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The development of the advanced metering infrastructure (AMI) and the application of artificial 
intelligence (AI) enable electrical systems to actively engage in smart grid systems. Smart homes with 
energy storage systems (ESS) and renewable energy sources (RES)‑known as home microgrids‑have 
become a critical enabling technology for the smart grid. This article proposes a new model for the 
energy management system of a home microgrid integrated with a battery ESS (BESS). The proposed 
dynamic model integrates a deep learning (DL)‑based predictive model, bidirectional long short‑term 
memory (Bi‑LSTM), with an optimization algorithm for optimal energy distribution and scheduling of 
a BESS‑by determining the characteristics of distributed resources, BESS properties, and the user’s 
lifestyle. The aim is to minimize the per‑day electricity cost charged by time‑of‑use (TOU) pricing while 
considering the day‑basis peak demand penalty. The proposed system also considers the operational 
constraints of renewable resources, the BESS, and electrical appliances. The simulation results from 
realistic case studies demonstrate the validation and responsibility of the proposed system in reducing 
a household’s daily electricity cost.

Despite two-way communication facilities and the advanced metering infrastructure (AMI), the optimal manage-
ment capability of electrical energy among appliances and resources remains behind the rapid growth in power 
demand. Because of the modern lifestyle of consumers, the application of electrical appliances has increased dra-
matically. Therefore, it is estimated that global electricity demand will increase by 2.1 per year by 2040 (twice the 
rate of primary energy demand)1. Furthermore , the invention of several renewable energy sources (RES) aims to 
achieve sustainable electrical energy generation. Photovoltaic (PV) devices are the fastest-growing RES category 
with a growth rate of 60% whereas the growth rates of wind power and biofuels are 27% and 18%,  respectively2.

Furthermore, the massive penetration of renewable resources and energy storage systems (ESS) is essential to 
mitigating electrical energy demand without a higher carbon emission volume. ESS technology can immediately 
transform and store electrical energy from the electrical power network and inject the electrical energy back 
according to the applied scheme or when the base units are unavailable for  generation3. However, integration 
of ESS with proper management and resource scheduling is arduous. The home energy management system 
(HEMS)4 provides a possible solution by managing the energy consumption and PV generation with the integra-
tion of a battery ESS (BESS) that balances supply and demand cost-effectively.

Related work. Recent studies have evaluated HEMSs from a demand-side management perspective. In 
considering a real-time electricity price signal, Zhao et al.5 proposed a HEMS model for optimal scheduling of 
domestic appliances.  In6, day-ahead optimal scheduling for all components was developed by splitting the load 
and the user’s range anxiety. Although the authors proposed day-ahead scheduling, they did not consider the 
day-ahead energy consumption and generation profile.  Therefore7, proposed a HEMS model under user com-

OPEN

1Dept. of Electronics Engineering, Kookmin University, Seoul 02707, South Korea. 2Dept. of Electrical and Electronic 
Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh. 3Dept. of Electrical and 
Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh. *email: 
yjang@kookmin.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19147-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15133  | https://doi.org/10.1038/s41598-022-19147-y

www.nature.com/scientificreports/

fort constraints and dynamic pricing to minimize the electricity bill while reducing the daily curtailed energy 
volume. The study  in8 developed an integrated solution for dynamically controlling and scheduling the appli-
ances using energy consumption prediction, in which the integration of ESS and prediction of PV generation are 
absent.  In9, a rule-based renewable BESS controlling scheme that does not produce the optimal solution and or 
add demand response flexibility to the appliances was proposed.  Reference10 studied the charging and discharg-
ing of a BESS for power curve smoothing and peak load shaving while integrating the load forecasting method. 
However, it did not consider the dynamic tariff that would produce the optimal solution over a finite horizon. 
 In11, a multi-objective optimization framework for day-ahead scheduling of a microgrid ESS was developed 
without consideration of the day-ahead generation and consumption constraints.

In a recent  study12, a two-stage hierarchical HEMS was proposed for effective scheduling of home energy 
resources depending on the day-ahead and actual operational period. Furthermore, a new HEMS was proposed 
by scheduling the HERs to minimize the daily electricity cost, considering the demand charge tariff (DCT) and 
user lifestyle-related operational  constraints13.  In14, an optimal day-ahead scheduling approach for shared ESS 
to reduce energy costs in the smart grid using the agent’s actions was proposed. Xu et al.15 proposed a reinforce-
ment learning-based EMS for the home environment but did not consider the scheduling scheme for charging 
and discharging the BESS. With massive applications of automated appliances, the penetration of PV systems 
incorporating large-scale ESS with existing systems is imperative to ensure economic and other substantial 
benefits (e.g., load following, peaking power, and standby reserve).

However, accurate active demand (AD) and PV power generation forecasting are essential for precise schedul-
ing of the BESS in leading continuous and secure power supply by avoiding blackouts. Because of the advance-
ment in deep learning (DL) technology, numerous studies have been conducted on time-series forecasting (i.e., 
demand, generation, and price) using these techniques.  In16, the authors used bidirectional long short-term 
memory (Bi-LSTM) for short-term PV power generation prediction. For ultra-short-term PV power prediction, 
an improved Bi-LSTM algorithm was proposed to increase performance when the prediction model inputs come 
from multiple PV output  series17.

