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Construct a classification decision 
tree model to select the optimal 
equation for estimating glomerular 
filtration rate and estimate it more 
accurately
Zhenliang Fan1, Qiaorui Yang2, Zhuohan Xu3, Ke Sun3, Mengfan Yang2, Riping Yin2, 
Dongxue Zhao2, Junfen Fan1, Hongzhen Ma1, Yiwei Shen4 & Hong Xia1*

Chronic kidney disease (CKD) has become a worldwide public health problem and accurate assessment 
of renal function in CKD patients is important for the treatment. Although the glomerular filtration 
rate (GFR) can accurately evaluate the renal function, the procedure of measurement is complicated. 
Therefore, endogenous markers are often chosen to estimate GFR indirectly. However, the accuracy 
of the equations for estimating GFR is not optimistic. To estimate GFR more precisely, we constructed 
a classification decision tree model to select the most befitting GFR estimation equation for CKD 
patients. By searching the HIS system of the First Affiliated Hospital of Zhejiang Chinese Medicine 
University for all CKD patients who visited the hospital from December 1, 2018 to December 1, 2021 
and underwent Gate’s method of 99mTc-DTPA renal dynamic imaging to detect GFR, we eventually 
collected 518 eligible subjects, who were randomly divided into a training set (70%, 362) and a test set 
(30%, 156). Then, we used the training set data to build a classification decision tree model that would 
choose the most accurate equation from the four equations of BIS-2, CKD-EPI(CysC), CKD-EPI(Cr-CysC) 
and Ruijin, and the equation was selected by the model to estimate GFR. Next, we utilized the test 
set data to verify our tree model, and compared the GFR estimated by the tree model with other 13 
equations. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Bland–Altman plot were 
used to evaluate the accuracy of the estimates by different methods. A classification decision tree 
model, including BSA, BMI, 24-hour Urine protein quantity, diabetic nephropathy, age and RASi, was 
eventually retrieved. In the test set, the RMSE and MAE of GFR estimated by the classification decision 
tree model were 12.2 and 8.5 respectively, which were lower than other GFR estimation equations. 
According to Bland–Altman plot of patients in the test set, the eGFR was calculated based on this 
model and had the smallest degree of variation. We applied the classification decision tree model to 
select an appropriate GFR estimation equation for CKD patients, and the final GFR estimation was 
based on the model selection results, which provided us with greater accuracy in GFR estimation.

Chronic kidney disease (CKD) mainly refers to the irreversible damage of renal structure and (or) function 
caused by various etiological  factors1,2. With the increasing prevalence of diabetes, hypertension, hyperurice-
mia and other diseases, the incidence of CKD is also rising with the passing  years3–7. Some investigations have 
shown that nearly 120 million people suffer from CKD, which accounts for about 10.8% of the total population 
in  China8, whereas the data in Europe and the United States is more  severe9. However, when CKD progresses to 
End Stage Renal Disease (ESRD), the medical and social problems associated with it become more prominent, 
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and CKD may become one of the leading causes of death ranking second to ischemic heart disease, stroke, infec-
tion and COPD by  204010,11. Therefore, preventing the progression of CKD effectively has become a pressing 
medical problem.

Correct assessment of renal function in CKD patients is important to clinical treatment and the estima-
tion of patients’ outcomes. As an indicator of glomerular filtration function, Glomerular Filtration Rate (GFR) 
is currently considered to be the most valuable parameter for assessing renal function in patients. However, 
measuring GFR in CKD patients is not a simple clinical procedure. At present the main method is to detect inu-
lin, iohexol, 125I-iothalamate or Technetium-99m-diethylenetriaminepentaacetic acid (99mTc-DTPA) and other 
exogenous markers dynamic clearance in the body to determine the GFR. Although inulin is considered as ‘the 
gold standard’ for determining GFR, this method is too complex and expensive to  implement12. Gate’s method 
of 99mTc-DTPA renal dynamic imaging, recommended by the Nephrology Committee of Society of Nuclear 
Medicine as well and served as a reliable method for determining GFR, was only used in some medical centers 
and could not cover all  patients13. Therefore, various endogenous markers such as creatinine, cystatin C, and 
β2-microglobulin have been widely applied to assess renal function in patients, and various equations have been 
utilized to estimate Glomerular Filtration Rate (eGFR).

Although estimating eGFR via endogenous markers such as creatinine and cystatin C is a relatively conven-
tional method, it is limited by the accuracy of the estimation equation. If eGFR deviates too much from the actual 
GFR, it will affect the clinician’s judgment of the patient’s condition and therapeutic regimen. For example, Yeli 
Wang et al. found that the CKD-EPI equation was not a reliable estimate of GFR in the South Asian  population14. 
Marco van Londen et al. in a study of living kidney donors found that none of the current eGFR estimation 
equation can accurately estimate the donor’s GFR, which is likely to underestimate the true rate of decline in 
GFR in 3 months–5 years after  donation15. In addition, some equations customized for specific ethnic groups 
also showed huge deviations in the validation population in subsequent  studies16.

