
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15304  | https://doi.org/10.1038/s41598-022-19140-5

www.nature.com/scientificreports

Heterogeneous human–robot task 
allocation based on artificial trust
Arsha Ali 1*, Hebert Azevedo‑Sa1,2, Dawn M. Tilbury1,3 & Lionel P. Robert Jr. 1,4

Effective human–robot collaboration requires the appropriate allocation of indivisible tasks between 
humans and robots. A task allocation method that appropriately makes use of the unique capabilities 
of each agent (either a human or a robot) can improve team performance. This paper presents a 
novel task allocation method for heterogeneous human–robot teams based on artificial trust from 
a robot that can learn agent capabilities over time and allocate both existing and novel tasks. Tasks 
are allocated to the agent that maximizes the expected total reward. The expected total reward 
incorporates trust in the agent to successfully execute the task as well as the task reward and cost 
associated with using that agent for that task. Trust in an agent is computed from an artificial 
trust model, where trust is assessed along a capability dimension by comparing the belief in agent 
capabilities with the task requirements. An agent’s capabilities are represented by a belief distribution 
and learned using stochastic task outcomes. Our task allocation method was simulated for a human–
robot dyad. The team total reward of our artificial trust‑based task allocation method outperforms 
other methods both when the human’s capabilities are initially unknown and when the human’s 
capabilities belief distribution has converged to the human’s actual capabilities. Our task allocation 
method enables human–robot teams to maximize their joint performance.

Human–robot collaboration involves humans and robots performing tasks together within the same collaborative 
workspace to achieve overarching  goals1–3. Human–robot teams can lead to better performance, productivity, 
reliability, and  ergonomics3,4. Thus, robots are being introduced across various industries to work with humans. 
For example, humans and robots can work together to assemble a vehicle in a manufacturing plant or perform 
a surgery in an operating room. However, collaboration cannot be effective unless each agent is allocated the 
appropriate tasks. In our work, we consider an agent to be either a human or a robot. As a result, there is a need 
for effective human–robot task allocation methods.

Effective human–robot collaboration requires the appropriate allocation of indivisible tasks between humans 
and robots which begs the question: which agent should do what? Task allocation answers this question. Task allo-
cation is vital to successful human–robot collaboration, but there are concerns about many existing human–robot 
task allocation methods that would benefit from further research. First, many existing task allocation methods 
assume that agent capabilities are known beforehand (e.g.,  see5–9). While agents can come to learn the capa-
bilities of their teammates through interactions, they may not be known initially, especially for newly formed 
human–robot teams with heterogeneous agents. Second, many task allocation methods are developed for a 
predefined specific type of task, such as  routing8,  delivery10,  surveillance11, and assembly or manufacturing 
 operations2,7,9,12–16. However, robots are being deployed across a variety of settings. This means that human–robot 
teams can encounter a wide variety of tasks across domains.

In this paper, we propose a human–robot task allocation method that addresses these concerns and extends 
existing human–robot task allocation methods by incorporating trust in each agent from the robot’s perspective, 
as well as agent cost and task reward, to allocate indivisible tasks to one agent on the team as shown in Fig. 1. 
Cost is viewed as the price that needs to be paid to have an agent execute a task, and task reward is viewed as the 
revenue for successful task completion. As we will discuss in the background and method sections, the model 
for computing trust does not require known agent capabilities, and allows for allocation of novel tasks by com-
paring task requirements with the belief in agent capabilities. We simulated our task allocation method for a 
human–robot dyad and compared its performance with a random task allocation method and the human–robot 
task allocation method by Tsarouchi et al.9. We demonstrated how team total reward from our human–robot 
task allocation method outperforms these other methods.
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The research questions we answer are:

• Can a human–robot task allocation method account for both unknown agent capabilities and novel tasks?
• How does the performance of this human–robot task allocation method compare with other methods?

The primary contribution of this work is an artificial trust-based task allocation method for heterogeneous 
human–robot teams that (i) learns agent capabilities and develops trust in an agent over time, (ii) allocates both 
existing and novel tasks, and (iii) outperforms other methods in terms of team total reward.

Background
Human‑automation and human–robot collaboration. Research on robots works to understand 
how robots can work collaboratively with humans rather than simply replacing  humans17. Although robots are 
becoming more advanced, robots still cannot complete all types of tasks that can be performed by  humans18. In 
fact, we now know that humans are generalists that perform many types of tasks, while robots excel at narrow 
and standalone  tasks19. This makes human–robot teams advantageous because they can combine the strengths 
of both human and robotic  agents3,4,14. Research has also shown that people are willing to work with  robots20, 
particularly when robots can offer skills that humans lack. For example, Wiese et al. found that participants 
collaborated with robots especially when the participant’s own capabilities for the task were low and the robot 
seemed more  capable21.