Toubeau et al.18 focused on multivariate predictive scenarios for multistep-ahead prediction. The authors 
 in19 proposed a Bi-LSTM algorithm for different interval-ahead predictions in large-scale PV power plants. 
 In20, a day-ahead peak demand forecasting was accomplished by applying a Bi-LSTM-based sequence to the 
sequence regression technique. Some recent studies also focused on this algorithm for predicting short-term 
wind  speed21,22. However, previous  studies16–20 only considered the operational constraints of the predictive 
model for improving performance parameters.

In23, the authors propose a HEMS based on binary particle swarm optimization that uses PV power to operate 
residential appliances and charge/discharge the EV/ESS during low/high tariffs. Similarly, the grey wolf optimi-
zation algorithm is designed to schedule charging and discharging periods by considering low/high electricity 
pricing time in a RES-ESS integrated  system24. By adjusting energy demand during low/high tariffs, the optimal 
scheduling of interconnected multi-energy hubs can be achieved, minimizing total operational costs and carbon 
 emissions25. Tooryan et al. minimized carbon emissions and increased RES penetration by implementing a PSO 
algorithm (as a robust meta-heuristic method to schedule BESS) and diesel generators based on the volume of 
each RES energy  generation26.

Stochastic optimization for HEMS was developed in the context of electrical energy allocation among the 
BESS, energy demand, and utility grid, which explicitly integrates probability distributions of trip duration and 
trip length. The optimization problem was formulated using time-varying electricity pricing and time-varying 
energy  usage27. Moreover, a genetic harmony search algorithm was integrated with the home energy management 
controller to reduce electricity expense and enhance user comfort by considering real-time electricity pricing 
and critical peak pricing  tariffs28.

Furthermore, under time-of-use (TOU) pricing and demand-side management, a dynamic programming 
model is used to govern the power flow flexibly to reduce the net present electricity cost and enhance the self-
consumption rate of PV-BESS  energy29,30. With TOU, a smart energy management system is developed that uses 
load prediction models for the next 24 h to identify the most appropriate BESS energy management strategy 
at all time intervals during the  day31. A mixed-integer linear programming-based robust cost-optimal sched-
uling algorithm is developed to enhance the overall revenue of a PV-BESS integrated system using RNN and 
CNN algorithms as a forecasting  model32. Moreover, model predictive  control33 and a predictive management 
 strategy34 are applied to maximize the self-consumption rate of PV-BESS energy through energy curtailment 
and scheduling schemes.

Existing  studies6–8,25,28 focused on shifting the operational time of appliances and RES by considering tariff 
settings and neglecting the generation and consumption profile. Day and day-ahead  scheduling13,14 based on 
single-objective26 and multi-objective11,24 optimization functions were developed without considering the appli-
ances’ predicted operational restraints.  Furthermore30–34, did not explore a DL-based day-ahead prediction 
scheme, whereas the system proposed in this study implements a new, highly accurate prediction model (i.e., 
Bi-LSTM) for power generation and consumption forecasts. Previous studies considered the power curtailment 
 scheme33,34 appliance scheduling  scheme6,30, and feed-in tariff and TOU  scheme29, whereas this study uses the 
constraints drawn from the predicted generation and consumption, real-time state of charge (SoC), and charg-
ing and discharging allowance.

From the aforementioned discussion, we may deduce that the existing studies utilized the PV-BESS energy 
completely on a daily basis owing to not considering the day-ahead constraints. However, if there is no PV 
generation and no energy stored in the BESS, existing studies fail to determine the optimal strategy for utilizing 
PV-BESS energy since the system requires power from the grid again, resulting in higher electricity bills due 
to exceeding the daily grid power allowance. Therefore, the proposed system presents an innovative approach 
for scheduling and optimization that incorporates day-ahead generation and consumption. The scheduling and 
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optimization procedure was carried out in such a way that the BESS was able to keep energy for mitigating day-
ahead energy demand.

Contributions. This study proposes a novel scheme for a HEMS that optimally schedules and manages the 
PV-BESS for the customer in a dynamic environment. This study is the first (to the best of our knowledge) to 
simulate the integration of a predictive model with a control algorithm for optimal scheduling and maximizing 
the discharge amount by including dynamic tariffs. Significant contributions of this study are as follows:

• In this study, we designed and developed a Bi-LSTM model for day-ahead energy consumption and genera-
tion forecasts (described in “Controlling mechanism” section). Training with the predictive model ensures 
consistent day-ahead forecasting performance by diminishing prediction errors.

• This study proposes a heuristic strategy that considers the impact of predicted energy consumption and gen-
eration. The real-time scheduling and optimization technique is modeled in a specific interval by considering 
the energy demand and generation profile (described in “Simulation study” section).