Therefore, we believe that developing new equations for specific crowds or based on new endogenous mark-
ers may not be an optimal solution. In this study, we attempted to construct a classification decision tree model 
to select a more appropriate eGFR equations for CKD patients, and obtaining a more accurate estimate of glo-
merular filtration rate.

Results
Clinical characteristics and demographic data of the patients. We eventually collected 518 eligible 
subjects, 70% (362) of whom were assigned to training set to construct the discriminant model and 30% (156) to 
test set to verify whether the model is accurate or reliable. In this study, most CKD patients were over 50 years 
old, with an average age of 60.63. The number of males was slightly larger than females, accounting for 61.88% 
in the training set and 66.67% in the test set. However, kidney transplant patients were excluded in this study. 
Only about one-third of patients had a renal biopsy with a definite renal pathology diagnosis, and half of them 
were diagnosed with diabetic nephropathy. Among primary glomerular diseases, IgA nephropathy accounts for 
the highest proportion, which is about 20% of all pathologically confirmed patients. Our study also included a 
small subset (8.11%) of CKD patients, who were taking calcium dobesilate. They were always excluded from the 
development of GFR estimation equations because calcium dobesilate interferes with creatinine measurement 
and causes overestimation of glomerular filtration rate. Details of patients’ clinical and demographic data are 
shown in Table 1.

Classification decision tree model and variable importance. A total of 28 variables, including patient 
demographic data, past medical history, medication status, renal pathology results and laboratory measurement, 
were used to construct a classification decision tree model. Then we filtrated 15 relatively important variables 
and further selected the relative key variables to build the final classification decision tree model (Fig. 1).

BSA, BMI, 24-hour urine protein quantity, diabetic nephropathy, age and RASi were selected to constitute 
the final classification decision tree model. As shown in Fig. 2, when a patient with CKD was diagnosed with 
diabetic nephropathy, BIS-2 equation was recommended to him directly, otherwise he would need to be assessed 
based on RASi, BSA, 24-hour urine protein quantitation, and age. RASi may be a key factor influencing GFR 
estimation in patients with non-diabetic nephropathy. Meanwhile, patients with low BSA or BMI may be more 
appropriate to use Ruijin equation or CKD-EPI (Cr-CysC) equation. CKD-EPI (CysC) equation may be more suit-
able for CKD patients with higher BMI and BSA, which may be related to the fact that cystatin C is less affected 
by metabolic factors than creatinine.

Classification decision tree model estimation of GFR performance. We estimated GFR by 13 
known equations and the classification decision tree model respectively. Then, the results obtained above were 
compared with the GFR converted by 1.73  m2 standard body surface area. Finally, we found that the estimated 
GFR of Ruijing, BIS-2, CKD-EPI, abbreviated MDRD and classification decision tree model approximated to the 
levels measured by 99mTc-DTPA (Table 2, GFR estimated by tree model and traditional equations for the training 
set and total population are shown in Supplement 1).

RMSE and MAE were used to evaluate the accuracy of these equations and the classification decision tree 
model in estimating GFR. According to RMSE and MAE, the values of Ruijin, BIS-2 and CKD-EPI (Cr-CysC) 
were far less than the other 10 equations, indicating a more accurate estimation (Table 3). However, our clas-
sification decision tree model combined the accurate prediction of BIS-2, CKD-PEI (CysC), CKD-EPI (Cr-CysC) 
and Ruijin equations for specific population, showing a more precise estimation of GFR for CKD patients. MAE 
can better represent the accuracy of estimating GFR by the model, and the MAE of the classification decision 
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Training set (n = 362) Test set (n = 156) Total population (n = 518)

Age (year) 60.2 (50–71) 61.7 (52–72) 60.6 (51–71)

Male 224 (61.9%) 104 (66.7%) 328 (63.3%)

Height (cm) 167.6 (158–170) 164.2 (158–170) 166.6 (158–170)

Weight (kg) 68.8 (55.6–72.2) 65.4 (57.0–77.0) 67.8 (55.9–73.0)

Body surface area  (m2) 1.7 (1.6–1.8) 1.7 (1.6–1.9) 1.7 (1.6–1.8)

BMI 25.4 (21.3–26.6) 24.2 (21.8–26.3) 25.0 (21.5–26.5)

SBP (mmHg) 142.2 (126.0–157.0) 147.3 (128.3–164.0) 143.7 (127.0–158.3)

DBP (mmHg) 80.2 (70.0–88.3) 79.2 (68.0–89.0) 79.9 (69.0–89.0)

Smoking 68 (18.8%) 32 (20.5%) 100 (19.3%)

Drinking 46 (12.7%) 26 (16.7%) 72 (13.9%)

Unilateral nephrectomy 6 (1.7%) 8 (5.1%) 14 (2.7%)

Hypertension

Grade 1 75 (20.7%) 24 (15.4%) 99 (19.1%)

Grade 2 69 (19.1%) 36 (23.1%) 105 (20.3%)

Grade 3 160 (44.2%) 82 (52.6%) 242 (46.7%)

Diabetes 104 (28.7%) 60 (38.5%) 164 (31.7%)

Cardiovascular disease 43 (11.9%) 28 (18.0%) 71 (13.7%)

