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A universal similarity based 
approach for predictive uncertainty 
quantification in materials science
Vadim Korolev1*, Iurii Nevolin2 & Pavel Protsenko1

Immense effort has been exerted in the materials informatics community towards enhancing the 
accuracy of machine learning (ML) models; however, the uncertainty quantification (UQ) of state-
of-the-art algorithms also demands further development. Most prominent UQ methods are model-
specific or are related to the ensembles of models; therefore, there is a need to develop a universal 
technique that can be readily applied to a single model from a diverse set of ML algorithms. In this 
study, we suggest a new UQ measure known as the Δ-metric to address this issue. The presented 
quantitative criterion was inspired by the k-nearest neighbor approach adopted for applicability 
domain estimation in chemoinformatics. It surpasses several UQ methods in accurately ranking the 
predictive errors and could be considered a low-cost option for a more advanced deep ensemble 
strategy. We also evaluated the performance of the presented UQ measure on various classes of 
materials, ML algorithms, and types of input features, thus demonstrating its universality.

Supervised machine learning (ML) has tremendously transformed the modeling of structure–property 
 relationships1–3. Cutting-edge studies have addressed the implementation of new featurization schemes, such as 
materials  representations4–7 and the adaptation of neural network architectures to domain-specific input data 
(crystal  structures8–10 and chemical  compositions11–13). In parallel, the materials informatics community has cre-
ated a diverse suite of user-friendly packages covering different stages of the ML  pipeline14–21. A sharp increase in 
the number of predictive algorithms, materials representations, and applications has driven the development of 
benchmarking protocols and data  sets22–24. However, another aspect of using ML, namely, uncertainty quantifica-
tion (UQ)25,26, has received much less attention, although it has also been crucial to the exploration of subdomains 
of materials spaces that significantly differ from the training set. Thus, advanced materials informatics tasks, 
such as materials discovery, have been shown to be most sensitive to this  issue27–30.

Most studies have focused on the applicability of predictive models and reliability of individual outputs (pre-
diction intervals) to perform UQ using universal, but cost-prohibitive, variational-inference-based methods, 
such as Monte Carlo  dropout31,32, bootstrapping/subsampling29,31,33,34, and deep  ensembles31. Gaussian process 
regression (GPR)35–37 is an alternative approach that intrinsically provides the output and associated uncertainty. 
Beyond these well-known straightforward solutions, only a few techniques have been adopted for materials 
informatics. In particular, Janet et al.38 introduced the distance to training data in the latent space of a neural 
network as a low-cost UQ metric, and predictive error decreased systematically by tightening the threshold of 
this parameter. In addition, Sutton et al.39 presented a tool based on subgroup discovery. The conditioned com-
binations of structural and compositional features derived by the method defined the subdomains of a materials 
space with a model error that was lower than average for all considered materials.

A closely related field to materials informatics, chemoinformatics, has also been confronted with the problem 
of UQ. For example, three main groups of algorithms have been adapted for ML-assisted drug  design40. First, 
frequentist methods drew the statistical inference only from the likelihood without a prior hypothesis, and 
the UQ for the molecular property prediction tasks was  provided41–44. Second, Bayesian approaches have been 
successfully utilized for the same  purpose45–50. The third group of methods, known as empirical techniques, 
have relied on the concept of applicability  domain51–55. Generally, this can be expressed as a chemical structure 
(descriptor) subspace where the predictive model provides a reliable output. Thus, UQ methods involving appli-
cability domain estimation do not consider information from the approximation algorithm. Consequently, the 
universality of model-agnostic methods interacts with the simple assumption that their performance is only 
determined by the distribution of training points in chemical space.
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In this study, we have presented a new UQ measure, Δ-metric, based on ideas of applicability domain estima-
tion originated from chemoinformatics, and the remainder of this manuscript describes the principles of its con-
struction and benchmarking results. We considered four use cases of bandgap prediction to assess the efficacy of 
the Δ-metric in ranking predictive errors and calculating predictive intervals. The performance of the suggested 
metric in UQ was compared to the performance of widespread methods, including deep ensembles, subsampling, 
and the infinitesimal jackknife variance. In addition, two out-of-domain use cases were also discussed. The 
provided results depicted a set of scenarios where the Δ-metric would be a potentially helpful UQ technique.

