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Seasonal bacterial niche structures 
and chemolithoautotrophic 
ecotypes in a North Atlantic fjord
Eric J. Raes1,2*, Jennifer Tolman1, Dhwani Desai1,3, Jenni‑Marie Ratten1, Jackie Zorz4, 
Brent M. Robicheau1, Diana Haider1,5 & Julie LaRoche1

Quantifying the temporal change of bacterial communities is essential to understanding how both 
natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use 
weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal 
niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest 
that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the 
pattern of bacterial diversity. These findings supplement those from global analyses which lack 
temporal replication and present few data from winter months in polar and temperate regions. 
Centered log‑ratio transformed data provided new insights into the seasonal niche partitioning of 
conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, 
and Fermentibacterota. These patterns could not be identified using the standard practice of ASV 
generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of 
chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with 
varying seasonal dominance patterns in the Bedford Basin.

Coastal regions and estuaries are the interface between land and ocean, and as biogeochemical hot spots they 
are responsible for ~ 19% of global oceanic net primary  productivity1,2. However, along with all biomes on earth, 
coastal ecosystems are undergoing changes at different temporal scales both naturally and from anthropogenic 
 pressures3,4. Measuring temporal change in these ecosystems is an issue of ongoing concern, given the valuable 
ecological, cultural and economic services they  provide1,5. Monitoring programs that generate multi-disciplinary 
time-series datasets have been instrumental in detecting temporal patterns of change and seasonal shifts/cycles, 
alongside variability in environmental parameters and biological  communities6,7. Furthermore, high-frequency 
sampling has allowed quantification of the impacts of short- and long-term stressors on coastal ecosystems 
 specifically8–10 and marine ecosystems in  general11,12.

At the base of the marine food web, pro- and eukaryotic microorganisms sustain, inject and control the fluxes 
of energy and nutrients, and provide the organic matter for all higher trophic  levels13. Despite considerable 
data gaps in certain coastal areas (e.g., the Atlantic South American coast and most of the Indian Ocean), the 
continued international effort in managing coastal time-series is delivering valuable mechanistic insights into 
the seasonal trends, periodicity, and phenology of marine  prokaryotes9,14–20. This concerted effort highlights the 
need to identify seasonal patterns and changes in prokaryotic diversity as these will provide baselines to distur-
bances and long-term trends. Furthermore, while marine prokaryotes respond to external changes, they also 
play a crucial role in shaping their environment through the microbial  loop21; any changes in their community 
structure could thus have important ramifications for biota higher up the food  chain22,23.

In this study we present findings from a 4-year time series of bacterial 16S ribosomal RNA gene (rRNA) 
metabarcoding data in Bedford Basin, a temperate coastal embayment in the Northwest Atlantic Ocean. Sam-
ples were collected weekly from four depths congruent with physical and biochemical metadata. Traditionally, 
monitoring occurs at monthly or quarterly intervals, which may be insufficient to capture important transitions 
and disruptions to the community such as transient bloom periods or severe weather events (i.e., shorter-lived 
community  dynamics24,25). The goal of this study was therefore to use high-resolution weekly sampling to describe 
the yearly reoccurring cycles, and hence in situ dynamics, of prokaryotic communities, and to describe important 
metabolic pathways. First, we calculated taxonomic diversity indices across time to test whether day length, rather 
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than temperature and nutrients alone, was the environmental variable most effectively describing changes in 
prokaryotic alpha and beta diversities over an annual cycle. Next, we aimed to identify whether there were marked 
seasonal changes in abundance for different phyla, and if these results could be further supported by metabolic 
pathways inferred from PICRUSt2 analyses of 16S rRNA gene  sequences26. Finally, we tested whether different 
ecotypes within one of the diverse prokaryotic clades observed at our site exhibited seasonality over an annual 
 cycle27. In this regard, we investigated the chemolithoautotrophic bacterial SUP05 clade, which comprise a signifi-
cant functional group in suboxic (< 100 µmol  O2  L−1) dark (aphotic) coastal  waters28, such as the Bedford Basin.

Results and discussion
Seasonal changes in a North Atlantic embayment. The Bedford Basin is a coastal embayment with 
a maximum depth of 71 m and is connected via a narrow (500 m) and shallow (20 m) sill to the Scotian Shelf 
in the northwest Atlantic (NWA; Fig. 1a,b). Lower density surface waters flow out to the NWA, while deeper, 
slightly more saline waters flow into the basin over the  sill29. Lowest salinity values during our study (25.40) 
were measured at the surface, and highest values (31.58) near the bottom. The average water column salinity was 
30.09 ± 0.88 and was not significantly different between years from 2014 to 2017 (Wilcoxon tests p > 0.1; Sup-
plementary Table 1). The euphotic depth is shallower than 30 m year-round, and like the Scotian Shelf, the basin 
is subject to distinct temperate seasonal  cycles30 (Fig. 1d). As is typical of other northern temperate fjords, the 
Bedford Basin also experiences seasonally defined water column stratification accompanied by spring (~ April) 
and autumn (~ September) phytoplankton blooms  (Li31 and Fig. 1c,e). This seasonal cycling also influences the 
available absolute macronutrient (N and P) concentrations as well as their stoichiometry, with a depletion of N 
relative to P in summer (Supplementary Fig. 1). Furthermore, the suboxic conditions that develop in the deep 
water during late autumn (< 100 µmol  O2  L−1; below 30 m and Supplementary Fig. 2) are generally dissipated by 