Cerebral hemorrhage 3 (0.8%) 2 (1.3%) 5 (1.0%)

Cerebral infarction 28 (7.7%) 9 (5.8%) 37 (7.1%)

Hyperuricemia 67 (18.5%) 28 (18.0%) 95 (18.3%)

Gout 45 (12.4%) 21 (13.5%) 66 (12.7%)

Edema 130 (35.9%) 68 (43.6%) 198 (38.2%)

Renal pathology

MCD 1 (0.3%) 0 (0%) 1 (0.2%)

IgAN 30 (8.3%) 7 (4.5%) 37 (7.1%)

MsPGN 13 (3.6%) 1 (0.6%) 14 (2.7%)

MPGN 1 (0.3%) 0 (0%) 1 (0.2%)

MN 5 (1.4%) 1 (0.6%) 6 (1.2%)

FSGS 2 (0.6%) 1 (0.6%) 3 (0.6%)

Hypertensive kidney lnjury 10 (2.8%) 6 (3.9%) 16 (3.1%)

Diabetic nephropathy 44 (12.2%) 30 (19.2%) 74 (14.3%)

HSP 2 (0.6%) 0 (0%) 2 (0.4%)

Lupus nephritis 3 (0.8%) 2 (1.3%) 5 (1.0%)

Hyperuricemic nephropathy 13 (3.6%) 6 (3.9%) 19 (3.7%)

Polycystic kidney 4 (1.1%) 0 (0%) 4 (0.8%)

Without renal biopsy 234 (64.6%) 102 (65.4%) 336 (64.9%)

Glucocorticoid 30 (8.3%) 14 (9.0%) 44 (8.5%)

Immunosuppressor 47 (13.0%) 14 (9.0%) 61 (11.8%)

Diuretic 136 (37.6%) 66 (42.3%) 202 (39.0%)

Uric acid lowering therapy 212 (58.6%) 83 (53.2%) 295 (57.0%)

SGLT2i 3 (0.8%) 6 (3.9%) 9 (1.7%)

RASi 117 (32.3%) 45 (28.9%) 162 (31.3%)

Statin 132 (36.5%) 58 (37.2%) 190 (36.7%)

Calcium dobesilate 32 (8.8%) 10 (6.4%) 42 (8.1%)

White blood cell (×  109) 6.0 (4.5–7.0) 6.28 (4.9–7.2) 6.1 (4.7–7.0)

Red blood cell (×  109) 4.3 (2.9–3.9) 5.4 (2.8–3.8) 4.6 (2.9–3.9)

Hemoglobin (g/L) 102.3 (87.0–118.0) 98.6 (82.0–113.8) 101.2 (86.0–116.0)

Platelet (×  109) 185.4 (141.0–221.0) 188.1 (140.5–225.5) 186.2 (141.0–222.3)

C-Reactive protein (mg/L) 9.0 (1.0–4.9) 7.7 (1.0–5.0) 8.6 (1.0–4.9)

AG (mmol/L) 8.4 (4.1–12.4) 9.4 (6.1–13.0) 8.7 (4.6–12.6)

Lactic acid (mmol/L) 1.3 (0.9–1.5) 1.3 (0.9–1.5) 1.3 (0.9–1.5)

Osmotic pressure (mosm/L) 283.2 (280.0 -289.0) 283 (280.6–290.4) 283.2 (280.1–289.6)

FPG (mmol/L) 5.1 (4.2–5.3) 5.2 (4.3–5.6) 5.2 (4.2–5.4)

Glycated hemoglobin (%) 6.0 (5.3–6.3) 6.0 (5.3–6.5) 6.0 (5.3–6.3)

Serum potassium (mmol/L) 7.4 (3.9–4.6) 4.3 (3.9–4.6) 6.5 (3.9–4.6)

Serum sodium (mmol/L) 141.0 (139.4–142.5) 140.4 (139.9–143.0) 140.8 (139.5–142.7)

Continued
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tree model in the test set was only 8.5, which was much lower than other estimation equations (RMSE and MAE 
for the training set and total population are shown in Supplement 1).

Comparison of deviation of various methods for estimating GFR. In the box plot (Fig. 3), the esti-
mation accuracy of Cockcroft Gault, MDRD and Chinese Modification MDRD was far worse than that of others, 
which tended to overestimate the glomerular filtration rate of CKD patients. However, over-optimistic estimates 
of renal function in CKD patients might seriously affect clinical decision making and bring unpredictable risks 
to patients. Although the average deviation of other equations was not remarkably different from the classifica-
tion decision tree model, the estimation bias obtained from classified decision trees was more centralized (Vari-
ations in eGFR in different equations of training data and total population are shown in Supplement 1).

Comparison of degree of variation in GFR estimation bias. According to Bland–Altman plot, the 
eGFR based on the classification decision tree model maintained a high degree of consistency among different 
patients. Bland–Altman diagram also showed that GFR estimation of small RMSE and MAE, such as BIS-2, 
Ruijin and abbreviated MDRD, had a large deviation (Fig. 4, Bland–Altman plots for the training set and total 
population are shown in Supplement 1).