Methods
Data sets. For this study, 10,434 inorganic crystal structures and their corresponding bandgap values were 
obtained from the computational database presented by Kim et al.56 Initially, the band edges were identified 
within the generalized gradient approximation, as implemented by Perdew, Burke, and Ernzerhof (PBE)57. Then, 
one-shot calculations with the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06)58 were con-
ducted to estimate the bandgap values at the k points of the band edges found with the PBE functional. Structures 
containing noble gases were excluded from consideration. Three hundred fifty-eight two-dimensional materials 
and their corresponding bandgap values were collected from the Computational 2D Materials  Database59–61. We 
considered structures with bandgaps that were calculated within three available levels of theory: PBE, hybrid 
HSE06, and many-body GW approximation. A total of 14,204 MOF structures and their corresponding PBE 
bandgap values were obtained from the Quantum MOF  database62, and 12,500 molecular crystals and their cor-
responding PBE bandgap values were obtained from the Organic Materials  Database63,64.

Feature extraction and preprocessing. For the  MEGNet9 model, we used elemental embeddings from 
the original study trained on the formation energy, which was kept fixed during our model training. The  CFIDs65, 
as implemented in the  matminer17 package, were used to featurize the two-dimensional materials. The thirty 
CFIDs with the highest F-values were selected for further consideration, and the PBE bandgap was incorporated 
as a crude estimator of the GW  bandgap66–68. The StandardScaler was applied to normalize the above features. 
The attributes proposed by Meredig et al.69 (atomic fractions of elements and statistics of elemental properties), 
as implemented in the  matminer17 package, were used to featurize the MOFs, and the MinMaxScaler was imple-
mented to normalize these features. We used the PLMFs proposed by Isayev et al.7 to featurize the molecular 
organic materials, and specifically, the linear chains up to four atoms and the first shell of the nearest-neighbor 
atoms were considered. Only atomic numbers were taken into account to label local fragments. Atomic connec-
tivity was defined according to a distance criterion with a tolerance of 0.25 Å. In contrast to the original study, 
the Voronoi–Dirichlet partition was not applied for reasons of simplicity. The PLMFs normalized per Å3 were 
processed by VarianceThreshold, where features with a training-set variance greater than  10−7 were chosen for 
the following consideration. The selected features were normalized using the MinMaxScaler. All the data were 
prepared within the scikit-learn70 processing routines.

Machine learning and uncertainty quantification models. The GPR, KRR, and RF models imple-
mented in the scikit-learn70 library were trained on 80% of the data and tested with the remaining 20%. A 
train-validation-test split of 80%–10%–10% was applied for the  MEGNet9 model. For the GPR model, we used 
a sum-kernel including the radial-basis function and rational quadratic kernels, where the noise level was set to 
1.0 via the α parameter. The KRR model was trained using the Laplacian kernel, with a regularization strength α 
of 0.1, and parameter γ of 0.1. The RF model was trained using 1000 trees, and all other hyperparameter values 
of the above models were set to the default. The MEGNet model was trained using the hyperparameter values 
proposed in the original study.

The SOAP-like descriptor for the Δ-metric was constructed using the  DScribe18 library. The number of radial 
basis functions nmax and maximum degree of spherical harmonics lmax were set to eight and six, respectively, 
while the degree ζ in Eq. (3) was set to four. Quantile regression analysis was performed using the  statsmodels71 
package.

Results and discussion
Definition of the UQ metric. The presented UQ measure, Δ-metric, was deeply inspired by the k-nearest 
neighbor approach adopted for applicability domain evaluation. Specifically, the average distance to the k closest 
training set points was compared to the pre-defined threshold in the most widespread  formulation72. According 
to the original definition of the weighted k-nearest neighbor algorithm, we proposed the following formula for 
the i-th structure in the test set:

where εj is the error between the true and predicted target values of the j-th neighbor structure in the training 
set, and Kij is the corresponding weight coefficient. It was natural to represent Kij as a similarity measure between 
the i-th and j-th structures. For this purpose, we implemented a kernel proposed by Bartok et al.4, which used 
the form of a normalized dot product raised to the ζ-th power:

(1)�i =

∑

j Kij|εj|
∑
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 where p is a global descriptor. To featurize the structures, we used a smooth overlap of the atomic positions 
(SOAP)  descriptor73, as given by

where ci,jn1,2lm are the expansion coefficients in terms of the radial basis functions (labeled by n1,2 ) and angular 
momentum channels (labeled by l  ) for the i, j-th atom, and N is the number of atoms. Therefore, the Δ-metric 
calculations required only that the following quantities be obtained from ML model training: the atomic struc-
ture of interest, the atomic structures from the training set, and the absolute errors of prediction at these points.