Figure 1.  Our sampling site was located in Nova Scotia, Canada (a), and specifically within the Bedford Basin 
[inset of a; sampling site (star) is also known as HL0 = 44.6936 latitude, −63.6403 longitude]. (b) Schematic 
representation of variables and conditions measured during this study, included: sampling depths for DNA, 
chlorophyll-a and concentrations for dissolved nutrients (nuts; which included  PO4

−,  NO3
−,  NO2

−,  NH4
+ and Si) 

along with CTD profiles. Weekly measurements from 2014 to 2017 included: temperature profiles (c), nitrate 
concentrations in the euphotic (1, 5 and 10 m; cyan circles) and in the aphotic zone (60 m; orange circles; d), 
and chlorophyll-a concentrations in the euphotic zone (the green line is the average for the three depths 1, 5 and 
10 m; e). Grey arrows denote colder and warmer winters for 2015 and 2016, respectively, as detailed by Haas 
et al.32. Image credit for yellow buoy; Robert Brazzell.
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the convective mixing of the entire water column that results from colder temperatures, replenishing dissolved 
oxygen in the deep water and nutrients in the surface waters.

Alpha diversity peaks in winter and Beta diversity follows a resilient multi‑annual cycle. Across 
the four years, both Chao1 (species richness) and Shannon (evenness) diversity indices for prokaryotes showed 
a clear seasonal trend in the upper 10 m of the water column, with higher diversities in the colder, nutrient-rich, 
winter months (Fig.  2). Lowest alpha diversity was found during early summer (Chao1) and the productive 
spring bloom (Shannon; Fig. 2). Changes in alpha diversity at 60 m depth, although still statistically significant, 
were less pronounced compared to the surface waters (quadratic fits in the aphotic zone had lower  R2; see Sup-
plementary Table 2 and Supplementary Fig. 3). This aligns with the previously observed lack of global diversity 
gradient in the aphotic pelagic  zone33. The weak seasonal trend in the aphotic waters could, in our study, be best 
explained by an increased stability of the deep water compared to the surface; i.e., smaller seasonal variations in 
temperature and minimal in situ autotrophic production which have been suggested to be the two main vari-
ables driving changes in richness trends (i.e., the kinetic  energy33 and resource  hypotheses34). Possible explana-
tions for the high diversity in the euphotic zone during the colder winter months are (1) mixing of the water 
column will introduce species to the surface that usually reside at  depth32 and (2) an increased range of available 
nutrients (i.e.,  NO3

−,  PO4
3− and Si) in the euphotic waters will support more ecological niches and therefore 

more species (resource heterogeneity). The lower diversity during the bloom periods could be related to the 
proportional increase of fast growing specialists such as Flavobacteria, which thrive in coastal marine waters 
during phytoplankton  blooms35. Their temporal niche advantage is supported by their ability to express spe-
cific degradation and transport genes for algal-derived (exo)-polysaccharides36. However, further metabolic rate 
measurements are needed to test whether the lower prokaryotic diversity during the productive months leads to 
a lower functional  diversity37.

Across the 4-year study, our results highlight a seasonal reversal in prokaryotic diversity in the upper water 
column relative to productive and warmer waters in summer. Similar peaks in diversity in winter have been 
observed in the temperate latitudes at a regional scale in the English  Channel24, in polar regions such as the Fram 
 strait38 and on a global  scale39. The seasonal patterns observed in our data remained present at higher rarefac-
tion depths (to 20,000 reads) confirming the robustness of these trends (Supplementary Fig. 3). All seasonal 
comparisons in the euphotic zone, with the exception of spring and summer for Chao1 and autumn and winter 
for the Shannon index, were significantly different from each other (Wilcoxon tests p < 0.05; Supplementary 
Tables 3–4). Similar seasonal trends also remained regardless of rarefaction depths for the rare microbiome 
(prokaryotes which comprised < 1% of the community; Supplementary Fig. 4).