Training set (n = 362) Test set (n = 156) Total population (n = 518)

Serum calcium (mmol/L) 3.1 (2.1–2.3) 2.2 (2.1–2.3) 2.8 (2.1–2.3)

Serum phosphate (mmol/L) 2.4 (1.1–1.6) 1.5 (1.2–1.6) 2.1 (1.1–1.6)

Triglyceride (mmol/L) 1.8 (1.1–2.1) 3.6 (1.1–2.2) 2.4 (1.1–2.1)

Total cholesterol (mmol/L) 4.5 (3.6–5.2) 4.4 (3.5–5.1) 4.5 (3.5–5.2)

High-density lipoprotein (mmol/L) 1.1 (0.9–1.3) 1.1 (0.9–1.3) 1.1 (0.9–1.3)

Llow-density lipoprotein (mmol/L) 2.3 (1.7–2.9) 2.3 (1.6–2.8) 2.3 (1.7–2.8)

Total serum protein (g/L) 62.5 (57.4–67.4) 62.3 (57.8–67.1) 62.4 (57.6–67.3)

Aalbumin (g/L) 35.1 (32.0–38.9) 35.0 (31.9–39.1) 35.1 (32.0–38.9)

Globulin (g/L) 27.4 (24.0–30.5) 27.2 (23.7–29.6) 27.3 (24.0–30.1)

Prealbumin (mg/L) 287.4 (241.0–336.0) 285.3 (235.5–342.0) 286.8 (237.8–336.3)

Homocysteine (μmol/L) 26.7 (15.9–28.3) 27.0 (16.3–29.7) 26.8 (16.0–29.1)

PRO

− 76 (21.0%) 28 (18.0%) 104 (20.1%)

± 33 (9.1%) 20 (12.8%) 53 (10.2%)

+ 80 (22.1%) 32 (20.5%) 112 (21.6%)

++ 122 (33.7%) 48 (30.8%) 170 (32.8%)

+++ 51 (14.1%) 28 (18.0%) 79 (15.3%)

Urine α1 microglobulin (mg/L) 42.4 (16.3–63.3) 59.6 (22.3–70.8) 47.6 (18.0–64.1)

Urine β2 microglobulin (μg/L) 8891.3 (183.6–10,928.0) 6720.6 (111.7–7788.1) 8237.6 (172.9–10,512.7)

Microalbuminuria (mg/L) 875.2 (74.6–1248.6) 962.9 (61.0 -1378.3) 901.6 (73.1–1303.8)

Urine NAG-enzyme (u/L) 12.4 (6.5–14.2) 11.6 (6.7–14.3) 12.1 (6.6–14.2)

Urinary albumin creatinine ratio (mg/umol) 0.2 (0.01–0.23) 0.2 (0.01–0.29) 0.2 (0.01–0.25)

24-hour urine volume (L) 6.3 (1.2–2.1) 1.7 (1.2–2.1) 4.9 (1.2–2.1)

24-hour urinary protein quantity (mg) 1818.9 (221.0–2665.0) 2020.4 (231.0–2975.0) 1879.0 (224.0–2781.9)

B-type natriuretic peptide (ng/L) 195.0 (19.0–132.1) 193.7 (27.9–179.4) 194.6 (20.4–148.2)

Free triiodothyronine (pmol/L) 4.5 (3.0–4.0) 3.3 (2.9–3.8) 4.1 (3.0 -3.9)

Free thyroxine (pmol/L) 12.6 (11.6–14.1) 12.1 (11.0–13.9) 12.4 (11.4–14.1)

Thyroid stimulating hormone (mIU/L) 5.3 (1.1–2.7) 3.7 (1.0 -2.5) 4.8 (1.0–2.7)

Parathyroid hormone (μg/mL) 89.1 (11.4–136.1) 99.9 (13.5–142.2) 92.3 (12.1–137.3)

Ferroprotein (ng/mL) 226.2 (85.1–279.0) 255.0 (98.7–323.2) 235.0 (89.6–292.8)

Uric acid (umol/L) 437.9 (347.8–518.3) 453.2 (363.8–532.5) 442.5 (349.0–525.0)

Serum creatinine (umol/L) 312.5 (146.5–424.8) 371.2 (174.3–493.5) 330.2 (150.8–451.0)

Urea nitrogen (mmol/L) 17.1 (9.0–21.5) 18.1 (9.5–22.8) 17.4 (9.1–21.9)

Cystatin C (mg/L) 5.6 (2.0–3.6) 4.1 (2.0–3.7) 5.6 (2.0–3.7)

Glomerular filtration rate (mL/min) 28.3 (15.3–38.0) 26.3 (14.8–34.0) 27.7 (15.2–36.8)

Table 1.  Clinical and demographic data of patients (Mean  (P25–P75)).
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Discussion
Chronic kidney disease has become a worldwide public health problem, and most patients with CKD experi-
ence the irreversible renal impairment and end up with  ESRD1. Protecting the renal function of patients is one 
of the prerequisites to improve the prognosis of CKD patients. In addition, the kidney is also a major organ for 
drug metabolism and excretion, which means that the variety and dosage of drugs will be adjusted according 
to renal function in CKD patients. Therefore, accurate assessment of renal function in CKD patients is critical.

