined filter size. The parameter of the max-pooling 
layer is a three-dimensional filter size (f).

In contrast to earlier studies9,22 that have used successive convolution layers and one max-pooling layer, we 
propose a network structure that increases the number of channels instead of gradually decreasing the voxel size. 
In addition, FeatureNet reduces the data size by using two as the stride in the first convolution layer9. If the size 
of the hole or pocket is small, the classification accuracy decreases as the voxel size decreases. In this study, we 
propose two methods to learn small-sized features. First, we placed max-pooling layers instead of using a stride 
of 2 in the first convolution layer. Second, Conv3D_5 used a 1 × 1 convolution filter to increase the nonlinearity 
of the deep learning model and allow spatial features to be well trained. Table 5 lists the parameter layers and 
input/output shapes we used after the input layer.

The product of the Conv3D_5 layer sequentially passes through the GAP layer, dropout layer, and FC layer. 
The GAP layer transforms a feature into a 1D vector by extracting the average value of each feature map. As a 
smaller parameter is required when the GAP layer turns a feature into a 1D vector using the FC layer, it helps to 
prevent overfitting. The dropout layer prevents overfitting by blocking the signals from going to the next layer at a 
certain probability. The FC layer connects all input and output data. We used a sigmoid as the activation function 
of the FC layer to obtain the probability for each feature to exist. As the loss function was used to evaluate and 

Figure 3.   Network architecture for feature recognition.

Table 5.   Parameters and input/output shape of convolution layer max-pooling layer.

Layer name Parameter Input shape Output shape

Conv3D_1 (32, 7, 1) 1@643 ( 1@1283) 32@643 ( 32@1283)

Conv3D_2 (64, 5, 1) 32@643 ( 32@1283) 64@643 ( 64@1283)

Max-pooling_1 (2) 64@643 ( 64@1283) 64@323 ( 64@643)

Conv3D_3 (128, 5, 1) 64@323 ( 64@643) 128@323(128@643)

Max-pooling_2 (2) 128@323 ( 128@643) 128@163(256@323)

Conv3D_4 (256, 3, 1) 128@163 ( 256@323) 256@163(256@323)

Max-pooling_3 (2) 256@163 ( 256@323) 256@83(256@163)

Conv3D_5 (384, 1, 1) 256@83 ( 256@163) 384@83(384@163)
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minimize the current model, we used binary cross-entropy. Binary cross-entropy is used to classify two classes, 
True or False, and is expressed as in Eq. (1).

where ti denotes a one-hot encoded true label vector, and yi denotes the vector of the predicted probabilities 
from the FC layer.

Class activation mapping for feature area detection.  Deep learning networks exhibit superior per-
formance in classifying the object types presented by input images, point clouds, and voxels. However, we do 
not know the computations used for classifications inside a deep learning network as it is similar to a black box. 
Therefore, studies on explainable AI (XAI) have been conducted to search for and interpret the basis of the pre-
diction performed by deep learning models31–33. We intend to search for feature areas by interpreting the results 
predicted by networks using Grad-CAM. Grad-CAM interprets and visually explains deep learning models 
using a gradient, which is the weighted value of the filter in the back-propagation process of learning networks. 
Figure 4 demonstrates the process of tracing a feature area using Grad-CAM.

First, an intermediate output that has passed through the desired convolution layer is obtained. In addition, 
the y score ( yc ), which is the final output of a specific class ( c ) intended to be traced, is obtained. Equation (2) 
defines αc

l  Which is called a neuron importance weight, using these two types of information, where A denotes 
the convolution filter; i, j, and k denote the values in the filter corresponding to x, y, and z, respectively; and l 
denotes the number of filters. α is the weight that reflects the influence of each filter in generating the y score.

Next, the weight that influences the judgment result is calculated for each filter by multiplying α and A , and 
only the positive values that positively influence the classification of specific classes are extracted by applying 
the ReLU activation function. This is defined by Eq. (3).

As the size of the feature area heatmap obtained in this manner is 8 × 8 × 8, which is smaller than the size of 
the input voxel data, resizing is required for comparison between the two data. The voxel resizing was conducted 
using the SciPy library37. Subsequently, the maximum value of the data extracted for equal comparison between 
heatmaps was divided by all data to normalize it. To determine the problems in the process of features being 
trained at the convolution layers of the proposed network using the visual explanation technique and improve 
the network, Grad-CAM was conducted for Conv3D_2, Conv3D_3, Conv3D_4, and Conv3D_5 layers.

(1)L = −

1

N

∑N

i=1
ti log

(
yi
)
+ (1− ti) log
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1− yi

)
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Figure 4.   Feature area detection using Grad-CAM.
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Experiments and discussion
System configuration.  Python 3.6.9 and Tensorflow 2.4.0 libraries were employed to train the deep learn-
ing model. All the experiments were conducted on a computer with an i7-9700 K CPU (3.6 GHz), 64 GB mem-
ory, and two Nvidia Quadro RTX 5000 GPU. The gradient descent optimization used in the experiments was the 
Adam38. The batch size was 32 and 4 for 64 and 128 voxel resolutions, respectively. A total of 20% of the training 
datasets were used as validation datasets. To prevent overfitting, the model was trained for a maximum of 100 
epochs and stopped early if the validation loss did not continue to decrease in 10 epochs. The proposed network 
has approximately 6.26 million parameters.