Humans and automation can collaborate together at different levels to improve performance and reduce 
human burden. In human-automation teaming, Sheridan and Verplank proposed 10 levels for decision-making 
ranging from level 1 where there is no automation to level 10 where there is full  automation22. Also, Parasura-
man, Sheridan, and Wickens developed a model that included the application of automation to four functions 
(information acquisition, information analysis, decision and action selection, action implementation), each of 
which can range from no automation to full  automation23. In contrast to fixed automation, flexible automation 
is when the level and/or type of automation can vary during system  operations24. Adaptable automation is when 
a change in the level of automation is initiated by a human, whereas adaptive automation is when automation 
makes such  changes24,25. A recent long-term study made use of an adaptive collision avoidance system where the 
type of steering automation was selected based on the location of a vehicle in the adjacent  lane26.

Inspired by such levels of automation, levels of collaboration have been proposed for human–robot teams, 
ranging from no coexistence to full  collaboration27. One robot designed to operate with humans in close proxim-
ity is the Baxter robot, with a set of eyes as a way to communicate with a  human28. Similar to human-automation 
teaming, agents can take on different roles and responsibilities in human–robot teaming. In line with the effort 
to reduce human cognitive burden, in our work, tasks are allocated by a robot so as not to overburden a human 
by being responsible for both delegating and executing tasks. In addition, one study found that total completion 
time was reduced by 10% when task allocation was done by a robot instead of task allocation done by a  human29, 
which further motivates tasks being allocated by a robot.

Prior task allocation methods. Generally, multi-robot and human–robot task allocation methods can 
be classified into three types: homogeneous agent-based, capabilities-based, and capacity-based. Homogeneous 
agent task allocation is typically undertaken in structured environments, where all of the agents and tasks are of 
the same type and any agent can perform any  task8,10. Homogeneous task allocation is based on the assumption 
that all agents and performances across agents are identical, which is why these methods are usually applicable 
to multi-robot teams and not human–robot teams. For example, Jeon, Lee, and Kim select a robot specifically for 
a hospital delivery task based on traveling  distance10.

Figure 1.  Overview of our artificial trust-based task allocation method. In task allocation, each incoming 
indivisible task must be allocated to and executed by one agent on the human–robot team. An artificial trust-
based task allocation method can be used to allocate tasks by considering trust in each agent from the robot’s 
perspective, cost of each agent, and task reward.
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Capability-based task allocation methods consider the heterogeneity of agents, commonly seeking to match 
the capabilities or types of agents with task  demands2,5–7,9,18. Heterogeneous agents vary in their capabilities, 
operating areas, and communication  capabilities6. Fitts list or MABA-MABA (men-are-better-at, machines-
are-better-at) is known as a classical theory outlining the general strengths of humans and  machines30 and has 
been used as a basis for function  allocation31. An example of a capability-based task allocation method is one 
by Tsarouchi et al., which uses a set of decision steps, allocating a task to a capable and available agent that can 
execute the task with the minimum operation  time9.

Capacity-based (or adaptive automation) methods rely on human capacity information (e.g., workload, 
fatigue) to aid in the allocation of tasks (or level of automation control), aiming to keep capacity in acceptable 
 ranges11,12,32–35. These methods may also use information about the capabilities of agents, current performance, 
environment, or  context24–26. For example, Hu and Chen use a continuous-time Markov decision process (MDP) 
to model human fatigue as a measure of human capacity when allocating  tasks12.

Incorporating trust in task allocation has been introduced before for contractor/auctioneer  agents36 and 
distributed  systems37. In the law enforcement domain, task allocation has also considered tasks whose location, 
arrival time, and importance is unknown a  priori38. Unlike these methods, our task allocation method incorpo-
rating trust is specifically for human–robot teams. Although Jiang briefly mentions task allocation in distributed 
systems can be based on  trust37, there is no specific discussion of how trust can be used to improve performance. 
Dash, Ramchurn, and Jennings’s method requests subjective inputs and trust functions from agents before the 
allocation of  tasks36. However, in dynamic situations, time-critical decisions may need to be made and there 
may not be time to gather and process input from multiple agents. Our method, as we explain in the following 
sections, concretely formalizes a trust model and allocates tasks without requesting input from other agents on 
the team. While Tkach and Amador’s method deals with a similar problem as us in that tasks are not known in 
advance but in a specific  domain38, there is no discussion of how to account for agent skills that are unknown 
nor of how trust may evolve between agents. Our method learns unknown capabilities of an agent over time 
using stochastic task outcomes, which then impacts the evolution of trust in that agent. While task allocation 
has been studied in different contexts, we are specifically interested in task allocation for human–robot teams.

Trust definition and dimensions. In this paper, we provide an answer to the questions of how agent 
capabilities can be learned when they are not known in advance and how novel tasks can be allocated in a task 
allocation method. Our human–robot task allocation method aims to build upon existing methods  through our 
formulation of trust as an element in the task allocation method. Although there are many definitions of trust 
(e.g.,  see39,40), a recent paper found common ground that trust is “a dyadic relation in which one person accepts 
vulnerability because they expect that the other person’s future action will be governed by certain characteris-
tics”41. Hence, in our work, trust is defined as the trustor’s (the agent who trusts) willingness to be vulnerable 
to the trustee’s (the agent who is trusted)  actions42,43 and represented as the probability that a given agent will 
successfully execute a given task. Trust is a multi-dimensional construct and can be influenced by, for example, 
capability (skills, knowledge, competence), reliability (consistency or predictability), honesty (being truthful), 
benevolence (good intentions), and integrity (following moral principles)41,42,44. All trust dimensions can influ-
ence the probability that an agent will successfully execute a task. Trust can also be influenced by physical char-
acteristics such as human-likeness of a  robot45, the type of agent and  context46, and institutional  perspectives47. 
In this paper, we simplify the trust estimate by considering only the dimension of capability, since trust in auto-
mation primarily focuses on  performance41 and robot performance is an important and strong contributor to 
trust in human–robot interaction (HRI)48,49.