As the most reliable indicator of renal function, GFR is of great significance for patients and is also the best 
choice for clinicians to make clinical  decision17. But the actual measurement of GFR is a very complex operation. 
Most of the time, clinicians only estimate GFR by combining serum levels of endogenous markers such as creati-
nine and cystatin C with GFR estimation equations. However, this will raise a wholly new problem—estimation 
bias, which may be unacceptable and lead to misjudgments of patient  outcomes18. How to reduce eGFR bias has 
always been a topic of interest to nephrologists. Previous studies mainly focused on developing new estimation 
equations or finding new endogenous  markers16,19. In this study, we tried to integrate several equations, and 
used the classification decision tree model to determine the optimal equation for different patients, and finally 
obtained a more accurate eGFR.

There are many explanations for this estimation bias, which can be divided into two  categories20. First, some 
eGFR equations are seriously over-fitting. They show high accuracy in the populations who have been developed 
already, but lose robustness in the population beyond the base value range. Currently, more than 80% of GFR 
estimation equations are based on Caucasian or black clinical data, while only a small percentage of equations 
include data from Asian populations, which may have a large bias in the population of Asian countries such as 
China and Japan or other ethnic minority  areas14,21–24. In addition to race and genetic specificity, the variation of 
patients’ disease status is also one of the main sources of equations bias. Hyperperfusion and hyperfiltration of 
the glomerulus are common in obese or diabetic patients, which may also lead to inaccurate  estimates25,26. Bas-
siony et al.27 found that all commonly used formulae for GFR estimation were not accurate enough in morbidly 
obese patients. And only the 24-hour creatinine excretion rate can be used to estimate renal function indirectly. 
The unique pathophysiological and hemodynamic characteristics of patients with obstructive nephropathy or 
transplantation also make many GFR estimation equations unsuitable for  them15,28.

Second, many equations rely on a single endogenous marker, whose serum concentration is likely to be 
affected by other factors, to estimate GFR. For example, calcium hydroxybenzene sulfonate is applied to many 
CKD patients with diabetic peripheral vascular disease, which can markedly affect serum creatinine measurement 
and lead to a significant overestimation of eGFR in all creatinine-based eGFR estimation equations. In addition, 
factors such as patient muscle mass, diet, exercise and metabolic level can interfere with endogenous marker 
levels, attributing to a bias in the estimation of GFR. Pottel et al. developed an equation based on creatinine, 
which was more accurate than others. However, this equation has a large bias in patients with reduced creati-
nine production, such as anorexia, paralysis, malnutrition, proteinuria, and  hypoalbuminemia29. What’s more, 
Xie et al. also proposed that inflammatory state and thyroid function could also affect the estimation of  GFR26.

Therefore, researchers attempted to use novel endogenous filtration markers, combined with multiple endog-
enous markers, to develop eGFR estimation equations for specific populations or a multi-parameter estimation 
 equation30–32. Unfortunately, these methods do not provide more accurate estimates for GFR. Li et al. developed 
a Xiangya GFR estimation equation for Chinese CKD population and showed much more efficacy than EPI 

Figure 1.  Relative importance of variables.
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equation in the validation  data19. However, this equation did not show strong robustness in subsequent  studies16. 
The MDRD is a classical multi-parameter equation that includes the creatinine, urea nitrogen, age and serum 
albumin levels of CKD patients. However,  Hu33 and our results showed that the accuracy of MDRD or Chinese 
modified MDRD is not ideal. What’s more, adding too many parameters into the equation increases the complex-
ity of the equation, which is not convenient for  clinicians33.

We believe that overfitting and interference from non-renal factors may be present in any GFR estimation 
equations, and developing a new equation may not eliminate these two problems  fundamentally17,18. New equa-
tion or correction coefficients have been developed for many countries and ethnic population. For example, 
Ruijin and Xiangya equations developed for Chinese are greatly improved on CKD-EPI and MDRD equations 
developed for Caucasian and black people. Instead of putting the same equation into all CKD patients, we try to 
combine multiple equations and choose a suitable and accurate GFR estimate equation for each CKD patient. 
Therefore, we attempted to utilize machine learning to predict the most accurate GFR estimation equation for 
each CKD patient and then to estimate GFR. We chose the classification decision tree model to implement this 
process. Our classification decision tree model indicates that BSA, BMI, 24-hour urine protein quantity, diabetic 
nephropathy, age and RASi may be vital factors for GFR estimation bias. To achieve a more accurate estimate of 
GFR, the classification decision tree model was used to classify CKD patients according to the variables above 
and then to select the optimal estimation equation for them to minimize the bias. What we eventually obtained 
from this research was that the values of MAE and RMSE based on classified decision tree model were far smaller 
than other 13 equations, which verified our hypothesis. This indicated that the classification decision tree model 
could combine the advantages of multiple equations and automatically select the appropriate equation to obtain 
more accurate eGFR.