UQ in bandgap prediction. To show the efficacy of the proposed UQ metric, we selected bandgap predic-
tion because of its fundamental role in determining material performance in many  applications74–76. Concretely, 
four use cases that varied in the predictive model algorithm, type of materials representation, and materials 
class (the corresponding abbreviations are shown in brackets) were considered: the materials graph network 
for inorganic crystals (SNUMAT-MEGNet), Gaussian process regression based on classical force-field inspired 
descriptors for two-dimensional inorganic materials (C2DB-GPR-CFID), kernel ridge regression based on the 
atomic fractions and statistics of elemental properties for metal–organic frameworks (QMOF-KRR-ElemStat), 
and random forests based on the fragments of the simplified version of property-labeled materials fragments for 
organic materials (OMDB-RF-PLMF). A summary of trained model performance is shown in Fig. 1. Although 
we did not intend to achieve state-of-the-art (SOTA) accuracy in this study, it was still valuable to compare the 
presented algorithms with those known from the literature. As shown below, these estimates provided a first 
insight into the ability of the Δ-metric to improve the performance of the predictive model by selecting a specific 
subset of structures.

Wang et al.77 implemented three models to predict the HSE bandgap of inorganic crystals from the SNUMAT 
 database56. These models were trained using information from the constituent elements, PBE bandgap, and the 
combination of inputs from the first two models, respectively. Because we did not use the crude estimator (PBE 
bandgap) of the target property (HSE bandgap) in the SNUMAT-MEGNet use case, the first model with a root 
mean squared error (RMSE) of 0.75 eV was considered the SOTA model.

Liang and  Zhu67 used a set of physicochemical descriptors as inputs for the Lasso algorithm. The model 
was trained and tested using structures from the  C2DB59,60 database, reaching a mean absolute error (MAE) of 
0.31 eV, which was nearly equivalent to that of our model (0.343 eV). Recently, Satsangi et al.78 applied a novel 
feature selection approach to predict the GW bandgap of two-dimensional materials collected from the  C2DB59,60 
and aNANt repository. The presented GPR model with blended features demonstrated an impressive RMSE of 
0.15 eV. However, it should be emphasized that structures from C2DB that belonged only to the two space groups 
( P6m2 and P3m1 ) were considered. For this reason, we assumed that the results provided by Liang and  Zhu67 
were more relevant for comparison.

Fung et al.24 carried out a consistent benchmark study of graph neural networks on several material data sets, 
including the Quantum MOF  database62. Several neural networks architectures demonstrated very similar MAE, 
and slightly outperformed the crystal graph convolutional neural  network8 model (MAE of 0.274 eV) trained 
in a study where the MOF data set was presented. Concretely, the  SchNet79 model had an MAE of 0.228 eV.
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Figure 1.  Parity plots and error histograms for the four considered use cases: (a) SNUMAT-MEGNet, (b) 
C2DB-GPR-CFID, (c) QMOF-KRR-ElemStat, and (d) OMDB-RF-PLMF.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14931  | https://doi.org/10.1038/s41598-022-19205-5

www.nature.com/scientificreports/

Geilhufe and  Olsthoorn80 applied the same graph neural network architecture to predict the PBE bandgap 
of the molecular crystals from the OMDB data set, and the model showed an MAE value of 0.406 eV. Olsthoorn 
et al.64 achieved SOTA performance for this task (MAE of 0.388 eV) by averaging the predictions of KRR built 
on the SOAP kernel and SchNet model.