Spatial patterns in prokaryotic richness and diversity have mainly been explained by two hypotheses: the 
kinetic energy hypothesis and the resource hypothesis. The former postulates that higher temperatures increase 
the metabolic rate of pathways, resulting in higher speciation rates and ultimately in higher alpha diversities 
(Sunagawa et al.40 and Ibarbalz et al.33, and reviewed by  Brown41). The latter suggests that more energy produc-
tion will support a higher numbers of  species34,42. The observation that day length may overrule the kinetic 
energy hypothesis (Fig. 3) is in contrast to the findings from a number of studies showing that temperature 
appears to be the strongest positive predictor of prokaryotic diversity in the global ocean (i.e., see Fuhrman 
et al.43, Ibarbalz et al.33 and Mittelbach et al.34). Furthermore, the seasonal trends in our time-series data do not 
support the productivity/resource hypothesis which show that autotrophic productivity is positively correlated 
with prokaryotic richness (i.e., see Mittelbach et al.34 and Raes et al.42,44; and Fig. 3). Instead, day length had the 

Figure 2.  Seasonal trends for alpha diversity indices in the Bedford Basin from 2014 to 2017. Chao1 diversity 
(a; with standard errors as defined for the Chao1 model for estimating richness), and Shannon diversity (b). 
Orange arrows indicate low alpha diversity during the spring and autumn blooms. Samples from the euphotic 
(1, 5 and 10 m; cyan circles) and aphotic zone (60 m; orange circles) are colour coded. Loess regression lines 
are fitted for each zone and the inflection points on the regression lines show a minimum in April/May and in 
October for both indices.
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strongest correlation coefficients for both species richness and evenness in the euphotic zone (Fig. 3). Multiple 
regression models (with temperature, chl-a and day length fitted last) also supported these findings and showed 
that day length contributed the largest proportion to the models in the euphotic zone (Supplementary Fig. 5). 
For completion we note that the richness peak between 5° and 10 °C in the euphotic and aphotic zone (Fig. 3c,d) 
coincided with the winter months (Supplementary Fig. 6).

Redundancy analyses (RDAs) confirmed that day length had the strongest correlative power to explain vari-
ance in the prokaryotic community, similar to the results from Gilbert et al.24 for the L4 time series. In our study, 
day length alone explained 91% of the variance in the prokaryotic community (Supplementary Table 5). Overall, 
regression fitting of single explanatory variables including temperature,  NO3

−,  PO4
−, Si and DO were also all 

significantly correlated with the prokaryotic community composition  (r2: 0.83, 0.71, 0.67, 0.62, 0.51 respectively; 
all p < 0.001; Supplementary Table 5). Both chl-a concentrations and salinity also revealed significant correlations 
with the prokaryotic community composition, but each parameter contributed < 8% of the variance  (r2: 0.07, 
0.04 respectively; all p < 0.001; Supplementary Table 5). RDA showed that beta diversity was largely explained by 
changes in day length (similar to alpha diversity), and that seasonality again seemed to overrule both the kinetic 
energy and the productivity/resource hypotheses. Partial Mantel tests were used in an attempt to disentangle the 
effects of day length and temperature on the prokaryotic beta diversity. The Mantel correlation statistics between 
beta diversity and temperature, controlled by day length (r: 0.494, p < 0.001), and between beta diversity and day 
length, controlled by temperature (r: 0.437, p < 0.001) were very similar. These results corroborate the findings 
from our RDA analyses where both temperature and day length revealed highly similar  r2 values (Fig. 4a and 
Supplementary Table 5). Day length and temperature covary and the results from both the Mantel test and RDA 
analyses highlight the difficulty of disentangling these factors. While alpha diversity revealed a significant nega-
tive relationship with day length, the main driver for the beta-diversity pattern remains unresolved.

The constrained (RDA; Fig. 4a) and unconstrained (PCA; Supplementary Fig. 7) prokaryotic community 
analyses in the euphotic zone displayed a clear seasonal pattern, and no significant differences were found within 
the euphotic zone (ANOSIM, all p-values > 0.05 between samples from 1, 5 and 10 m, nested within sampling 
month, across all four years; see Supplementary Table 6). Samples from the aphotic zone (60 m), however, were 
significantly different from the euphotic zone (ANOSIM p < 0.05; see Supplementary Table 6). The communi-
ties in the aphotic and euphotic zones were more similar in winter, when a well-mixed water column (Fig. 1c) 
reduced the proportion of unique ASVs in the aphotic zone by half compared to summer (Supplementary Fig. 8). 

Figure 3.  Alpha diversity trends in the Bedford Basin from 2014 to 2017. Species richness (Chao1) and species 
evenness (Shannon diversity) were correlated with day length (a,b), temperature (c,d), and chl-a concentrations 
as a proxy for biomass production (e,f). Linear regression lines are shown in blue for the euphotic zone and in 
red for the aphotic zone. Pearson correlation coefficients are indicated as R on the plots with their associated 
p-value. The ASV table was rarefied to 5000 reads prior to analyses, and seasonal patterns remained present 
independent of rarefaction depths (Supplementary Fig. 3).
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The increase in  NH4
+ concentrations in the aphotic zone from spring to autumn suggest the remineralisation of 

organic matter (Supplementary Fig. 2b and Haas et al.32). The export of the particle attached surface prokaryotic 
community to the deeper waters during the productive months may contribute to higher alpha diversities in 
summer in the aphotic zone. Sinking particles and faecal pellets are known to vertically connect prokaryotic 
communities in the water  column46, and suggest that sinking particle-attached bacteria can continue to degrade 
the exported organic matter in the aphotic zone.