• The proposed system is evaluated under different scenarios of day-ahead power consumption and PV genera-
tion volume by the consumer, whereas existing studies focus only on the present-day scenario. The proposed 
system’s payback periods are also assessed.

This paper is organized as follows. “System modeling” section describes the modeling of the proposed system. 
“Controlling mechanism” section presents the control mechanism and operational constraints for the HEMS 
model. The simulation results and the corresponding discussion are presented in “Simulation study” section, 
and the conclusion is presented in “Conclusion” section.

System modeling
Figure 1 presents the proposed architecture of the home microgrid system. The home is equipped with different 
appliances, an AMI, and a BESS integrated with PV panels. The BESS is used to store and supply energy based on 
different constraints. The AMI system is installed, acting as an information provider to the server. The database 
stores historical data on power generation and consumption used for forecasting. The constraints of the appli-
ances, the BESS, the RES, and the forecasted results are received as inputs in the optimization model at regular 
intervals. The model also receives the dynamic electricity tariff information at the same intervals. The output of 
the optimization model provides the scheduling time and amount of power. In this section, the working principle 
of the Bi-LSTM network and the control algorithm for the ESS are explained.

Energy consumption and generation forecasting model. An improved variant of the RNN, known 
as an LSTM  network35, removes those limitations by incorporating memory cells and several control gates. 
Memory cells enable LSTM networks to exploit the long-term dependency of temporal sequences and ensure 
information propagation through consecutive time steps within internal network  structures36. Figure 2 presents 
the LSTM single cell structure consisting of three gates (input gate, output gate, and forget gate). However, 
an LSTM layer comprises NL-connected single cells. Let Xt be the measured PV generated power or energy 
consumption sample at time step t. The relationship between the actual and the previously observed data was 
formulated as follows to predict the 24-h-ahead response of the PV generated power or energy consumption:

where t ∈ [k,N − 1], k is the time lag, and N is the size of the data. In the equation, LSTM(·) represents the LSTM 
function of each single cell L ∈ [1,NL] and is governed by the following:

(1)(Ŷt+1, Ŷt+2, ..., Ŷt+24) = LSTM(Xt−k+1, ...,Xt−1,Xt)

Figure 1.  Architecture of the proposed home mirogrid system.
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where it , ft , and ot are the input gate, forget gate, and output gate. Furthermore, gt is used to update the input 
signal by modifying the memory state, and ct is the cell state value. However, each gate produces an output based 
on its individual weight matrix and bias term. Consequently, ht is measured with a concatenating cell state value 
with the output gate value and i s the cell output value.

The sigmoid activation function transforms each gate value into a value between 0 and 1. The cell output 
finally passes through the hyperbolic tangent activation function (tanh) and predicts �ht . The unidirectional LSTM 
model processes the input sequence data at each time step t using the information contained in the past, ignoring 
future input-an issue that affects forecasting accuracy in multiple applications. This study adopted a bidirectional 
learning method that explores both the past (before t) and future (after t) temporal information among the entire 
sequence to boost the accuracy of conventional LSTM networks . The principle of this bidirectional learning 
process exploring both forward and backward sequence directions by two LSTM layers is illustrated in Fig. 3.

The output response at t using a hidden vector derived from two LSTM layers is calculated as follows:

The day-ahead power generation and consumption is necessary for scheduling PV-BESS and optimizing 
the energy charging and discharging allowances. However, the following is a description of the procedure for 
determining day-ahead power generation and consumption:

(2)it = σ

(

�Wi

[

�ht−1, xt

]

+ bi

)

(3)ft = σ

(

�Wf
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�ht−1, xt

]
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· tanh
(

�Wc

[

�ht−1, xt

]

+ bC

)

(5)ot = σ

(

�Wo

[

Ct , �ht−1, xt

]

+ bo

)

(6)�ht = ot · tanh(Ct)
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(
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(

←
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Figure 2.  Architecture of LSTM model.

Figure 3.  Architecture of Bi-LSTM model.
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• Step 1: At first, zero/nan, and duplicate values from the historic data are removed/replaced through data 
cleaning process.

• Step 2: The features are selected for the Bi-LSTM model.
• Step 3: The featured data are scaled by applying the data-scaling process.
• Step 4: Initialization of the hyperparameters and designed the Bi-LSTM model.
• Step 5: The data is used to train the Bi-LSTM model and which is saved as a predictive model.
• Step 6: Finally, the real-time data is fed to the predictive model for determining day-ahead energy consump-

tion and PV generation.