Dataset construction.  A generated parametric 3D CAD model is converted into an OBJ format that 
expresses a 3D object as a triangular mesh. The OBJ format consists of a number of lines; each contains a key and 
various values. The key on each line indicates the type of information to follow since the obj file format doesn’t 
require a header39. Next, binvox is used to convert it into a voxel within a defined grid40. Finally, it is converted 
into HDF5, a data format typically used for the management of large-scale data. HDF5, which manages data in a 
hierarchical data format, comprises data that include voxel information and labels that include annotation infor-
mation. To reduce the data size of the HDF file, 1-bit bools and 32-bit integers were used for voxels and labels, 
respectively. In addition, the chunk size was divided based on the voxel resolution, and the data were compressed 
using the gzip method. For sufficient learning, 119,320 datasets comprising 48,000 single machining feature 
models and 71,320 multiple machining feature models were generated41. The entire dataset was divided into 
three sub-datasets for learning, validation, and testing. The ratio at which the datasets were divided was 75:25 for 
training and testing, respectively. For all datasets, shuffles and randomization were performed.

Feature classification result.  The deep learning networks were trained using the datasets generated as 
described in Data generation and preprocessing“Data generation and preprocessing” section. Figure 5a shows 
training and validation loss for voxel size 64. As observed in the loss curve of Fig. 5a, training was performed 
successfully, with no occurrence of over- or under-fitting. In the case of voxel size 64, training was terminated at 
the 89th epoch where the performance no longer improved. Figure 5b shows model accuracy by comparing the 
learning dataset and the validation dataset. A model accuracy is a value where the number of CAD models with 
all features accurately found divided by the total number of models. If every feature included in a model cannot 
be found, recognition is considered unsuccessful. Regarding the overall training result, the loss was 7.81 e-04, 
and model accuracy was 98.81% at the 79th epoch.

A confusion matrix of the classification results for the single- and multi-machining features is shown in 
Fig. 6. Labels 1 to 9 denote fillet, chamfer, hole 1, hole 2, hole 3, pocket 1, pocket 2, pocket 3, and not-classified. 
To recognize the multi-features, we utilized binary cross-entropy for the loss function to classify whether or not 
each feature is included. We classified that the feature was included only when the prediction value exceeded 
50%. Accordingly, some cases may not be classified in prediction if all prediction values were less than 50%. 
To distinguish this case, we added label 9, not-classified. Label 9 means that a feature was not recognized even 
though the feature was included in the data. The diagonal matrix excluding feature #6 (pocket 1) showed an 
accuracy higher than 98%. The feature #6 confused feature #7 (pocket 2) and feature #9 (not classified).

Table 6 shows the performance comparison between our network and FeatureNet. We referenced42 to imple-
ment FeatureNet. FeatureNet is a representative network for recognizing machined features in a 3D voxel. 
Furthermore, machining feature types that FeatureNet can recognize are similar to feature types defined in our 
dataset. Therefore, we compared the performance of our network to FeatureNet; the comparison was made using 
our dataset. The performance of our network was 3.01% higher than that of FeatureNet. Besides, the number 
of parameters of our network was 1/15 times smaller than that of FeatureNet, which benefited from the global 
average pooling layer.

Figure 5.   Trained model indicators of voxel size 64 for training and validation datasets.
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The original data contains the most information for classification. If the stride of the first convolution layer 
is 2 as in FeatureNet, small machining features can be skipped. To resolve this issue, we set the stride of the first 
convolution layer to 1 without reducing the size of the voxel in the first convolution layer. Instead, we reduced the 
voxel size by placing a pooling layer after the convolution layer. In addition, FeatureNet consists of an architecture 
with one pooling layer after four convolution layers, but we constructed an architecture that properly mixes a 
convolution layer and a pooling layer. A network architecture that mixes a convolution layer and a pooling layer 
can not only sufficiently train but also reduce the data size.

Table 7 shows the result of ablation studies on the proposed network. Vanilla model, which is a basic model, 
did not apply stride 1 for the first convolutional layer nor add the 1 × 1 convolutional layer. Model 1 only applied 
stride 1 to the first convolutional layer, Model 2 only added the 1 × 1 convolutional layer, and Model 3 applied 
both. Model 1 showed poor accuracy compared to the Vanilla model. However, the performance significantly 
improved, outperforming the Vanilla model, when the 1 × 1 convolutional layer was added to Model 1. Tiny 
machining features could be effectively abstracted and transferred to the next layer by applying stride 1, instead 
of stride 2, to the first convolutional layer. Besides, tiny features were learned better by adding the 1 × 1 convo-
lutional layer.