Trust is an important concept present in human-automation teams and is also needed in human–robot teams 
for effective  collaboration50,51. When trust is miscalibrated (meaning trust is not aligned with the agent’s capabili-
ties), the trustor can overtrust or undertrust the trustee. Overtrust can lead to misuse, where the trustor relies 
on the trustee to execute tasks beyond the trustee’s capabilities, and undertrust can lead to disuse, where the 
trustor does not fully leverage the capabilities the trustee  offers43,52. Miscalibrated trust can result in suboptimal 
outcomes, motivating the development of trust-aware robots that can modify their behavior to manipulate or 
repair humans’  trust53–55. Many trust models and real-time trust measures exist in the literature (e.g.,  see56–59). 
These are not discussed further in this paper since our focus is on developing a novel human–robot task alloca-
tion method based on an existing trust  model60, although our task allocation method can also be used with other 
trust models that estimate trust numerically.

Artificial trust model (ATM). Consider a general scenario of many tasks arriving with their required lev-
els of capabilities. These tasks could be anything (e.g., sorting, search and rescue) relevant to the domain of 
the human–robot team. Each agent on the team has a proficiency level for each capability dimension, which 
are labels that describe distinct skills (e.g., sensing, processing, speech, navigation). Agents are heterogeneous, 
meaning each agent can be good at different tasks (i.e., have different capabilities). We envision a standard set 
of capability dimensions depending on the operational domain of the human–robot team. With newly formed 
teams, agents do not have a good idea of which teammates can be trusted with which tasks, but will develop trust 
in a trustee over time. These ideas are used in our trust  model60.

The trust  model60 predicts both natural and artificial trust. Natural trust is human trust in another agent, 
and artificial trust is robotic trust in another agent. In this paper, we focus on artificial trust. The n distinct capa-
bility dimensions are represented as a capability hypercube by the Cartesian product � =

∏n
i=1 �i = [0, 1]n . 

A task γ ∈ Ŵ is represented by its required capabilities �̄ = (�̄1, �̄2, ..., �̄n) ∈ � , and every agent’s capabilities 
�
a = (�a1, �

a
2, ..., �

a
n) ∈ � are represented by a capabilities belief distribution bel(�a) = (ℓa, ua) , where a is one 

specific agent on the team T. We use the terms agent’s capabilities and agent’s actual capabilities interchangeably 
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in this paper, but this is different from an agent’s capabilities belief distribution. The capabilities belief distribu-
tion is always a uniform distribution with a lower bound of ℓa = (ℓa1, ℓ

a
2, ..., ℓ

a
n) ∈ � and an upper bound of 

ua = (ua1, u
a
2, ..., u

a
n) ∈ � . Belief distributions are initialized as uniform with a lower bound of 0 and an upper 

bound of 1 for each capability dimension �i . Trust in an agent to successfully complete a task is higher when the 
agent’s capabilities belief exceeds the task requirements. A trustee’s capabilities belief is developed over time, as 
the trustee agent is observed either succeeding or failing at tasks.

In the ATM, the robot keeps a history of performances and computes and updates trust as follows. The robot’s 
trust in another agent a (either a human or a robot) to execute task γ at time t is given by τ aγ  in Eq. (1), where 
ψ(�̄i) is given by Eq. (2).

The product of probabilities is taken because capability dimensions are considered to be independent, which 
will require careful selection of the capability dimensions in practice. If capability dimensions are interrelated, 
such as sensing and identification could be, they can be combined into one dimension. Trust for each capability 
dimension i ∈ N

+, i ∈ [1, n] is computed by considering the lower and upper bounds (ℓai , u
a
i ) of the capabil-

ity belief with the task requirement �̄i in that dimension. If the task requirement �̄i is less than or equal to the 
capability belief lower bound ℓai  (i.e., �̄i ≤ ℓai  ), trust for that capability dimension is 1. On the other hand, if 
the task requirement �̄i is greater than or equal to the capability belief upper bound uai  (i.e., �̄i ≥ uai  ), trust for 
that capability dimension is 0. When the task requirement �̄i falls between the lower and upper bounds of the 
trustee agent’s capability belief (i.e., ℓai < �̄i < uai  ), trust decreases linearly from 1 to 0. In this paper, trust is 
not synonymous with capability. Trust is a result of the comparison between the belief in the agent’s capabilities 
and the task requirements, as opposed to knowing the agent’s actual capabilities. By comparing continuous task 
requirements with the belief in agent capabilities, this model can predict trust on novel tasks the human–robot 
team has not seen before.