Monthly differences, within a sampling year were significantly greater than interannual differences (i.e., in the 
euphotic zone ANOSIM Global R-values averaged 0.796 ± 0.045 (± sd) and Fig. 4a) between months across all 
years, while the interannual Global R-value was 0.091; Supplementary Table 7 and 8). The lower global R-values 
between years provide evidence that the seasonal cycle was consistent multi-annually (a resilient seasonal cycle; 
Fig. 4). These findings of a resilient seasonal cycle reaffirm the strong cyclic patterns previously recorded in the 
Bedford Basin by El-Swais et al.47, who investigated prokaryotic seasonality by targeting the V5 region of the 
16S rRNA gene (100 bp) from one millilitre of formalin‐fixed seawater using 45 samples spanning six years 
(2005–2010). Our study, however, used weekly samples (n = 792) across four years, and the 16S rRNA gene 
V4-V5 region (412 bp) was amplified from 500 ml of filtered seawater, with sequences clustered at an ASV level 
rather than a 90% identity cut‐off as done by El-Swais et al.47. The longer amplicon sequence combined with the 
ASV analyses enabled a more in-depth description of the temporal changes in the prokaryotic community and 
improved taxonomic assignment. Clear examples are the higher variability in winter (probably due to a higher 
alpha diversity or an artefact due to the lower concentrations of particulate organic matter (biomass) relative to 
spring and autumn; Supplementary Fig. 9), and the findings of temporal trends of conditionally rare taxa and 
ecotypes as shown below.

As discussed in Haas et al.32, notable events across our 4-years of weekly observations included: (i) a signifi-
cantly colder winter period in 2015 (Wilcoxon test p < 0.05); with lowest water temperatures measuring -0.35 °C 
in the upper 10 m (Fig. 1c), resulting in stronger winter mixing relative to the other years; (ii) higher minimum 
temperatures in the winter of 2016 (1.51 °C in the upper 10 m), resulting in reduced winter mixing relative to the 
other years (Fig. 1c); and (iii) short-lived (~ 3 to 4 weeks) intrusion events detected as relatively higher oxygen-
ated waters which interrupt the stratified period (below 30 m; Supplementary Fig. 2). While these intrusions 
can impact the N-cycling fluxes mediated by ammonium-oxidising microorganisms in the deeper waters, they 
do not impact the vertical stratification of the water  column32. Although we were able to detect these events as 
significant environmental disturbances, the recurring beta diversity patterns (Fig. 4) suggest that neither the 
intrusion events, nor aberrant colder winter temperatures impacted the prokaryotic community assemblages.

In summary, our results and those of  others18,24 support the premise that seasonal fluctuations dominate the 
pattern of prokaryotic diversity in temperate  regions39. Although global ocean surveys (e.g., TARA Oceans expe-
ditions) have observed that highest prokaryotic diversity occurs near equatorial  latitudes33, the lack of seasonal 
observations, compounded by the difficulties of sampling during winter months in polar and temperate regions, 
bring into question our current perception of global microbial diversity patterns. Recent studies utilizing time-
series data have shown that species richness is negatively correlated with day length over an annual cycle with a 

Figure 4.  Redundancy analyses (RDA) to characterize the specific abiotic variables in the water column which 
exerted the largest influence on the prokaryotic community composition in euphotic zone only (a) and across 
all four depths (b). The ASV data were CLR transformed and environmental parameters were standardized with 
the ‘standardize’ function using decostand from the Vegan  Package45. Months are coded with different colours 
(a) and sampling depths are colour coded in cyan (euphotic zone; 1, 5, 10 m) and orange (aphotic zone; 60 m; 
b). Abbreviated months are shown in grey, and seasons are highlighted in black for the aphotic zone (b). Vector 
abbreviations are temperature (temp), salinity (sal), chl a (chlorophyll-a), dissolved oxygen (DO), day length 
(DL), nitrate  (NO3

−), silicate (Si), phosphate  (PO4
3−).
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highest richness peak in  winter24,38. The finding that the relationship between temperature and diversity changes 
from a regional to a global scale re-emphasises the need to adjust our sampling designs and analyses by seasons 
if we want to truly understand the drivers of marine prokaryotic richness and its influence on the metabolic 
potential of the  community48. These findings are especially important for temperate and high latitude regions 
which are undersampled in winter, whereas tropical and equatorial oceanic zones with modest variations in day 
length are consequently expected to be less impacted by seasonal change.