However, there are some limitations in the study. First, the sample size of this study is relatively limited. The 
99mTc-DTPA measurement of GFR in CKD patients is not a clinical procedure that can be performed in every 
hospital, which makes data sources very limited. In order to ensure the robust of the model, only subjects with 

Figure 2.  Classification decision tree model.
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complete clinical data were included, which made us must eliminate a lot of patients. With the increasement of 
clinical data, we look forward to optimizing our model with larger data sets soon. Second, the lack of an inde-
pendent external validation set may prevent us from objectively evaluating our model. However, we randomly 
selected 30% of the data from the total population as the test set, which also ensures the independence of the 
validation data. Third, classification decision tree is only a kind of weak classifier in machine learning. But it 
belongs to a classic machine learning model, which is different from the "black box" model such as random for-
est and neural network, and its decision process can be clearly displayed, which is also important for clinicians. 
Finally, all of our data are from mainland China and only Chinese population is included in our study, which may 
result in our model failing to accurately predict other races such as Europeans, Americans and Africans. However, 
we believe that the tree model is a reliable method to reduce the deviation in estimating GFR. This method can 
also be applied to other populations, and the adjustment of tree model parameters in different populations may 
be a new problem in the future.

In summary, it is a novel approach to using a classification decision tree to select estimation equation and 
to estimate the GFR. We used machine learning methods combined with the advantages of multiple estimation 
equation to obtain a more accurate estimate of GFR. Taken together, this study provides an optimized way of 
machine learning that can efficiently select the appropriate equation and estimate GFR more accurately, which 
will help nephrologists precisely assess renal function in CKD patients.

Table 2.  GFR estimated by decision tree model and traditional equations based on BSA for test set (Mean 
 (P25–P75)). a All GFR estimation equations were converted to a uniform unit, mL/min per 1.73  m2. b sGFR: GFR 
was measured by 99mTc-DTPA, and the GFR was converted to 1.73  m2 standard body surface area based on the 
patient’s body surface area.

Equationa Test set (n = 156)

Cockcroft gault 64.6 (30.7–85.9)

MDRD 59.9 (25.42–84.78)

Abbreviated MDRD 23.4 (9.9–33.69)

Chinese modification MDRD 72.0 (30.6–101.9)

Chinese modification abbreviated MDRD 30.6 (12.9–43.9)

CKD-EPI(Cr) 23.9 (9.3–33.4)

CKD-EPI(CysC) 24.2 (13.2–28.8)

CKD-EPI(Cr-CysC) 22.7 (10.7–29.9)

Asian modified CKD-EPI(Cr) 25.2 (9.8–35.3)

BIS-2 27.6 (15.8–34.2)

MacIsaac 31.3 (19.3–38.7)

Ruijin 28.2 (14.6–38.2)

Xiangya 38.8 (27.1–49.0)

Decision tree classifier 25.3 (13.6–32.1)

sGFRb 26.6 (15.1–34.6)

Table 3.  RMSE and MAE of various estimation equations.

RMSE MAE

Test set (n = 156) Test set (n = 156)

Cockcroft gault 50.4 38.7

MDRD 48.8 35.0

Abbreviated MDRD 12.3 9.6

Chinese modification MDRD 63.7 46.3

Chinese modification abbreviated MDRD 15.9 11.7

CKD-EPI(Cr) 12.7 9.9

CKD-EPI(CysC) 14.0 9.5

CKD-EPI(Cr-CysC) 12.8 9.3

Asian modified CKD-EPI(Cr) 13.2 10.1

BIS-2 11.9 8.8

MacIsaac 15.0 10.8

Ruijin 11.6 8.9

Xiangya 16.2 13.9

Decision tree classifier 12.2 8.5
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Methods
Study design and subjects. This is a retrospective study. We searched the HIS system of the First Affil-
iated Hospital of Zhejiang Chinese Medicine University for all CKD patients who visited the hospital from 
December 1, 2018 to December 1, 2021 and underwent Gate’s method of 99mTc-DTPA renal dynamic imaging 
to detect GFR. Subjects were included as follows: (1) clinically diagnosed with CKD; (2) 99mTc-DTPA GFR was 
measured at the time of visit, and creatinine, cystatin C were available. Exclusion criteria included the following: 
(1) aged < 18 years; (2) underwent hemodialysis or peritoneal dialysis treatment within three months prior to the 
creatinine and cystatin C detection; (3) critical information, such as age and gender, was missing.

Basic information collection. In this study, we collected the patients’ demographic data (age, sex, height, 
weight, systolic blood pressure, diastolic blood pressure, etc.), conditions related to renal disease (renal biopsy 
result, whether receiving glucocorticoid treatment and the use of immunosuppressants), previous history (can-
cer, diabetes, stroke, hyperuricemia, etc.), medication (diuretics, SGLT2i, RASi, etc.) and so on.

Du Bois equation is used to calculate the body surface area (BSA).

Laboratory and GFR measurements. Serum creatinine level was detected by sarcosine oxidase method 
with reagents purchasing from Zhongsheng Beikong Biotechnology Co., LTD. (92,644,093). Cystatin C was 
detected by latex enhanced immunoturbidimetry with reagents purchasing from Zhejiang Content Biotech Co., 
Ltd. (20,210,901). 24-hour Urinary Protein Quantity was detected by pyrogali-molybdic method with reagents 
purchasing from Beijing Leadman Biochemistry Co., Ltd. (21,011,107). The detection instrument is Abbott’s 
ARCHITECT C16000 automatic biochemical analysis system (c16000659), and the specific detection is com-
pleted by the Clinical laboratory of Zhejiang Hospital of Chinese Medicine.