To update the capabilities belief distribution bel(�a) , an optimization problem is solved. After observing the 
outcome of the task execution, trust is approximated as τ̂ aγ  by the number of task successes divided by the total 
number of times task γ was executed up to the current time t by the agent a as given in Eq. (3). The outcome 
of task γ being executed by agent a at time t is given by �(a, γ , t) ∈ {0, 1} . The outcome 0 is a failure and 1 is a 
success. The complement of � is given by ℧ , which assigns a 1 for failure and 0 for success.

The capabilities belief distribution lower and upper bounds (ℓa, ua) are recursively updated to (ℓ̂a, ûa) as given 
in Eq. (4) to minimize the difference between the trust approximation τ̂ aγ  based on task outcomes and trust τ aγ  
computed by the ATM. The capability hypercube � can be discretized for numerical computations.

Our prior work proposed a bi-directional trust  model60 and the idea of using this bi-directional trust model 
for task allocation, without any  results61. In this paper we develop the details needed to apply the artificial trust 
model to a human–robot task allocation method, apply it to a scenario with two capability dimensions, run the 
simulations, and present and interpret the results.

Artificial trust‑based task allocation method development
Overview and characteristics of our task allocation method. Existing human–robot task allocation 
methods provide insight as to how agents can best work together as a unified team. However, there is an oppor-
tunity to further investigate human–robot task allocation in cases where agents’ capabilities and tasks are not 
known in advance. In our work, we consider a task allocation problem of both existing and novel tasks arriving at 
unknown times. This is different from task scheduling problems in which a set of tasks is known in advance such 
that they can be sequenced (e.g.,  see62–64). According to Korsah et al.’s taxonomy for multi-robot task  allocation65 
(which includes Gerkey and Matarić’s  taxonomy66), our problem falls in the no dependencies (ND) category, 
and as single-task (ST), single robot (SR) (where we generalize robot to mean agent in our case), and instantane-
ous assignment (IA) (ND[ST-SR-IA]). Although some tasks do have dependencies, there are also tasks without 
dependencies to which our task allocation method is applicable. After a task is allocated to an agent, we envision 
the agent will execute the task as soon as they are available and before another task is allocated to them. Thus, in 
this paper, we focus on which agent should do what task and not on when they should do it.

(1)τ aγ (a, γ , t) =

n
∏

i=1

ψ(�̄i)

(2)ψ(�̄i) =











1 if 0 ≤ �̄i ≤ ℓai ,
uai −�̄i

uai −ℓai
if ℓai < �̄i < uai ,

0 if uai ≤ �̄i ≤ 1

(3)τ̂ aγ =

t
∑

m=0
�(a, γ ,m)

t
∑

m=0

[

�(a, γ ,m)+ ℧(a, γ ,m)
]

(4)(ℓ̂a, ûa) = argmin
[0,1]n

∫

�

�τ aγ − τ̂ aγ �
2d�
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In our method, following the ATM, tasks are represented by the levels of capabilities required to successfully 
execute the task, and agents are represented by the levels of capabilities they possess. Since human trust in a robot 
is known to transfer across different  tasks67, trust in an agent to execute a new task can be reasoned about by 
considering the similarity between the new task capability requirements with existing tasks. Thus, our method 
is able to allocate any task that can be represented by standard capability dimensions. Also, our method does not 
assume that the capabilities of an agent are known beforehand. The belief in an agent’s capabilities is updated 
over time as task outcomes are observed, either as successes or as failures. Task outcomes are not assumed to be 
strictly successes or failures, making them stochastic.

We also consider the reward associated with the task and the cost of using each agent, thereby considering 
the trade off between trust in the agent and cost of the agent. Task allocation is done using the robot’s opinion 
on who should execute the task. The observer of the human–robot team is the robot (or can be a third-party 
agent depending on the HRI domain). We implemented our task allocation method through a simulation of 
a human–robot dyad, showing the allocation of tasks with different capability requirements and measuring 
performance and team total reward. The results demonstrated the benefits of our human–robot task allocation 
method in comparison to other methods.

Artificial trust‑based task allocation (ATTA) Method. To allocate a task, the ATTA method uses trust 
as computed from the ATM, along with the cost of using a specific agent to do the task and the reward for suc-
cessfully executing the task. The penalty for failing at the task can also be included in the method if desired. Trust 
in the agent, task reward, and agent cost are used to calculate the expected total reward for each agent for a given 
task, and the task is then allocated to the agent that maximizes the expected total reward function. The expected 
total reward can be thought of as expected profit, where profit is revenue minus cost.