Seasonal niche partitioning of bacterial phyla and functional pathways. The increased recogni-
tion of the compositional nature of microbiome  datasets49 encouraged us to use the centred log-ratio (CLR) 
transformation to explore relative changes and seasonal trends in the prokaryotic community. Using CLR 
transformed data, we identified several bacterial phyla that have temporally defined niches in the euphotic and 
aphotic zones (Fig. 5; Supplementary Fig. 10 and Supplementary Tables 9 and 10). We also present the change 
in relative abundances of certain bacterial genera using rarefied data in contrast to the CLR transformed data 
(Supplementary Fig. 11). While the main seasonal trends remain the same for the abundant bacterial phyla (i.e., 
similar trends are seen for the Cyanobacteria and Nitrospinota in autumn and winter respectively when the data 
are rarefied or CLR transformed; Supplementary Fig. 11), the CLR transformed data revealed new insights into 
the seasonal niche partitioning of phyla with low relative abundances, thereby adding a new level of resolution 
for rarer taxa previously  unavailable47. Clear examples, in spring and summer, were revealed for the bacterial 
phyla Modulibacteria and Verrucomicrobiota (Fig. 5), and Synergistota, Deinococcota, and Fermentibacterota 
(Supplementary Table 9). However, when the ASV table was rarefied and expressed as relative abundances, the 
above phyla (which contributed < 0.1% of the relative bacterial abundance) either did not show any seasonal 
trends or were removed during rarefaction (Supplementary Fig. 12). Bacteria present in low relative abundance 
can play significant roles in the C and N-cycles; Musat et al.50, for example, demonstrated that an anaerobic pho-
totrophic bacteria representing 0.3% of the community contributed a large fraction of the total C-fixation and 
 NH4

+ assimilation rates (up to 70 and 40% respectively). CLR transformed data revealed the cyclic distribution 
pattern of conditionally rare taxa (or “microbial dark matter”51) that may be seasonally important in the Bedford 
Basin, although their specific roles in biogeochemical cycling would require additional studies.

Figure 5.  Seasonal changes in bacterial phyla in the euphotic zone (1, 5 and 10 m) in Bedford Basin. 
Significance patterns and temporal niches were assessed with a permutation test (“multipatt” function from 
the Indicspecies  package52; see Methods and Supplementary Table 9). Due to the compositional nature of the 
sequence data, the changes are visualized with CLR values rather than relative abundances.
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A detailed overview of seasonal trends of the top 20 most abundant taxa is shown in Fig. 6. Flavobacteriaceae 
and Rhodobacteraceae clearly dominated the euphotic zone throughout the year in terms of relative abundances. 
Crocinitomicaceae and Saprospiraceae revealed higher abundance in winter, whereas the long absences pre-
ceding seasonal blooms in Cyanobiaceae, Pirellulaceae, Thiogglobaceae, SAR116 clade and Actinomarinaceae 
are noteworthy to mention (Fig. 6). In general, our results broadly mirror previous  studies47 that showed the 
association of the Flavobacteria such as Polaribacter and Ulvibacter with the spring bloom (Supplementary 
Fig. 13), and ammonia-oxidizing species as indicator ASVs in winter  months32. A similar seasonal succession 
from Flavobacteria in spring to nitrifying organisms in winter has recently been shown in the Arctic and subarctic 
regions of the Atlantic  Ocean38. Diminishing ice cover and the advection of warmer Atlantic water (referred to as 
Atlantification) have been hypothesised to trigger a shift in phytoplankton diversity and a proportional increase 
in Flavobacteria at high latitudes. Prolonged summer stratification and reduced wintertime convection due to 
Atlantification have been further shown to weaken deep-water renewal resulting in a decrease in associated 
“microbial recyclers”, such as nitrifying Archaea and Bacteria in the  Arctic38. These microbial recyclers play an 
important role in the global N-cycle, and in the Bedford Basin, winter mixing was identified as a major variable 
controlling the abundance and diversity of nitrifying  organisms32. The seasonal changes in photoautotrophic 
production (with low alpha diversity) and heterotrophic recycling (with high alpha diversity) periods in our 
study complement the observations from the Arctic  Ocean38. The interconnection between nutrient depletion 
and autotrophic biomass production in spring, and nutrient recycling and renewal in winter is a natural cycle 
which can be impacted by increasing ocean temperatures which prolong the stratification of the mixed  layer53. 
Time-series data, such as those used in this study, will allow a better characterization of how a warmer ocean 
will impact the biogeochemical fluxes mediated by micro-organisms in the North Atlantic but also in Arctic and 
subarctic regions, where similar seasonal trends have been  observed38.

Although the results from metabolic inference-based prediction tools such as  PICRUSt226 should be cau-
tiously  interpreted54, the approach has provided valuable mechanistic insights into the large-scale functional 
ecology of microbes in open oceanic  ecosystems48. Here we used inferred metabolic predictions to show the 
positive correlation between seasonal spring blooms and prokaryotic lipid biosynthesis (Fig. 7a). Polysaccharide 
degradation pathways showed a positive correlation with both the spring and autumn blooms in the photic zone 
across four years (Fig. 7b). A decreasing trend with depth was noted with the highest number of predicted lipid 
biosynthesis and polysaccharide degradation pathways in the surface waters.

The positive relationships between lipid biosynthesis, the breakdown of organic matter, and the spring bloom 
offer the opportunity to track energy production in the Bedford Basin, and potentially other coastal embayments. 
Our results show that community-level metabolic data can be used as a qualitative tool for understanding changes 
in ecosystem functions. These insights, along with the temporal connectivity patterns of pro- and eukaryotic 
organisms, will allow us to generate new hypotheses regarding how local environmental perturbations, whether 
natural or anthropogenic, could impact the top-down and bottom-up controls in marine food  webs55. This will 
open the possibility to test how changes at the lower microbially-driven trophic levels can propagate to the higher 
trophic levels and, how taxonomic changes could impact the fluxes of macro- and micronutrients mediated by 
the prokaryotic community.