AD scenario. The focus of demand response modeling is cost minimization and user satisfaction. In devel-
oping the demand response, the demands of the home microgrid are grouped into different categories depend-
ing on the extent to which the demand can be controlled. In this case, the AD of the system is modeled with 
linear and nonlinear functions according to the properties of the particular user. The dynamic and predicted AD 
of the household are PHAD,t(t) and PHFAD,t(t) . The total power consumption in a household at time t ∈ τ can be 
expressed as follows:

where ζ ad(t) is the activity status of the appliances at time t. The statuses ζ ad(t) = [0, 1] and ζ ad(t) ∈ Z vary with 
continuous changes in demand. For n ∈ N households in a building, the total power consumption (i.e., predicted) 
in the period t ∈ τ (i.e., on this day) is defined as follows:

where t = [tstart , tend] , t ∈ Z , s ∈ S , e ∈ E , and k ∈ K

The total predicted power that should be consumed and received by the building from t to tend and tstart to t 
are as follows:

Because the system has already consumed power from the beginning to time t, the actual consumed power 
and the day-ahead energy consumption of the system are defined as follows:

where the time-ahead factors are a ∈ Z , {ts , tm, th} ∈ ta sa ∈ SA , and ea ∈ EA.
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Equations (15) and (16) describe the total predicted demand profile and consumed power. Therefore, the total 
day and day-ahead forecasted demand are calculated in Eqs. (16) and (18). Equations (17) and (19) define the 
average day and day-ahead forecasted power demand.

Distributed generation resource scenario. Consider a residential building with RES, such as a PV 
power system, where the maximum output power of the PV module is significantly related to its efficiency. In 
this case, the power generation and the day-ahead power generation are EPV

G,t (t) and EPV
FPG,t(t) . Because the PV 

power generation depends significantly on the duration of sunlight, the power generated by n ∈ N number of PV 
modules at a specific moment is modeled as follows:

where ξPV (t) is the generation status of the PV panel at time t. Status ξPV (t) ∈ [1, 0] varies with the continuous 
response of the PV generation data. The total predicted power generation of the present day is defined as follows:

The total predicted power and actual generated power are calculated in Eqs. (22) and (23). The total day-
ahead energy generation profile is the summation of generation at time t to the day-ahead generation end time 
and is expressed as follows:

where saPV ∈ SA and eaPV ∈ EA . The predicted generated power at t to tend and the average predicted generated 
power at that time are calculated as follows:

(16)
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The day-ahead predicted generated power and their average amount are calculated in Eqs. (26) and (28).

BESS scenario. The objective function for optimal energy management and scheduling in the BESS inte-
grated system aims to maximize reliability and minimize the energy cost of the user. The proposed system 
focuses on several HERs connected in a building. The operational constraints of ESS in different stages of the 
optimization formulation are calculated by Eqs. (29) and (30). Consider that n ∈ N number of BESS units are 
deployed in the system. The instant volume of storage and initial energy can be determined as follows:

where ξPV (t) ∈ [1, 0] and SoCBESS
t,id ∈ SoC

BESS
t,id  . The amount of energy that can be supplied to the system and 

stored in the BESS at time t can be defined as follows:

Therefore, constraints for the beginning of charging (such as a particular level of generation) are considered. 
The set of this threshold level of PV panel generation is defined as EPV

G,th . If multiple panels connected with a 
single ESS are considered, then the sum of the threshold level is defined as follows:

where SESSt,c  are binary variables expressing the charging and discharging status of the ESS. Because the charg-
ing and discharging process will not occur simultaneously, the appliance will draw power from the grid in the 
charging period as calculated in Eq. (38).

Electricity price modeling. The per-unit prices of electricity and DCT depend on the volume of the con-
tracted load, the level of the supply voltage, the types of consumers, and their locations. Because this study 
focuses on residential consumers, demand charge and energy charge are considered. From this perspective, the 
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per-unit cost is determined based on the market price of an electricity  company37. The constraints for the DCT 
can be expressed as follows:

Therefore, a fixed TOU tariff is  considered38, in which electricity is priced in three different fixed intervals 
(i.e., off-peak, medium peak, and peak) in a day, including weekdays and weekends, as depicted in Fig. 4. The 
hourly stepped price signal is defined as follows:

where Top
t,TOU , Tmp

t,TOU , and Tp
t,TOU are the tariff amounts in the off-peak, medium peak, and peak times.

Controlling mechanism
The models of energy demand, distributed generation resources (i.e., PV), and BESS are designed with different 
control approaches to reduce the demanded energy from the grid and use the generated power appropriately. 
The constraints of a BESS and dynamic pricing system are also formulated to ensure lower electricity costs. In 
this study’s proposed model, it is assumed that consumers draw energy from the main grid. Furthermore, the 
DG is deployed to the systems with an integrated BESS. The control approaches are classified by considering 
their given constraints. After each iteration, a specific constraint-handling mechanism is applied to each control 
mode. Therefore, in the evaluation process of the proposed algorithm, after each iteration, the constraints for 
scheduling and discharging are updated. The fundamental condition for supplying power is defined as follows:

If the PV generation and the SoC range constraints of the BESS are violated in the given charging period, the 
charging and discharging schedules of the BESS in that time will be adjusted with updated boundary values. We 
focused on three control modes for an optimal solution by considering different constraints, as follows.