Figure 2 and Supplementary Algorithm S1 describe the ATTA method for a team of one human and 
one robotic agent, although our method can scale to larger human–robot teams. An agent is represented by 
a ∈ T = {H ,R} , where H represents the human agent and R represents the robotic agent. Each indivisible incom-
ing task γ ∈ Ŵ , represented by a set of capability requirements �̄ , needs to be allocated to one agent on the team. 
Ŵ is a set that updates to hold incoming tasks that are not yet allocated. Using the current belief in the human’s 
capabilities bel(�H ) and the robot’s capabilities bel(�R) and the task requirements �̄ , trust in the human τHγ  and 
trust in the robot τRγ  are computed following Eqs. (1) and (2). In our ATTA method, trust in an agent is evalu-
ated from the robotic agent’s perspective. Since the robotic agent is also computing self-trust, we assume that the 
robot is aware of its own capabilities (i.e., the robot’s capabilities are known and bel(�R) = δ(�− �

R) , meaning 
ℓR = �

R and uR = �
R).

Next, the task requirements �̄ are used to compute the task reward rs (revenue) and agent costs cH and cR 
(cost) for both the human and robotic agents. The expected total reward (expected profit) can now be calculated 
for each agent EH

γ  and ER
γ  , which depends on the trust in the agent, task reward, and agent cost. If the expected 

total reward of both agents falls within a tolerance α , the task is allocated to the agent with fewer tasks already 

Figure 2.  Flowchart with the main ideas of our artificial trust-based task allocation method for a team 
consisting of one human and one robotic agent. The process starts with an incoming task (black dot) defined by 
a set of task capability requirements. In this case, the incoming task is defined by two capability dimensions. The 
trust in each agent is computed using the capabilities belief distribution of that agent. The task reward and agent 
costs are computed using the task requirements. The expected total reward for each agent is computed using 
trust in the agent, task reward, and agent cost. The agent that maximizes the expected total reward is allocated 
the task. The outcome of the task is observed as a success or a failure, which is used to update the capabilities 
belief distribution of the agent that executed the task. The process continues for each incoming task.
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allocated to it, where kH and kR are the number of tasks already allocated to the human and robot respectively. 
Otherwise, the task is allocated to the agent that maximizes the expected total reward.

Equation (5) gives the expected total reward equation Ea
γ [total reward] for an agent a,

where trust τ aγ  is the probability of agent a successfully executing the task γ and 1− τ aγ  is the probability of failing 
as outputted by the ATM. The reward for task success is given by rs and the penalty for failing the task is given 
by rf  . The cost of using agent a to execute the task is given by ca.

Assuming there is no penalty for task failure (i.e., rf = 0 ), Eq. (5) reduces to Eq. (6),

In practice, this assumption should be made cautiously as rf  can be important, especially when there is potential 
for human injury or loss of life. The simulations run in this paper do not include a penalty for task failure, but a 
penalty can be included in our ATTA method if appropriate and desired.

Assuming that task γ complexities are fully described by the task requirements �̄ , the reward for success rs 
function can depend on the task requirements �̄ (i.e., rs = fr(�̄) , �̄ ∈ [0, 1]n ). The cost of an agent to execute a 
task ca can depend on the specific agent, either a human or a robot in this case, and the task requirements (i.e., 
ca = fc(a, �̄) , a ∈ T = {H ,R}).

To contextualize rs and ca , consider sorting tasks where items need to be classified and transported to their 
correct locations. These tasks can be represented by capability dimensions of classification and manipulation. 
Being able to classify an item has no influence on being able to manipulate it, and vice versa. Hence, classification 
and manipulation are independent capability dimensions. An item that is very distinct from all others and has a 
lighter weight will be easier to classify and manipulate than an item that could be mistaken for another and has 
a heavier weight. For any agent, the former item would have a lower rs and ca than the latter item.

After an agent executes a task, the task outcome is observed by the robot (or third-party agent when appli-
cable) as either a success or a failure. For the simulation, the task outcome is determined using true trust τ̄Hγ  in 
the human and true trust τ̄Rγ  in the robot, which is computed using the actual capabilities of each agent �a and 
the uncertainty in task execution η in Eq. (7), as opposed to predicted trust τHγ  and τRγ  which was used for task 
allocation. The probability of the task outcome being a success for task γ when executed by agent a is the true 
trust probability given by τ̄ aγ  and the probability of the task outcome being a failure is given by 1− τ̄ aγ  . The agent’s 
actual capabilities predict the task outcome because the success of the task will rely on the actual capabilities of 
the agent, not on the belief in capabilities. η is a factor that captures uncertainty in the execution of the task (e.g., 
due to workload, fatigue, or environmental noise). Each capability dimension �i can have a different uncertainty 
parameter ηi , or there can be one scalar η used for all capability dimensions. As ηi → ∞ , there is greater uncer-
tainty and we approach a true trust of 0.5, meaning that any task could be either a success or a failure regardless 
of the task requirements and the agent’s actual capabilities. True trust is computed only for the simulation. In 
practice, the task outcome can be readily observed so Eq. (7) would not be computed.

Finally, if the task was executed by the human, the human’s capabilities belief bel(�H ) is updated using the capa-
bility update procedure of the ATM in Eqs. (3) and (4). The process repeats for each incoming task that has to 
be allocated.