Chemolithoautotrophy and seasonal ecotypes. The majority of the metabolic predictions includ-
ing lipid biosynthesis and polysaccharides-degradation pathways revealed the clearest change across seasons in 
the euphotic zone. While metabolic pathways also showed seasonal trends in the aphotic zone (Supplementary 
Table 13), we note two examples which illustrate the limitations in using PICRUSt2 to infer the metabolic poten-
tial of marine microbial communities. The first is the absence of nitrification pathways, which have been shown 
to be important in the Bedford  Basin32, and the second is the absence of chemolithoautotrophy pathways. In the 
Bedford Basin, we noted a significant increase in the relative abundance of the chemolithoautotrophic SUP05 
clade in the euphotic zone in winter (Fig. 8a), while overall highest relative abundances were observed through-
out the year in the deeper suboxic waters of the basin in winter (up to 25% of the relative bacterial abundance). 
Members from the SUP05 clade are known chemolithoautotrophs and execute important roles in energy pro-
duction in marine ecosystems including suboxic  fjords28, deep ocean hydrothermal  plumes56,57, and coastal shelf 
systems such as those off the West coast of  Africa58.

The SUP05 clade of the Bedford Basin contained five distinct ecotypes (ASVs). Three out of the five ecotypes 
differed from one another by a single nucleotide within the 16S V4-V5 region (i.e., SUP05_ASV1, SUP05_ASV2 
and SUP05_ASV5). SUP05_ASV3 and SUP05_ASV4 also differed from one another by only one 16S V4-V5 
nucleotide, but showed a difference of up to 18 nucleotides for the same gene region with the annually-persistent 
SUP05_ASV1 (Fig. 8b-c and Supplementary File 1). One ecotype (SUP05_ASV5) showed a clear temporal 
niche in autumn and two ecotypes (SUP05_ASV3 and SUP05_ASV4) occupied a niche in winter (Fig. 8b). 
The persistence of SUP05_ASV1 through the spring and summer months could suggest that this ecotype is a 
mixotroph and competes with phytoplankton for light and nutrients. The potential for autotrophy in the aphotic 
zone is likely, as members of the SUP05 clade are known to contain large RuBisCo subunit genes (rbcL; a key 
enzyme during C-fixation; Swan et al.59). The co-occurrence of dissimilatory sulfur oxidation (adenosine-5′-
phosphosulfate reductase alpha (aprA), reverse dissimilatory sulfite reductase (rdsrA) and autotrophic carbon 
fixation (RuBisCO) genes in members of the SUP05 clade suggest that these bacteria oxidise sulfur to support 
the autotrophic fixation of  C59. In the Bedford Basin, Taguchi &  Platt60 showed that annual dark C-fixation in 
the whole water column contributes up to 25% (50 g C  m−2  year−1) of the estimated annual production, with 
highest dark C-fixation rates in  winter61. We propose that the chemolithoautotrophic bacteria from the SUP05 
lineage might be a prime candidate for the dark C-fixation rates measured 44 years ago by Taguchi &  Platt60.
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The metabolic flexibility of the SUP05 clade and the persistence of the SUP05_ASV1 ecotype specifically in 
summer could also be due to (1) an increased ability to use a larger range of reduced organic and inorganic sulfur 
at sub-micromolar concentrations, and/or (2) the ability to store a larger proportion of intracellular sulfur when 
it respires  oxygen62,63. While SUP05_ASV1 remained the dominant ecotype throughout the year, SUP05_ASV3 
and SUP05_ASV4 appeared to benefit from the reduction of light and  oxygen32 during the colder autumn and 
winter months. This temporal niche separation highlights that the SUP05 ecotypes in the Bedford Basin have 
adapted specific metabolic  variations27 which allow them to compete and/or coexist with their close relatives, as 
has been seen for the Pelagibacter SAR11 and the cyanobacteria Prochlorococcus in the open  ocean64,65. Overall, 
these findings reaffirm the importance for considering dark C-fixation and sulfur cycling pathways during winter 
in coastal embayments in the NWA.

Conclusions
Weekly metabarcoding sampling across four years revealed clear temporal niche structures with a richness peak 
in winter. Our results from a time series at a mid to high latitude suggest that seasonal variations, integrated 
here in a deterministic daylength parameter, had a dominant effect on shaping the pattern of bacterial diversity, 
overriding the contribution of kinetic energy or available resources. Our findings indicate that in temperate to 

Figure 7.  Seasonal trends in lipid biosynthesis pathways (associated with the spring bloom) and Sugars and 
Polysaccharides degradation (associated with the spring and autumn blooms) in the Bedford basin from 2014 to 
2017. Temporal pathways were identified using a permutation test (“multipatt” function from the Indicspecies 
 package52; see “Methods” and Supplementary Table 12). Generalized additive mode smoothings are shown in 
blue and red (a,b).