Primary control mode (PCM). The primary control mode (PCM) is a fundamental control approach for 
scheduling the BESS where the supplying power is controlled under specific constraints (time function). It pro-
vides minimum discharging allowance varies with forecasted average demand within limited constraints as fol-
lows:
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Figure 4.  Daily market price (MP) signal (hourly).
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Secondary control mode (SCM). In these cases, the objective function is modified by adding a term 
associated with the day-ahead power generation and current generation volume. Therefore, a new factor used for 
controlling discharge amount is integrated into the objective function to reduce energy cost by considering the 
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day-ahead power consumption and generation profile. The constraints and required function of the secondary 
control mode (SCM) are as follows:

where FSCMDis,t  is the secondary discharging factor. If the system’s AD is higher than the average day-ahead power 
prediction, the volume of energy supply to the system will differ. The constraints for this particular period are:
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Table 1.  Performance of the day-ahead forecasting model.

Performance indicators H1 H2 H3 H4

MSE (kW) 0.017 0.027 0.021 0.027

MAE (kW) 0.029 0.047 0.037 0.042

MAPE 20.54% 20.42% 13.69% 15.12%

Table 2.  Performance of the day-ahead forecasting model.

Performance indicators H1 H2 H3 H4

MSE (kW) 0.0005 0.0001 0.0001 0.0002

MAE (kW) 0.0122 0.0061 0.0061 0.0071

MAPE 17.953% 21.784% 19.935% 16.421%

Table 3.  Parameters for different households in [kWh].

AD FAD PVG FPVG PVS GS Cap IE

H1 15.03 12.50 12.79 8.80 6.81 8.22 8.00 1.75

H2 18.92 16.80 12.70 11.94 6.26 12.66 9.50 3.00

H3 18.89 18.23 11.61 14.10 5.0 13.87 9.00 3.75

H4 16.51 16.29 12.54 12.70 5.11 11.39 7.00 1.50

Table 4.  Daily electricity cost of households.

House no. H1 H2 H3 H4

Cost [KRW] 1226.59 1410.72 1483.18 1346.46

Cost with PV [KRW] 501.55 744.97 775.51 545.72
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Tertiary control mode (TCM). In this case, the additional benefits of the systems are encouraged based on 
the tariff plan. The discharging process of the BESS will be designed in accordance with the energy consumption, 
generation, and dynamic pricing of electricity cost. The main feature of this optimization mode is to provide a 
higher amount of energy to the load during periods of higher tariffs.

where TTCM
Dis,Fac,t is the tertiary discharging factor. The objective function for three control mode is formulated 

as follows:

The step-by-step process of the proposed optimization algorithm is described in Algorithm 1.
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Figure 5.  (a) Day-ahead results and scheduling periods and (b) charging, discharging, and SOC at normal 
condition for H1.
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Simulation study
The real-time energy demand data of the multiple-unit building has been measured by a smart meter, and the PV 
generation data has been measured from the PV site. The duration of historical data was more than 6 months. 
The scheduling process starts at 12:00 a.m., continues until 12:00 p.m., and consists of 96 time intervals (every 15 
min). The dynamic tariff, including peak, medium peak, and non-peak, are presented in Fig. 4. The proposed fore-
casting algorithm is implemented in the Python platform. The integration of one-day-ahead energy consumption 

Figure 6.  (a) Convergence curve, and (b) charging, discharging, and SOC at optimal condition for H1.

Figure 7.  (a) Grid energy supply and (b) BESS energy supply at normal and optimal condition for H1.
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and the PV generation and power management algorithm is simulated on an HP Z8 G4 Workstation with 256 
GB of memory and Intel � X �(R) Gold 5222 CPU @ 3.80GHz 3.79 GHz processors.

The key performance indicators of the forecasting algorithm for multi-step day-ahead prediction and PV 
power generation are presented in Tables 1 and 2. However, we observed a weekly repeating pattern after ana-
lyzing the power consumption profile. Therefore, the predictive model has been trained based on 672 previous 
time-steps data to predict 96 steps ahead of the power consumption data. In Table 1, the performance in terms of 
the mean absolute percentage error (MAPE) is 13.69% for H3 , which is the lowest value among the households. 

Figure 8.  (a) Day-ahead results and scheduling periods and (b) charging, discharging, and SOC at normal 
condition for H4.

Figure 9.  (a) Convergence curve, and (b) charging, discharging, and SOC at optimal condition for H4.
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The mean squared error (MSE) and the mean absolute error (MAE) values for H1 are less than those for the other 
households (.017 and .029 kW).

In contrast, the forecasting of day-ahead PV power generation is performed by measuring 96 time-steps of 
back power generation data. The performance of the forecasting model in terms of MAPE for H4 is higher than 
the other households (MAPE = 16.421% ). The lowest MSE value is from H2 and H3 (.0001 kW). Furthermore, 
the MAE value of H1 is very lower when compared with the others. Table 3 presents the total day and day-ahead 

Figure 10.  (a) Grid energy supply and (b) BESS energy supply at normal and optimal condition for H4.

Figure 11.  Day-ahead generation and consumption profile and scheduling periods for (a) H2 (b) H3.
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demand, PV generation, and energy from the grid (i.e., GS) for the entire day. The BESS capacity (Cap) and 
initial energy (IE) are also presented.