Simulation
General setup. We tested our ATTA method in a simulation environment with a team of one human and 
one robotic agent who have different �a1 and �a2 capability values for unspecified �1 and �2 capability dimensions 
as listed in Table 1. The human’s capabilities and the robot’s capabilities were chosen to show a clear division in 
the capability hypercube where tasks are being allocated to the human and where tasks are being allocated to the 
robot, which is presented with the results. Neither the human nor the robot was given full capability in either 
capability dimension to highlight that tasks that no agent is capable of may still arise and will have to be allo-
cated. The capability in each dimension is different for each agent and between agents to emphasize that agents 

(5)E
a
γ [total reward] = τ aγ (rs − ca)+ (1− τ aγ )(rf − ca),

(6)E
a
γ [total reward] = τ aγ rs − ca.

(7)τ̄ aγ =

n
∏

i=1

1

1+ e
(�̄i−�

a
i )

ηi

Table 1.  Human and robot capabilities for case I (converged or accurate human capabilities) and case II 
(unconverged or inaccurate human capabilities).

Case Agent �
a

1
 Capability �

a

2
 Capability

I
Human 0.55 0.75

Robot 0.7 0.4

 Case Method �
H

1
 Capability �

H

2
 Capability

II
ATTA (ℓH1 , u

H
1 ) (ℓH2 , u

H
2 )

Tsarouchi et al.9 (+0.1) 0.65 0.85
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can have different proficiencies in different capability dimensions and that agents are heterogeneous. Consider-
ing the sorting example again, a robot may be able to manipulate heavier items but have difficulty with clas-
sification, whereas a human may be better at classifying items but can only manipulate lighter items. Thus, the 
capability values chosen reflect how humans and robots have different strengths and why human–robot teaming 
is advantageous. We chose to leave the capability dimensions unspecified since our method is not limited to a 
particular HRI domain. These same capability dimensions and agent capability values are used in the task allo-
cation methods we compare against ATTA. If these agent capability values were known for a real situation, the 
implementations and comparisons would be similar. In these simulations, the robot does the task allocation.

The simulation was run 10 times for the allocation of N = 500 unspecified tasks using Python 3.8.3. Based 
upon power analysis, we decided to run 10 simulations to demonstrate statistical significance in our results. 
We chose to allocate N = 500 tasks because this aids in showing a clear division of which tasks are allocated to 
which agent in the capability hypercube � . Each task’s �̄1 and �̄2 capability requirement was sampled from the 
probability density functions in Supplementary Fig. S1, reflecting that lower requirement tasks are more frequent 
than high requirement tasks. Histograms for one sample of N = 500 tasks are overlaid in Supplementary Fig. S1.

The task reward function rs ∈ [0, 1] was defined as the average of the task requirements as rs = 1
2 (�̄1 + �̄2) . The 

robot cost function cR ∈ [0, 0.25] and the human cost function cH ∈ [0, 0.667] were defined as a weighted linear 
combination of the task requirements as cR = 1

8 (�̄1 + �̄2) and as cH = 1
3 (�̄1 + �̄2) respectively. The reward for 

success rs , robot cost cR , and human cost cH indicate that each capability dimension is equally as important when 
executing a task. When creating the human cost and robot cost functions, we followed two requirements. First, 
the human and robot costs for a task are designed to be less than the task reward for success. Second, the robot 
cost was chosen to be less than the human cost for any given task requirement because it is a well established 
fact that robots can reduce costs as compared to  humans68. The human and robot cost functions also indicate 
that both agent costs are not negligible, and therefore are important. In this version, we consider a tolerance 
of α = 0 , where the task is allocated to the agent that maximizes the expected total reward or to the agent with 
fewer tasks when the expected total reward between agents is equal.

The outcome of each task, either a success or a failure, was determined by computing true trust τ̄ aγ  using each 
agent’s actual capabilities with ηi = 1

50 , i ∈ {1, 2} in Eq. (7), instead of the capabilities belief bel(�H ) for the human. 
Thus, as the task outcome is dependent on a probability of true trust τ̄ aγ  , the task outcome is not deterministic. 
The value of ηi , i ∈ {1, 2} was set to 150 because it gave uncertainty in task outcomes near an agent’s actual capa-
bilities, but not in tasks further away.

Comparison task allocation methods. Our ATTA method was tested against a random method and 
the human–robot task allocation method by Tsarouchi et al.9 under two cases. We decided to test against a ran-
dom method because it is a commonly used task allocation method. We also decided to test against the method 
by Tsarouchi et al.9 because it was the closest comparison method we found to our proposed task allocation 
method, the applications are similar, and many additional assumptions were not required. The random method 
and the method by Tsarouchi et al.9 were close comparison methods because like our method, they can also be 
applied to allocate indivisible tasks arriving at uncertain times, tasks without dependencies, and both existing 
and novel tasks. In case I, we allocate tasks after converging on the human’s capabilities given in Table 1 for ATTA 
and compare with random and with Tsarouchi et al.9 when the human’s capabilities are accurately known. In 
case II, we allocate tasks starting from a uniform capabilities belief distribution for the human for ATTA and 
compare with human capabilities that are inaccurately known by +0.1 from the human’s actual capabilities for 
Tsarouchi et al.9. Table 1 shows the inaccurate human capabilities that are used in Tsarouchi et al.9 for compari-
son against our ATTA method where (ℓHi , u

H
i ), i ∈ {1, 2} are initialized as a uniform distribution with ℓHi = 0 

and uHi = 1 . Tsarouchi et al.9 (+0.1) means that 0.1 is added to both the human’s �H1  and �H2  actual capabilities 
from case I and then used in the task allocation method by Tsarouchi et al.9. Although we have not come across 
other studies with overestimated or underestimated human capabilities, it is possible that human capabilities 
could be inaccurately known because humans can have a poor estimate of their own and others’  capabilities69. 
Since the random method randomly allocates tasks between the human and the robot without using the agents’ 
capabilities, there is no difference in the random method between the two cases, so we only compared against 
the random method in case I.