Figure 8.  Seasonal trends for the chemoautotrophic SUP05 lineage in the Bedford Basin from 2014–2017. 
The SUP05 reads are conglomerated at a genus level (a) to highlight the differences between the euphotic and 
aphotic zones, while (b) highlights the different SUP05 ecotypes from non-conglomerated reads. Winter mixing 
occurs during Nov-Feb shown by orange arrows on (a). Generalized additive mode smoothings are shown 
in red (a), note: analysis of CLR data reveals how ASVs behave relative to the per-sample average. Sampling 
depths are presented by different symbols on (b), and ecotypes are shown in different colours. The red arrow 
(b) highlights the temporal niche for ecotype SUP05_ASV5. Neighbor-Joining tree with a Tamura-Nei genetic 
distance model for the five SUP05 ecotypes (c).
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high latitude regions, the measured diversity must be interpreted in the context of an increasingly strong seasonal 
cycle at high latitude where highest diversity is observed at the shortest daylength period. Day length as a variable 
is an integration of seasonal processes which include, but are not limited to, net heat flux, stratification, nutrient 
depletion by primary producers, nutrient regeneration by benthic processes, and the release of POC and DOC 
from cell lysis and senescence. Altogether these processes lead to a smooth recurring pattern of increases and 
decreases in diversity not driven by temperature (kinetic energy hypothesis) per se or reflected in chl-a directly 
(resource hypothesis).

Furthermore, using the CLR transformation, we presented novel insights into the seasonal niche partition-
ing of conditionally rare phyla. In our study we provided evidence that five ecotypes of chemolithoautotrophic 
bacteria from the SUP05 lineage might be prime candidates for the dark C-fixation rates measured by Taguchi 
and  Platt60. Insights into the seasonal changes of indicator species that perform distinct functions, such as ammo-
nia oxidisers, sulfur reducers, bacterial primary producers such as Cyanobacteria, and those that form a close 
relationship with polysaccharide degradation, will allow us to further explore the correlative relationships of 
inferred functions. The inferred functions, we argue, have the potential to reveal new insights into how changes 
in bacterial diversity relate to energy production (in our study lipid biosynthesis pathways correlated with the 
productive spring bloom). Ultimately, we showed that metabarcoding data can be used to establish baselines of 
microbial diversity that can then be used to assess how natural and anthropogenic stressors impact the base of 
marine food webs.

Materials and methods
The Bedford Basin: sampling & oceanographic data. Bedford Basin is an estuary that forms the 
inner portion of Halifax Harbour, Nova Scotia, Canada. The Bedford area is known as Kwipek (Head of the 
Tide) to the Mi’kmaq First Nation people. Weekly water samples were collected at the Compass Buoy Station 
(HL0; 44.6936, −63.6403; Fig. 1a,b) in Bedford Basin, in association with the Bedford Basin Monitoring Program 
(https:// www. bio. gc. ca/ scien ce/ monit oring- monit orage/ bbmp- pobb/ bbmp- pobb- en. php). Using Niskin bottles, 
discrete samples were taken at depths of 1, 5, 10, and 60 m (Fig. 1b). The sampling depths in our study were 
chosen to align with the long-term oceanographic Bedford Basin Monitoring Program which has been collect-
ing weekly physical, chemical and biological data since 1992. Seawater samples were maintained in the dark at 
cool temperatures and transported to nearby Dalhousie University for processing. Seawater (500 mL) from each 
depth was filtered onto 0.2 μm polycarbonate Isopore filters (Millipore, Ireland) with a mesh prefilter (160 μm 
in 2014–2015; 330 μm in 2016–2017). Filters were stored at −80 °C. CTD profiles performed by BIO and the 
CERC.OCEAN group at Dalhousie University recorded environmental measurements in conjunction with the 
collection of water samples for DNA.

DNA extraction and sequencing. DNA was extracted from filtered cells using the DNeasy Plant Mini Kit 
(Qiagen, Germany) and the modified protocol described in Zorz et al.66. In brief, the lysis protocol was enhanced 
with a 5-min incubation with 50 µL lysozyme (5 mg/mL; Fisher BioReagents, UK) and a one hour incubation 
at 52 °C with Buffer AP1 and 45 µL Proteinase K (20 mg/mL; Fisher BioReagents, UK). At the conclusion of the 
manufacturer’s extraction protocol, DNA was eluted twice in 50 µL AE Buffer (Qiagen, Germany) and quan-
tified with the NanoDrop 2000c (Thermo Scientific, US). The V4–V5 region of the 16S ribosomal RNA was 
sequenced using the Illumina MiSeq (300 + 300 paired-end sequencing) at the Integrated Microbiome Resource 
(IMR; Dalhousie University, Halifax, NS); libraries were prepared by the IMR as in Comeau et al.67 using primers 
515FB = GTG YCA GCMGCC GCG GTAA and 926R = CCG YCA ATTYMTTT RAG TTT 68,69.