As a profitable UQ criterion, the Δ-metric should be able to demarcate the applicability domain of the predic-
tive model. The structure was considered inside the applicability domain if the corresponding Δ-metric value did 
not exceed the pre-defined threshold, and an increase in model accuracy with a decrease in the threshold was 
desired. To validate the suggested UQ measure in this context, we examined the in-domain MAE as a function 
of the Δ-metric cutoff (Fig. 2). Indeed, the most general trend corresponded to the expectation that MAE could 
be reduced by gradually excluding it from consideration structures with a high Δ-metric value, i.e., high predic-
tive uncertainty. As stated earlier, the performance of the SOTA models for considered tasks appeared to be a 
reasonable starting point to estimate the significance of decreasing the in-domain MAE. Specifically, the SOTA 
values of MAE in the C2DB-GPR-CFID, OMDB-RF-PLMF, and QMOF-KRR-ElemStat use cases were achieved at 
87.3, 62.3, and 13.2% of the test points with the smallest Δ-metric values, respectively. In the SNUMAT-MEGNet 
use case, the model implemented in this study entirely covered the applicability domain of the available SOTA 
algorithm due to the impressive predictive performance of the graph neural network architecture. The results 
were mainly dependent on the combination of algorithm and material representations that we used, and those 
that demonstrated SOTA precision; therefore, they should not be considered a universal benchmark of sug-
gested UQ measures. We presented an illustrative example of how Δ-metric helped to extract a (tiny) subspace 
of structures for which the model built on composition-only features competed on equal terms with the powerful 
graph neural network (QMOF-KRR-ElemStat use case).

To further explore the efficacy of the Δ-metric, we quantified the sequence monotonicity of the in-domain 
MAE values 

{

MAE(i)
}N

i=1
 , as depicted in Fig. 2, using increasing coefficient IC values as defined by the following 

equation:

where a higher IC corresponds to a higher degree of monotonicity. Surprisingly, the IC values were relatively 
low, being 0.41, 0.63, 0.50, and 0.46 for the SNUMAT-MEGNet, C2DB-GPR-CFID, QMOF-KRR-ElemStat, and 
OMDB-RF-PLMF use cases, respectively. Despite the above trend in increasing in-domain MAE values with 
expanding applicability domain, nearly half of the entities in the 

{

MAE(i)
}N

i=1
 sequences were less than their 

predecessors. IC as a local feature helped to capture the data noise, but it was not valuable for defining the global 
ordering of structures according to the applied UQ measure. Next, we calculated the ranking-based metric for 
the area under the confidence-oracle error (AUCO):

where MAE
conf
(i)  and MAEorac(i)  were the MAEs calculated based on the subsets of structures where the i structures 

with the highest approximate (Δ-metric) and true (absolute error) UQ measure were removed, respectively. The 
corresponding 

{

MAE
conf
(i)

}N−1

i=1
 and 

{

MAEorac(i)

}N−1

i=1
 confidence curves were normalized to the [0, 1] range (Fig. 3), 

where a lower AUCO corresponded to a higher-ranking capability. It was possible to compare Δ-metric with 
other UQ strategies with the confidence curves in the unified form. Specifically, we considered the following 
methods. In the SNUMAT-MEGNet use case, a deep  ensemble81 was implemented. The outputs of ten MEGNet 
models differing only in their initial weights were averaged, and the corresponding standard deviations served 
as the UQ measure. In the C2DB-GPR-CFID use case, the predictive variance naturally provided by  GPR82 was 
taken into consideration. In the QMOF-KRR-ElemStat use case, we used the  subsampling83 technique. Thirty 
KRR models were trained on 50% of the initial training set randomly sampled. The predictions on the test set 
were averaged, and the corresponding standard deviations served as the UQ measure. In the OMDB-RF-PLMF 
use case, the infinitesimal jackknife  variance84 was employed for UQ. As shown in Fig. 3, the deep ensemble had 
a significantly smaller AUCO than the Δ-metric. In all other use cases, the suggested UQ criterion outperformed 

(4)IC = 1
N−1

∣

∣

{

MAE(i)|MAE(i+1) > MAE(i)
}∣
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N−1
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Figure 2.  In-domain MAE as a function of the Δ-metric cutoff for the four considered use cases: (a) SNUMAT-
MEGNet, (b) C2DB-GPR-CFID, (c) QMOF-KRR-ElemStat, and (d) OMDB-RF-PLMF, where the solid 
horizontal lines indicate the performance of the SOTA models available to date.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14931  | https://doi.org/10.1038/s41598-022-19205-5

www.nature.com/scientificreports/

the competitive methods. It should be emphasized that UQ via the deep ensemble strategy required resource-
intensive calculations associated with training multiple models, especially with advanced neural network archi-
tectures. As a result, the Δ-metric could act as a low-cost alternative with lower accuracy, but it could be readily 
applied to the UQ of a single model.