Task allocation methods implementation. For determining approximated trust in Eq. (3) and updat-
ing the human’s capabilities belief distribution in Eq. (4) for ATTA, for numerical computations, we discretized 
each capability dimension into 25 equal parts, giving 625 bins for � . We used the mean squared error between 
the trust approximation based on task outcomes and trust computed by the ATM as the loss function to be mini-
mized in Eq. (4). For this optimization, we used  PyTorch70 with the Adam  algorithm71.

For implementing the method by Tsarouchi et al.9 as a series of decision steps, we considered both the human 
and robot available to accept a task, agents are capable of executing a task when the task requirements fall within 
their actual capabilities and incapable otherwise, and agent cost as a proxy for the agent operation time. Tsarouchi 
et al.’s9 method is general enough to consider one human and multiple robots, so we found it applicable to our 
situation with a team of one human and one robot. Since Tsarouchi et al.9 implies the end of decision making 
when no agent is capable of the task, we discarded these tasks and did not allocate them. Each discarded task was 
counted as a failure and we randomly chose whether to count it as a human failure or a robot failure. Tsarouchi et 
al.’s9 framework consists of their human–robot task allocation method followed by their scheduling algorithm. 
Since our ATTA method is not focused on task scheduling but rather on task allocation, we only implemented 
their task allocation method for comparison and did not use their task scheduling algorithm. Additionally, 
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while Tsarouchi et al.9 is focused on hybrid assembly cells, we found the task allocation decision steps to be 
non-exclusive to a particular domain and therefore valid for comparison against ATTA.

Results
Comparison metrics. The methods were compared using the metrics of team performance, individual 
agent performance, and team total reward. All significance testing was done using the Wilcoxon signed-rank 
test compared to ATTA for the given case using IBM SPSS Statistics 26. The Wilcoxon signed-rank test was 
chosen as the non-parametric equivalent to the paired sample t-test since normality in our results cannot be 
guaranteed. The tests were one-tailed. The team performance was calculated as the total number of successfully 
executed tasks divided by the total number of tasks, in this case, N = 500 . The performance of each agent was 
calculated as the number of tasks successfully executed by that agent divided by the number of tasks executed by 
(or discarded to) that agent. The team total reward was calculated as the summed total reward obtained divided 
by the summed maximum total reward possible had each task been a success. The total reward for a task is the 
difference between the task reward (revenue) and cost of the agent that executed the task for task successes, and 
is a negative cost for task failures (whether the task was executed or discarded) as shown in Eq. (8).

Case I: Comparison. In case I, our ATTA method was implemented assuming that the human’s capabili-
ties belief has converged to the human’s actual capabilities in Table 1 and there is no need to update the human’s 
capabilities belief distribution. This was compared against a random task allocation method which does not use 
agent capabilies to allocate tasks, and against Tsarouchi et al.9 when the human’s capabilities were accurately 
known. The allocation and outcomes of tasks for one sample from ATTA, random, and Tsarouchi et al.9 for case 
I (converged or accurate human capabilities) are shown in Fig. 3. The team performance, each agent’s perfor-
mance, and team total reward are shown in Table 2. All comparison metrics were significantly better in ATTA 
compared to tasks being allocated randomly (all p = 0.001 ). This was expected since the random method does 
not use agent capabilities when allocating tasks, leaving the allocation completely to chance.

There was no significant difference between our ATTA method and Tsarouchi et al.9 in terms of team perfor-
mance ( p = 0.059 ). Human performance ( p = 0.001 ) and team total reward ( p = 0.001 ) were significantly better 
in ATTA than in Tsarouchi et al.9, while robot performance was significantly worse ( p = 0.001 ). As shown in 
Fig. 3, the allocation of tasks in ATTA and non-discarded tasks in Tsarouchi et al.9 was similar, and there were a 
similar number of successes and failures in these methods, which explains why there was no significant difference 
in team performance. However, in ATTA, human performance was better and robot performance was worse 
because most tasks that neither agent was capable of were allocated to the robot, and these were mostly seen as 
failures. In Tsarouchi et al.9, the tasks beyond both agents’ capabilities were discarded and randomly chosen as 
either a human or robot failure. Due to this, the team total reward in ATTA was also better than in Tsarouchi et 
al.9 because there were fewer tasks counted as human failures, which are more costly than robot failures.