The daily electricity cost with and without a PV system is presented in Table 4. Because the primary goal is to 
manage electricity costs in a house by adapting the algorithm to users, three controlling modes are implemented, 
followed by the user’s energy consumption, generation, and BESS status. The PCM enables the management 
systems to control the BESS when the AD crosses the average demand. The SCM and TCM modes are designed 
by considering the day-ahead generation and consumption level.

Therefore, the tertiary control mode (TCM) enables the BESS to discharge energy by associating it with the 
time-varying tariff plan proposed by the power company. The scheduling period of the ESS is predetermined for 
all three scenarios. Renewable power generation (e.g., PV, wind, and tidal) is strongly dependent on meteorologi-
cal data. Thus, the probability of changing the power generation volume is high. Given these phenomena, four 
cases are considered for applying our algorithm:

• Scenario 1 ( S1 ): When the present volume of consumption and generation are higher than day-ahead con-
sumption and generation volume.

Table 5.  Daily electricity usages [kWh] in different cases.

Normal Optimization

H1 H2 H3 H4 H1 H2 H3 H4

PDA 1.46 2.38 2.33 1.43 4.22 6.49 6.48 4.27

SDA 1.89 3.00 3.03 1.92 4.38 6.87 7.06 4.62

TDA 2.34 3.45 3.96 2.52 4.79 7.05 7.78 5.22

PGS 6.76 10.28 11.54 9.97 4.00 7.38 7.39 7.12

SGS 6.32 9.66 10.84 9.47 3.84 5.79 6.81 6.77

TGS 5.88 9.21 9.91 8.87 3.43 5.61 6.09 6.18

Table 6.  Daily electricity cost [ ] in control mode.

Mode

Normal Optimization

PCM SCM TCM PCM SCM TCM

H1 392.94 363.73 335.82 191.47 184.91 162.31

H2 577.13 533.68 504.97 292.40 262.18 254.56

H3 597.04 552.51 482.22 284.53 260.54 200.45

H4 439.93 405.97 361.17 233.34 212.36 164.82

Table 7.  Percentage of reduction of cost in a single day.

Mode

Normal Optimization

PCM (%) SCM (%) TCM (%) PCM (%) SCM (%) TCM (%)

H1 8.85 11.24 13.51 25.28 25.81 27.66

H2 11.90 14.98 17.01 32.08 34.22 34.76

H3 12.03 15.03 19.77 33.10 34.72 38.77

H4 7.86 10.38 12.71 23.20 24.76 28.29

Table 8.  Payback period analysis of the proposed system with the conventional house.

House 
number

Cost [ ] Normal mode Optimization mode

PV-BESS 
installation

Control 
system 
installation

Per 
day(TOU)

Cost saving per day [ ] Payback period [year] Cost saving per day [ ] Payback period [year]

PCM SCM TCM PCM SCM TCM PCM SCM TCM PCM SCM TCM

H1 4748176.00 457810.00 3005.44 2612.50 2641.71 2669.62 5.46 5.25 5.20 2813.97 2820.53 2843.13 5.07 5.06 5.02

H2 5585642.00 457810.00 3783.60 3206.47 3249.92 3278.63 5.16 4.98 4.93 3491.20 3521.42 3529.04 4.74 4.70 4.69

H3 5585642.00 457810.00 3777.80 3180.76 3225.29 3295.58 5.21 5.01 4.91 3493.27 3517.26 3577.35 4.74 4.71 4.63

H4 4748176.00 457810.00 3301.60 2861.67 2895.63 2940.43 4.98 4.79 4.72 3068.26 3089.24 3136.78 4.65 4.62 4.55
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• Scenario 2 ( S2 ): When the present demand exceeds the day-ahead demand, yet the day-ahead generation is 
approximately equal to the current generation.

• Scenario 3 ( S3 ): When the day-ahead generation exceeds the current generation, yet the current demand is 
approximately equal to the day-ahead demand.

• Scenario 4 ( S4 ): When the volume of day-ahead generation and demand are approximately equal to the cur-
rent generation and demand.

In assessing the robustness of the proposed system, we selected H1 for S1 , H2 for S2 , H3 for S3 , and H4 for S4 . 
Figure 5a illustrates the simulation results of BESS scheduling in terms of energy (kW) against time (hour) for 
H1 . The other ordinary axis corresponds to the turn-on and turn-off signals of the deployed BESS. The lower 
portion represents the charging period and discharging period of each mode, such as the primary discharging 
period (PDP), the secondary discharging period (SDP), and the tertiary discharging period (TDP). T he TCM 
always provides maximum discharging allowance for the BESS. The day-ahead forecasted PV power generation 
(PVG) and forecasted AD (FAD) are also presented.

Figure 5b depicts the energy demand, charging and discharging amount, and SoC of BESS in three modes 
under normal conditions. The discharging amounts of the three different modes are expressed as the primary 
discharge amount (PDA), the secondary discharge amount (SDA), and the tertiary discharge amount (TDA). 
Similarly, Fig. 6a illustrates simulation results under optimal conditions, and Fig.6b presents the convergence 
curve of the proposed optimization model.