Strictly speaking, the above four UQ methods served to derive epistemic uncertainty, whereas the absolute 
observable error incorporated into the Δ-metric also included aleatoric  uncertainty85,86. The former was the 
uncertainty related to the approximate predictive model, while the latter captured the noise inherent in the data. 
Scalia et al.50 demonstrated that epistemic uncertainty was the main contributor to the total uncertainty in the 
case of molecular data sets derived from the electronic structure theory. These data were typically self-consistent 
and characterized by low internal variability, i.e., low aleatoric uncertainty. Therefore, we concluded a provided 
comparison of the total uncertainty measure (Δ-metric) versus epistemic uncertainty techniques (deep ensemble, 
GPR variance, subsampling, and infinitesimal jackknife variance) was still valuable for the DFT and GW-derived 
bandgaps. However, this trick could probably not be used for the experimentally  obtained87,88 bandgaps.

Predictive intervals estimation. After providing a general picture of the efficacy of the Δ-metric as a 
ranking criterion in UQ, we presented a strategy to compute the corresponding predictive intervals. An approxi-
mate form was required to transfer from the UQ measure to the predictive error. For instance, Janet et al.38 fitted 
the predictive variance to the conditional Gaussian distribution N

(

0, σ 2
1 + dσ 2

2

)

 , where d denotes the latent 
space distance (UQ measure), and σ1 and σ2 are the variable parameters. For the same purpose, we used quantile 
 regression89. Given the errors in the test set and the corresponding Δ-metric values {εi ,�i}

N
i=1 , the following 

optimization problem was solved by:

where ξ is a parametric function of β , and ρτ is a tilted absolute value function for the τ quantile. For the sake of 
simplicity, ξ was assumed a linear function of the parameters. We used quantiles that corresponded to one and 
two standard deviations, suggesting the normal distribution of errors (Fig. 4). As expected from previous analysis, 
the predictive intervals derived by quantile regression broadened significantly with increasing Δ-metric value, 
confirming its usefulness as a measure of predictive uncertainty. Guided by this illustrative representation of UQ 
measure-error dependence, one could define the cutoff Δ-metric value based on a desirable level of uncertainty 
in terms of the width of the predictive intervals.

The suggested strategy reproduced predictive intervals surprisingly well in terms of the quantiles. Thus, the 
model that was trained on 80% of the test data and examined the remaining 20% predicted the fraction of points 
within one standard deviation and within errors of 0.15, 2.38, and 1.47% in the SNUMAT-MEGNet, QMOF-
KRR-ElemStat, and OMDB-RF-PLMF use cases, respectively. In the C2DB-GPR-CFID use case, where the test 
set contained just 72 points, the quantile regression model had a remarkably higher error of 18.39% for the same 
task. For instance, the 3 UQ methods considered by Tavazza et al.37 reached an error of about 10% in most cases.

(6)min
β∈Rp

N
∑

i=1

ρτ (εi − ξ(�i ,β)),

Figure 3.  Confidence curves for the four considered use cases: (a) SNUMAT-MEGNet, (b) C2DB-GPR-CFID, 
(c) QMOF-KRR-ElemStat, and (d) OMDB-RF-PLMF. The subgraph includes three cases, the so-called oracle 
curve (ideal ranking according to observable error), Δ-metric curve (UQ measure presented in this study), and 
the curve corresponding to the competitive method.
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Out-of-domain applications. In the two previous sections, we used the subsets of the considered data-
bases to verify the efficacy of the Δ-metric in UQ. Thus, a strong assumption that the training data and struc-
tures of interest sampled from the same distribution, i.e., independent and identically distributed, was made. 
In general, this was not the  case90. Moreover, distinct classes of materials could form the former and latter 
 distributions91. The performance of UQ measures in the out-of-domain regime has been of intense interest 
in advanced materials informatics applications, in particular, inverse  design92–95 has been associated with the 
exploration of materials space beyond its well-known subregions. To model a scenario where the assumption 
of independent and identically distributed data was not satisfied, we applied implemented predictive models 
to predict the bandgap of materials from other data sets. Specifically, the MEGNet model trained on inorganic 
crystals was used to estimate the bandgap of two-dimensional materials (SNUMAT-MEGNet → C2DB-GPR-
CFID), and the KRR model trained on metal–organic frameworks was tested on molecular crystals (QMOF-
KRR-ElemStat → OMDB-RF-PLMF). Two-dimensional representations of SOAP-like descriptors obtained by 
the uniform manifold approximation and  projection96,97 algorithm provided a first glimpse of the structural rela-
tionships between the donor and acceptor subsets (Fig. 5). The structures from the C2DB database appeared to 
be a nested subspace of the SNUMAT set of inorganic crystals. Indeed, approximately 9% of the structures from 
the SNUMAT database were identified as layered two-dimensional materials using the scoring parameter pre-
sented by Larsen et al.98 These layered compounds were hypothetical precursors for the monolayers that formed 
the C2DB database, where 21% of the considered C2DB structures had counterparts with identical chemical for-
mulas among the two-dimensional SNUMAT compounds. Clouds of points corresponding to the metal–organic 
frameworks (QMOF-KRR-ElemStat) and molecular crystals (OMDB-RF-PLMF) partially overlapped.