Figure 6.   Confusion matrix of machining features in the test dataset classification.

Table 6.   Performance comparison using our dataset between the proposed network and FeatureNet.

Network model Classification accuracy Number of parameters

FeatureNet9 95.80% 33.92 M

Our network 98.81% 2.27 M
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Feature area detection result.  As mentioned in “Class activation mapping for feature area detection” 
section, the feature area can be estimated by applying Grad-CAM to a trained deep learning model. We analyzed 
the training of the deep learning model on each machining feature by applying Grad-CAM to each convolution 
layer. Figures 7 and 8 depict the results of applying Grad-CAM to voxel sizes 64 and 128 of the dataset, respec-
tively. In convolution layer 2, the area detection for the boundary or candidate group of the model was conducted 
rather than learning the machining features.

As shown in Figs. 7 and 8, the deeper the layer becomes, the closer the area for which strong area detection is 
conducted is to the machining feature. In addition, the area was more accurately estimated when the voxel size 
was 128 × 128 × 128 than when it was 64 × 64 × 64. From blue to red, it corresponds to a higher score in the class. 
This meant that as the size of the voxel grew, it could include machining feature information in a smaller unit, 
and it could also expand the network size. However, as there is a limit in the memory that can be processed by 
the GPU, learning cannot be conducted if the voxel size exceeds 128 × 128 × 128.

Figure 9 illustrates a failure case of area detection. When hole area detection was attempted, holes and 
pockets were simultaneously estimated, as shown in Fig. 9a, comprising one hole and two pockets at the initial 
layer, whereas only the pocket area was estimated as the layer grew deeper. However, in the classification test, 
the classification was successful at high probabilities of 99.99% and 99.63% for the hole and pocket, respectively. 
Figure 9b depicts failure in area detection of a hole of small size, 64 × 64 × 64. Although detection was performed 
by reducing the size of the face with a feature as the layer became deeper, the fillet area was estimated without 
being able to detect any hole. However, the classification was successful at high probabilities of 99.99% and 
99.49% for the hole and pocket, respectively.

Grad-CAM is limited in that it cannot determine an accurate range if the same classes occur in several 
places35. In this study, although holes and pockets were defined as being separated into several independent 
labels as machining features in which only the numbers are different, such as one pocket (feature #6) and two 
pockets (feature #7) can be confused as the same class, area detection might fail. The dataset has an imbalance 
in the amount of data; enough data were generated uniformly for Hole 1, Hole 2, Pocket 1, and Pocket 2, but a 

Table 7.   Ablation study on the proposed network.

Application of stride 1 to the first 
convolutional layer Addition of the 1 × 1 Convolutional layer Accuracy (%)

Vanilla model (FeatureNet) 95.80

Model 1 √ 92.31

Model 2 √ 95.38

Model 3 √ √ 98.81

Figure 7.   Visual explanation of the machining feature area using Grad-CAM for voxel size 64 × 64 × 64.
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small amount of data was generated for Hole 3 and Pocket 3. As a result, learning may not be done sufficiently, 
which could cause the degradation of feature area detection performance. In addition, the more the network is 
deepened to improve the machining feature classification performance, the surrounding context information 
tends not to be reflected because the receptive fields become too small in comparison to the data size. In this 
study, although we used GAP instead of an FC layer to reduce the complexity of the computation, the accuracy 
might have deteriorated because the information required for Grad-CAM area detection was lost when it passed 
through the GAP layer.

Ethics approval.  Not applicable.

Consent to participate.  All authors consent for participation.

Conclusion
This study proposed a method for classifying machining features and estimating feature areas using a 3D-CNN 
and Grad-CAM from a 3D CAD model. To train the deep learning network, a 3D CAD model dataset that 
included eight machining features was built and converted into a voxel format that was used as the input data 
of the 3D-CNN. Our 3D CAD model dataset compositely comprised single- and multi-machining features, in 
contrast to existing studies that have learned only single features. Our 3D-CNN model exhibited a high clas-
sification accuracy irrespective of the machining feature type. In addition, we estimated the areas of machining 
features by applying Grad-CAM to the trained model and identified the problems of the network we designed.

This study confirmed the potential of deep learning in the 3D CAD field. Regarding datasets, we plan to 
construct a labeled dataset for each per-voxel in a 3D CAD model with machining features based on voxel 
segmentation in the future. In addition, we intend to resolve the Grad-CAM problem of wrongly estimating the 
areas for certain features by increasing the types and datasets of machining features and simultaneously improv-
ing the deep learning network.

In future work, we intend to objectively evaluate the results of Grad-CAM by putting labels for segmentation 
on 3D CAD models inclusive of machining features. In addition, we intend to resolve the Grad-CAM problem 

Figure 8.   Visual explanation of the machining feature area using Grad-CAM for voxel size 128 × 128 × 128.
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of wrongly estimating the areas for certain features by increasing the types and datasets of machining features 
and simultaneously improving the deep learning network.

Data availability
Dataset used in this study is available from41.

Code availability
Not applicable.
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