Because the motive of the proposed system is to adjust the scheduling period and the discharge amount of 
the BESS with the assistance of day-ahead PV power generation and consumption, the proposed optimization 
model is capable of accomplishing the assignment. As depicted in Fig. 5b, the SoC of the BESS is relatively high 
such as in the end of the period, despite having a discharge allowance. The final SoC under normal conditions 
in different modes are PCM-78.43%, SCM-73.00%, and TCM-67.44% while optimal conditions achieve PCM-
43.91%, SCM-41.98%, and TCM-36.76%.

After comparing the results, optimal conditions provide a higher discharging allowance within the given con-
straints. The BESS retains a portion of energy instead of complete discharging caused by insufficient day-ahead 
PV generation according to the S1 . Figure 7a illustrates the amount of energy supplied by the grid required to 
meet the electricity demand at normal and optimal conditions. Similarly, Fig.7b illustrates the volume of BESS 
energy used by the household. The primary and TCM provides minimum and maximum energy discharging 
allowance of BESS. These results suggest that the application of the proposed scheme can reduce the supply of 
grid energy and increase the usage of renewable energy by providing proper coordination among the grid, PV, 
and BESS system.

We evaluated the proposed system performance by selecting another scenario ( S4 ) where the sum of day 
and day-ahead demand and PV generation are approximately equal. The function of the proposed system in the 
scenario is to fully discharge the BESS under the discharging allowance. Figure 8a demonstrates the scheduling 
plan for the three control modes by considering the day-ahead generation and demand. The discharge scheduling 
time for BESS in TCM is longer than discharging allowance in SCM and PCM.

The simulation results of H4 under normal conditions are depicted in Fig.8b, where the SoCs of the BESS 
in TCM, SCM, and PCM at the ending period are 58.41% , 66.99% , and 74.11% . Under these conditions, the 
BESS cannot store excessive generated PV energy because of the higher SoC. Consequently, the system must be 
designed so that all constraints and dependencies are accomplished. As depicted in Fig.9b, the SoCs in TCM, 
SCM, and PCM are 33.41% , 28.46% , and 19.97% , which are adequate for improving the system performance in 
terms of reducing cost and expanding the usages of RES.

The convergence graph and simulation results under optimal conditions are depicted in Fig. 9, and the volume 
of energy supplied by the grid and BESS is depicted in Fig. 10. Figure 11a,b illustrate the scheduling plan and 
its day-ahead demand and generation for H2 and H3 regarding scenarios S2 and S3 . The comparative analysis 
of providing BESS energy during a single day in different control modes for each household is summarized in 
Table 5. Table 6 describes the electricity cost of a single day in different optimization modes for both cases [the 
per-unit cost of the electricity is calculated in the South Korean won ( )]. In Table 7, the performance of the 
proposed scheme is described in terms of the percentage of cost minimization of a single day.

We also analyzed the payback periods of the proposed system based on the scenarios. We investigated two 
types of houses to determine payback periods: a conventional house with no PV-BESS installed and a smart 
house with PV-BESS installed. We calculated the PV and BESS installation costs based on market pricing and 
used the approximation cost to determine the cost of the proposed control and management system. The overall 
cost of the proposed control and management system is added to the cost of installing PV-BESS in a conventional 

Table 9.  Payback period analysis of the proposed system with the PV-BESS integrated house.

House number

Cost [ ] Normal mode Optimization mode

Control system 
installation Per day(TOU) With PV-ESS

Cost saving per day [ ] Payback period [year] Cost saving per day [ ] Payback period [year]

PCM SCM TCM PCM SCM TCM PCM SCM TCM PCM SCM TCM

H1 457810.00 1226.59 501.55 108.61 137.83 165.74 11.55 9.10 7.57 310.08 316.64 339.24 4.05 3.96 3.70

H2 457810.00 1410.72 744.97 167.84 211.29 240.01 7.47 5.94 5.23 452.57 482.79 490.42 2.77 2.60 2.56

H3 457810.00 1483.18 775.51 178.46 223.00 293.28 7.03 5.62 4.28 490.98 514.96 575.06 2.55 2.44 2.18

H4 457810.00 1346.46 545.72 105.78 139.74 184.55 11.86 8.98 6.80 312.37 333.36 380.89 4.02 3.76 3.29
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home, while the daily energy cost is calculated using a flat-rate tariff. In contrast , only the cost of the proposed 
control and management system is considered for a smart house, while the daily energy cost is calculated using 
a dynamic tariff.

Tables 8 and 9 represent the conventional and smart house’s daily savings and payback periods. The payback 
period and daily cost savings of a conventional house in the normal mode are greater than even a smart house 
because the conventional house uses PV-BESS and the proposed scheme simultaneously. Consequently, nearly 
the entire daily electricity bill can be saved. In contrast, the smart house is already saving money because of the 
PV-BESS installation and dynamic pricing. Implementing the proposed scheme will further reduce the costs, 
increasing daily cost savings . Furthermore, because of the lower installation cost of the proposed control and 
management technology, the smart house’s payback periods are shorter than traditional houses in optimization 
mode. The following explains the total cost analysis and payback times for the three control modes.