GFR was measured by Gate’s method of 99mTc-DTPA renal dynamic  imaging34,35, which used Single pho-
ton emission computed tomography scanner (INFINIA 17261, GE Healthcare). 99mTc-DTPA was used as renal 
dynamic imaging agent with a dose of 185 MBq. 99mTC-DTPA renal dynamic imaging was performed in supine 
position and collected in posterior position. 99mTc-DTPA 185 MBq was injected intravenously, and the collec-
tion procedure was started at the same time. Both kidneys were collected continuously. Low energy collimator, 
window width 20%, matrix 64 × 64, energy peak 140 keV, magnification 1–1.5. Dynamic collection was carried 
out for 31 min. Blood perfusion phase was collected for 1 min at 2 s/frame, and functional phase was collected 
for 30 min at 15 s/frame. The radioactivity count of the syringe was measured before and after injection. After 
the imaging was completed, the left and right kidneys and the background were manually delineated using ROI 
technology to generate time-radioactivity curves and calculate glomerular filtration rate of both kidneys.

Statistical analysis. Statistical description and data set split. All continuous variables were presented as 
the mean  (P25–P75) and categorical variables were described as N (n %). All the patients were randomly divided 
into two groups: 70% subjects (362) into the training set and 30% (156) into the test set.

BSA = weight0.425 ∗ height0.725 ∗ 0.007184

Figure 3.  Variations in estimates of GFR in different equations of test data. (a) eGFR: Glomerular filtration rate 
was estimated based on an equation or model; (b) sGFR: GFR was measured by 99mTc-DTPA, and the GFR was 
converted to 1.73  m2 standard body surface area based on the patient’s body surface area.
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Selection of eGFR estimation equation. Based on the current research, we selected some international GFR 
estimation equations and some GFR estimation equations developed for Chinese people. The unit of creatinine 
in Xiangya equation is μmol/L, and the units of other equation are mg/dL. 1 mg/dl creatinine = 88.4 μmol/L.

Cockcroft Gault:

The GFR was calculated in mL/min, which was converted to mL /min per 1.73  m2 based on the patient’s 
body surface area.

MDRD:

Abbreviated MDRD:

Chinese modification MDRD:

eGFR =

(

140− Age
)

∗ height

Cr ∗ 72
∗ 0.85 (if female)

eGFR = 170 ∗ Cr−0.999
∗ Age−0.176

∗ Bun−0.170
∗ Alb0.318 ∗ 0.762 (if female)

eGFR = 175 ∗ Cr−1.154
∗ Age−0.203

∗ 0.742 (if female)

Figure 4.  Bland–Altman diagram for the test set. (a) eGFR: Glomerular filtration rate was estimated based on 
an equation or model; (b) sGFR: GFR was measured by 99mTc-DTPA, and the GFR was converted to 1.73  m2 
standard body surface area based on the patient’s body surface area.
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Chinese modification abbreviated MDRD:

CKD-EPI(Cr):
In male

In female

CKD-EPI(CysC):
In male

In female

CKD-EPI(Cr-CysC):
In male

In female

eGFR = 170 ∗ Cr−0.999
∗ Age−0.176

∗ Bun−0.170
∗ Alb0.318 ∗ 1.202 ∗ 0.762 (if female)

eGFR = 170 ∗ Cr−0.999
∗ Age−0.176

∗ 1.202 ∗ 0.762
(

if female
)

eGFR = 141 ∗

(

Cr

0.9

)−0.411

∗ 0.993
Age (if Cr ≤ 0.9)

eGFR = 141 ∗

(

Cr

0.9

)−1.209

∗ 0.993
Age (if Cr > 0.9)

eGFR = 144 ∗

(

Cr

0.7

)−0.329

∗ 0.993
Age (if Cr ≤ 0.7)

eGFR = 144 ∗

(

Cr

0.7

)−1.209

∗ 0.993
Age (if Cr > 0.7)

eGFR = 133 ∗

(

CysC

0.8

)−0.499

∗ 0.996
Age (if CysC ≤ 0.8)

eGFR = 133 ∗

(

CysC

0.8

)−1.328

∗ 0.996
Age(ifCysC > 0.8)

eGFR = 133 ∗

(

CysC

0.8

)−0.499

∗ 0.996
Age

∗ 0.932 (if CysC ≤ 0.8)

eGFR = 133 ∗

(

CysC

0.8

)−1.328

∗ 0.996
Age

∗ 0.932 (if CysC > 0.8)

eGFR = 135 ∗

(

Cr

0.9

)−0.207

∗

(

CysC

0.8

)−0.375

∗ 0.995
Age (if CysC ≤ 0.8&Cr ≤ 0.9)

eGFR = 135 ∗

(

Cr

0.9

)−0.207

∗

(

CysC

0.8

)−0.711

∗ 0.995
Age (if CysC > 0.8&Cr ≤ 0.9)