A summary of MEGNet and KRR model performances in the out-of-domain applications is shown in Fig. 6. 
The MEGNet model demonstrated an acceptable level of accuracy in terms of MAE, RMSE, and the coefficient 
of determination (R2), whereas the KRR model trained on the MOFs did not give a practical estimation of the 

Figure 4.  Predictive error as a function of the Δ-metric for the four considered use cases: (a) SNUMAT-
MEGNet, (b) C2DB-GPR-CFID, (c) QMOF-KRR-ElemStat, and (d) OMDB-RF-PLMF. The colored areas 
correspond to the predictive intervals extracted by quantile regression: within one standard deviation (green), 
within two standard deviations (orange), and over two standard deviations (red).

Figure 5.  Two-dimensional representation of four considered materials subclasses extracted by the uniform 
manifold approximation and projection algorithm.
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bandgap for molecular crystals. Surprisingly, this model was worse than a dummy predictor, whose output was 
the average ensemble value for every structure (R2 = 0.0, RMSE = 1.031, MAE = 0.798). The Δ-metric and the cor-
responding competitive UQ methods (deep ensemble and subsampling) showed comparable AUCO values of 
nearly 0.5 (Fig. 7), indicating a low ranking capability of all the above algorithms in the out-of-domain regime. 
Nevertheless, the Δ-metric helped to reduce in-domain MAE by 10 (20)% by considering 43 (25)% of the C2DB 
structures with the lowest UQ measure value. Similar behavior in the QMOF-KRR-ElemStat → OMDB-RF-PLMF 

Figure 6.  Parity plots and error histograms for the two considered out-of-domain use cases: (a) SNUMAT-
MEGNet → C2DB-GPR-CFID, (b) QMOF-KRR-ElemStat → OMDB-RF-PLMF.

Figure 7.  Confidence curves and predictive error as a function of the Δ-metric for the two considered out-
of-domain use cases: (a, c) SNUMAT-MEGNet → C2DB-GPR-CFID, (b, d) QMOF-KRR-ElemStat → OMDB-
RF-PLMF. Colored areas in subgraphs (c) and (d) correspond to the predictive intervals extracted by quantile 
regression: within one standard deviation (green), within two standard deviations (orange), and over two 
standard deviations (red).
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use case was of little practical relevance because the reduced MAE value was still too high (greater than the error 
provided by a dummy predictor).

Conclusions
In summary, we considered the performance of a new UQ measure in detail, which directly provided predictive 
intervals for individual model output in conjunction with quantile regression. Moreover, the Δ-metric made it 
possible to decrease the ensemble predictive error by choosing a proper subset of structures. In contrast to the 
well-known variational-inference-based methods, the proposed measure was directly applicable to the UQ of 
a single model and agnostic to the specific predictive algorithms and featurization schemes. We believed that 
the Δ-metric would also help explore new subregions of materials space beyond the assumption of independent 
and identically distributed data.

Data availability
All data used to train ML models are from the publicly available datasets: SNUMAT band gap dataset (https:// 
www. snumat. com), Computational 2D Materials Database (https:// cmrdb. fysik. dtu. dk/ c2db), Quantum MOF 
database (https:// mater ialsp roject. org/ mofs), and Organic Materials Database (https:// omdb. mathub. io).

Code availability
The code to calculate the presented UQ metric is available at https:// github. com/ korol ewadim/ dmetr ic.
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