PCM. In PCM optimization mode, the simulation results for the scheduling of the BESS demonstrate a shorter 
period than in other control modes. The constraints are described in the Eqs. (43) and (45), and the potential 
supplied energy of the BESS is described by Eqs. (44) and (46). The discharging amount of the BESS is simple 
and finite and is not dependent on any other factors. From Table 6, the percentage of maximum cost reduction 
in a single day belongs to H3 : approximately 12.03% under normal conditions and 33.10% under optimal condi-
tions. The cost reduction difference between normal and optimal condition for H1 , H2 , H3 , and H4 are 16.42% , 
20.18% , 21.07% , and 15.34%.

Furthermore, the higher percentages of daily electricity cost reduction lead the shorter payback periods for 
the household. While the home is considered a conventional house, the shorter payback periods correspond to 
H4 , which is 4 years, 11 months, and 22 days (approximately) under normal conditions and 4 years, 7 months, 
and 24 days (approximately) under optimal conditions. Furthermore, when the house is deemed a smart house, 
H3 has the shortest payback times, which are 7 years and 10 days (approximately) under normal conditions and 
2 years, 6 months, and 18 days (approximately) under optimal conditions.

SCM. In this case, the constraints for day-ahead power generation are included, and the objective function is 
modified by the discharge factor for PV generation. The constraints are explained in Eqs. (47), (48), (49), (52), 
(53), and (54). The objective function is calculated in Eqs. (51) and (55). The results significantly improved 
compared with the PCM. The maximum and minimum percentages of the cost reduction are 15.03% and 10.38% 
under normal conditions and 34.72% and 24.76% under optimal conditions.

A conventional house requires a minimum of 4 years, 9 months, and 14 days (approximately), and a maximum 
of 5 years and 3 months (approximately) to compensate for the installation cost when their energy demand and 
PV generation are the same as H4 and H1 under normal conditions. In contrast, when the energy consumption 
and PV generation are the same as H3 and H1 under optimal conditions, a smart house requires a minimum of 
2 years, 5 months, and 8 days (approximately), and a maximum of 3 years, 11 months, and 16 days (approxi-
mately) to recover the installation cost. Consequently, under optimal conditions, smart homes gain a significant 
improvement in payback time because of lower installation costs.

TCM. The highest optimization scheme of the proposed model is governed by multiple factors and a maxi-
mum number of constraints. The dynamic tariff constraint and tertiary discharging factor were added for opti-
mal discharging. Additional constraints in Eqs. (56) and (59) are provided for the control mode. The percentage 
of minimization of electricity cost is the highest compared with any other model in the system. In this control 
mode, the highest cost optimization is obtained in H3 under optimal conditions, and the difference between 
the two conditions is 19.77% . Similarly, H1 and H4 achieve the lowest optimization of about 14.15% and normal 
optimization of about 15.58% , as anticipated.

Under the TCM, the proposed system provides much shorter payback periods for the households both 
conventional and smart households. Table 8 reveals that any conventional house with the same energy use and 
PV generation as the households in this study may recoup its installation and operational costs in four to five 
years (approximately). Similarly, any smart house can recover the operational cost of the proposed control and 
management scheme within two to four years (approximately).

Conclusion
This paper proposed an energy management model in the home environment considering the operational con-
straints of appliances, BESS, and dynamic tariff systems. A PV-BESS controller needs reliable forecasting and 
robust scheduling algorithms to maximize renewable power utilization and minimize daily electricity costs. 
Introducing artificial intelligence (AI)-based operational dependencies with the optimization algorithm reduces 
the gap between generation and consumption, enhancing the robustness and performance of scheduling and 
optimization results.

Numerical analysis and simulation were conducted on the different scenarios, and control mode schemes 
demonstrated the effectiveness and robustness of the system. The applied day-ahead load forecasting model 
achieved an optimal performance: 13.69% , 0.017 kW, and 0.029 kW for the MAPE, MSE, and MAE. Similarly, 
the model for day-ahead PV generation prediction yielded optimal results: 16.421% , 0.0001 kW, and 0.0061 kW 
for the MAPE, MSE, and MAE.

Moreover, the maximum improvement is observed in the case of TCM under optimal conditions, while 
the proposed system is capable of reducing the maximum to approximately 38.77% (under S3 ) and a minimum 
of 27.66% (under S1 ) for daily electricity cost. Therefore, it achieves the highest and lowest utilization of BESS 
energy of approximately 41.19% (under S3 ) and 31.59% (under S1 ) of daily energy demand, resulting in significant 
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performance under the complexity and constraints inherent in HEMS. In the future, a study will be conducted to 
improve on the present formulation by including congestion management, which will incorporate PV, wind, and 
numerous BESSs. Another target of the future research is to implement the proposed system at the hardware level.

Data availability
The data that support the findings of this study are available from Information Technology Research Center 
(ITRC) but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of ITRC.
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