eGFR = 135 ∗

(

Cr

0.9

)−0.601

∗

(

CysC

0.8

)−0.375

∗ 0.995
Age (if CysC ≤ 0.8&Cr > 0.9)

eGFR = 135 ∗

(

Cr

0.9

)−0.601

∗

(

CysC

0.8

)−0.711

∗ 0.995
Age (if CysC > 0.8&Cr > 0.9)

eGFR = 130 ∗

(

Cr

0.7

)−0.248

∗

(

CysC

0.8

)−0.375

∗ 0.995
Age (if CysC ≤ 0.8&Cr ≤ 0.7)

eGFR = 130 ∗

(

Cr

0.7

)−0.248

∗

(

CysC

0.8

)−0.711

∗ 0.995
Age (if CysC > 0.8&Cr ≤ 0.7)
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Asian modified CKD-EPI(Cr):
In male

In female

BIS-2:

MacIsaac:

Ruijin:

Xiangya:

Construction of classification decision tree model. We compared the eGFR obtained from the 4 most widely 
used and accurate equations in Chinese population (BIS-2, CKD-EPI(CysC), CKD-EPI(Cr-CysC) and Ruijin) 
with GFR measured by 99mTc-DTPA to obtain eGFR estimation equation with the smallest deviation for each 
patient as the best matched estimation equation. Then, we constructed a classification decision tree model of 
the optimal estimation formula according to the age, sex, body surface area, BMI, whether having the unilat-
eral nephrectomy, history of hypertension, diabetes, cardiovascular disease, cerebral infarction, cerebral hemor-
rhage, cancer, hyperuricemia, gout, edema, whether taking calcium dobesilate, SGLT2i, RASi, beprostaglandin 
sodium, glucocorticoids, immunosuppressants, diuretics, smoking history, drinking history, pathological results 
of kidney biopsy, creatinine, cystatin, 24-hour urine volume, 24-hour urine protein of training set patients. In 
the construction process of classification decision tree model, CRT algorithm was selected as the basic algorithm 
for our model construction, where entropy was used to represent the information purity of each leaf and nodes 
were disassembled according to the highest information increment (The source code and annotations for the 
model building process are available in Supplement 2).

Accurate evaluation of GFR estimation based on classification decision tree and comparison with traditional equa-
tions. We predicted the appropriate equation based on the classification decision tree, and then used the fore-
casting equation to calculate eGFR. We verified the accuracy of the GFR estimation based on the classification 
decision tree model in the training set and test set data respectively, and compared it with other 13 traditional 
estimation equations. We used Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) to evaluate 
the estimation effect of the model in the training set and the test set respectively, and take the estimation effect 
of test set as our result.

eGFR = 130 ∗

(

Cr

0.7

)−0.601

∗

(

CysC

0.8

)−0.375

∗ 0.995
Age (if CysC ≤ 0.8&Cr > 0.7)

eGFR = 130 ∗

(

Cr

0.7

)−0.601

∗

(

CysC

0.8

)−0.711

∗ 0.995
Age (if CysC > 0.8&Cr > 0.7)

eGFR = 149 ∗

(

Cr

0.9

)−0.415

∗ 0.993
Age (if Cr ≤ 0.9)

eGFR = 149 ∗

(

Cr

0.9

)−1.210

∗ 0.993
Age (if Cr > 0.9)

eGFR = 151 ∗

(

Cr

0.7

)−0.328

∗ 0.993
Age (if Cr ≤ 0.7)

eGFR = 151 ∗

(

Cr

0.7

)−1.210

∗ 0.993
Age (if Cr > 0.7)

eGFR = 767 ∗ CysC−0.610
∗ Cr−0.400

∗ Age−0.570
∗ 0.870 (if female)

eGFR =
86.700

CysC
− 4.200

eGFR = 234.960 ∗ Cr−0.926
∗ Age−0.280

∗ 0.828 (if female)

eGFR = 2374.780 ∗ Cr−0.54753
∗ Age−0.25011

∗ 0.8526126; (if female)

RMSE =

√

1

n

∑

(ypredicted − yactual)
2
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Programming languages and packages. We sued R, version 3.5.3 (R Foundation for Statistical Computing, 
Vienna, Austria. https:// www.R- proje ct. org/.) for data analysis. We used rpart (Terry Therneau and Beth Atkin-
son (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1–15.) and ggplot2 (H. 
Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.) packages to construct 
classification decision tree model and plot Bland–Altman diagram.

Ethical approval. This study was approved by the Ethics Committee of the First Affiliated Hospital of Zheji-
ang Chinese Medicine University (2022-KL-030-01). We also confirm that all research processes are carried out 
in accordance with relevant guidelines and regulations and under the supervision of the ethics committee and 
other regulators. Because our study was a retrospective analysis using data from the hospital information system, 
intervention of the subjects was not involved. We hid all patient information at the beginning of the study, fully 
protect the rights and interests of patients. So, the ethics committee has approved that we can exempt informed 
consent.

Data availability
All data, models generated or used during the study appear in the submitted article. The datasets used and/or 
analyzed during the current study are available from the corresponding author on reasonable request.
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