Amplicon sequence variants (ASVs). Raw Illumina reads were processed using the Microbiome Helper 
amplicon  pipeline67. In brief, primer sequences were removed using cutadapt70 and paired-end reads were 
stitched together using  PEAR71. These sequences were imported into the QIIME2 2019.7  environment72 and 
low-quality reads were removed; the remaining reads were denoised into Amplicon Sequence Variants (ASVs) 
using  deblur73 with a trim length of 350 bp. ASVs with sequence read frequencies less than [0.001 × mean sample 
depth] were attributed to sequencer bleed-through and removed. Taxonomy was assigned using the assignTax-
onomy command in  DADA274 which uses a full-length 16S Naïve Bayes-trained classifier based on the SILVA 
database (release  13875,76). Sequences which were assigned to chloroplasts and mitochondria were removed prior 
to the analyses.

PICRUSt2. The software PICRUSt2 (version 2.4.1b26,77) was used with default settings to infer the functional 
potential of the microbial communities across the 4  year time series study. Chloroplasts and mitochondrial 
sequences were removed from the data set prior to analyses. The average Nearest Sequenced Taxon Index (NSTI) 
score, based on 793 samples (covering the 4 depths), was 0.155 ± 0.046 (± SD). Pathways with < 10 reads were 
removed from the data set. The final predicted metabolic pathway abundance data were centered log-ratio (CLR) 
transformed to plot seasonal trends.

Statistical analyses. The Phyloseq (v.1.32.0; McMurdie and  Holmes78), and microbiome (v. 1.7.2179) pack-
ages were used to analyse, visualize and plot the microbiome and physical and bio-chemical metadata using R 
(v4.0.2;  Team80) in RStudio (v.1.3.1093). Plots were generated in R using ggplot2 or Ocean Data View version 
4.6.5 unless stated  otherwise81,82. Day lengths were calculated using the Geosphere package (v.1.5.1083) in R.

Statistical tests were conducted using the Vegan package version 2.5–645. The Pearson’s correlation coefficient 
was used as a statistical measure to test the strength of the linear relationships between our paired data and to 
compare our findings to the results from Fuhrman et al. (2008). The plyr package (v.1.8.4) was used to calculate 

https://www.bio.gc.ca/science/monitoring-monitorage/bbmp-pobb/bbmp-pobb-en.php
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means and summarise the  data84. The rarefaction curves and diversity measures were calculated using  Phyloseq78 
(v.1.32.0). Alpha diversity trends did not change when ASV tables were subsampled to different sampling depths 
of 5000, 8000, 10,000 and 20,000 sequences per sample (Supplementary Figs. 3 and 4). Multiple regression models 
were conducted using the Vegan  package45 (v.2.5–6). The relaimpo package with the calc.relimp function was 
used to calculate the relative importance of each parameter to the model (v. 2.2.5; Groemping and  Matthias85). 
Analysis of similarities (ANOSIM) were used to test whether we could identify statistical differences between 
the four depths, the years and different seasons using the PRIMER-e version 7.0.1786. Prior to ANOSIM analy-
ses, the community matrices were CLR transformed and Aitchison distances were generated using the Vegan 
package in  R45.

Redundancy analyses (RDAs; using CLR transformed ASV tables) were used to characterize the specific 
abiotic variables in the water column which exerted the largest influence on the prokaryotic community com-
positions. Environmental parameters were standardized with the ‘standardize’ function (variables were scaled 
to zero mean and unit variance) using decostand from the Vegan  Package45 and significant (p < 0.05) environ-
mental parameters were derived using the ‘envfit’ function in Vegan and overlaid as vectors to identify multiple 
explanatory variables between the estuarine  zones45. The ‘indicspecies’ package (ver. 1.7.8;52) with the ‘multipatt’ 
function and 9999 permutations was used to identify prokaryotic indicators within each month. ASV tables were 
agglomerated at a Phylum level (using Phyloseq (v.1.32.0) and the abundance tables were then CLR transformed. 
Pearson’s phi coefficients of  association87 were calculated to determine significant indicator pathways across the 
different months. The phi coefficient was corrected using the function = ”r.g.” to accommodate for the fact that 
some months had more sampling points than  others88. To account for compositionality of sequencing  data49, 
the trends in seasonal changes of the prokaryotic indicators were plotted using CLR values rather than relative 
abundances. The heatmap was produced using the ampvis2 R package.

Data availability
All physical and biogeochemical water column data are available through the Bedford Basin Monitoring Program 
(https:// www. bio. gc. ca/ scien ce/ monit oring- monit orage/ bbmp- pobb/ bbmp- pobb- en. php ). Sequence data are 
archived at the NCBI under BioProject ID PRJNA785606. Sequences for the five SUP05 ecotypes are available 
under GenBank accession numbers MZ890602, MZ890603, MZ890604, MZ890605 and MZ890606. Scripts to 
reproduce the figures along with the ASV table, metadata and taxonomy are available at https:// github. com/ 
EricR aes/ Bedfo rd_ Basin_ Time_ Series.
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