Case II: Comparison. In case II, our ATTA method was implemented starting from a uniform capabilities 
belief distribution for the human, and the human’s capabilities belief distribution was updated after observing 
the outcome of every task executed by the human. This was compared against Tsarouchi et al.9 (+0.1) when the 
human’s capabilities were inaccurately thought to be 0.1 greater than the human’s actual capabilities. The allo-
cation and outcomes for the same sample from ATTA and Tsarouchi et al.9 (+0.1) for case II (unconverged or 
inaccurate human capabilities) are shown in Fig. 4. The team performance, each agent’s performance, and team 
total reward are shown in Table 2. As seen by Fig. 4, in the ATTA method, tasks that fell within both the human 

(8)total reward =

{

rs − ca if� = 1,
−ca if� = 0

Figure 3.  Allocations and outcomes for one sample set of tasks for case I (converged or accurate human 
capabilities). The outcome, either a success (filled circle) or a failure (unfilled circle), for each task from one 
sample of N = 500 tasks as executed by the human (blue) or robot (red) for the ATTA, random, and Tsarouchi 
et al.9 methods under case I (converged or accurate human capabilities) is shown. Discarded tasks (black 
unfilled circle) are failures in Tsarouchi et al.9. The human’s actual capabilities �H (blue asterisk) and the robot’s 
capabilities �R (red asterisk) are also shown.
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and robot’s capabilities were mostly allocated to the robot. This is because the algorithm capitalized on the robot’s 
low cost and higher trust while the human’s capabilities belief was being learned. Most of these tasks executed 
by the robot were observed as successes. Most of the tasks beyond the robot’s capabilities but within the human’s 
capabilities were allocated to the human since trust in the human is higher than trust in the robot, and most of 
these tasks executed by the human were also observed as successes. Tasks beyond both agents’ capabilities were 
mostly allocated to the robot, since trust in both agents is low but the robot’s cost is lower, and these tasks were 
mostly failures. This rule for allocation emerged as the human’s capabilities belief converged, and this is also 
clearly depicted in Fig. 3 for ATTA after convergence. This rule can be used for future task allocations with these 
chosen parameters.

For case II in Tsarouchi et al.9 (+0.1) , we saw a similar pattern for task allocation but with respect to inac-
curate human capabilities. In Tsarouchi et al.9 (+0.1) , team performance ( p = 0.002 ) and robot performance 
( p = 0.001 ) were significantly better than in ATTA, while human performance ( p = 0.001 ) and team total 
reward ( p = 0.032 ) were significantly better in ATTA. When the human was inaccurately thought to be more 
capable than they actually are in Tsarouchi et al.9 (+0.1) , tasks that should have been discarded were allocated 
to the human, and these tasks were mostly observed as human failures. This resulted in fewer robot failures 
(since these tasks were not discarded and could not have been randomly chosen to be robot failures), but at the 
expense of more human failures. The improvement in team performance over ATTA was due to the elimination 
of failures that resulted from learning the human’s capabilities. In ATTA, there were additional task failures than 
in Tsarouchi et al.9 (+0.1) when the robot was allocated tasks inside the human’s capabilities because the human’s 
capabilities belief had not yet converged. The significantly worse team total reward in Tsarouchi et al.9 (+0.1) 
was due to higher cost human failures both from using inaccurate human capabilities for allocation and failures 
randomly attributed to the human for discarded tasks, along with failures attributed to the robot for discarded 
tasks, which outweighed the more, but lower cost, robot failures in ATTA. A similar result emerged with human 
capabilities 0.1 below the human’s actual capabilities in Tsarouchi et al.9 (−0.1) , where now tasks that the human 
was capable of were discarded, making team performance significantly worse than in ATTA. Thus, there can 

Figure 4.  Allocations and outcomes for one sample set of tasks for case II (unconverged or inaccurate human 
capabilities). The outcome, either a success (filled circle) or a failure (unfilled circle), for each task from one 
sample of N = 500 tasks as executed by the human (blue) or robot (red) for the ATTA and Tsarouchi et al.9 
(+0.1) methods under case II (unconverged or inaccurate human capabilities) is shown. Discarded tasks (black 
unfilled circle) are failures in Tsarouchi et al.9 (+0.1) . Unconverged human capabilities are for ATTA and 
inaccurate human capabilities (blue cross) are for Tsarouchi et al.9 (+0.1) . The human’s actual capabilities �H 
(blue asterisk) and the robot’s capabilities �R (red asterisk) are also shown.

Table 2.  Median and average performance and team total reward for case I (converged or accurate human 
capabilities)† and case II (unconverged or inaccurate human capabilities)† (perf. = performance). 
∗
p < 0.05. ∗∗p < 0.01. †10 Simulations: Median (Average, Standard Deviation).

Case Method Team Perf. Human Perf. Robot Perf. Team Total Reward

I

ATTA 80(80, 1.7) 96(96, 1.3) 74(74, 2.4) 47(46, 3.1)

Random 66(66, 2.5)∗∗ 74(76, 2.8)∗∗ 58(58, 3.5)∗∗ 10(9, 5.2)∗∗

Tsarouchi et al.9 79(79, 1.5) 72(71, 3.0)∗∗ 83(83, 1.3)∗∗ 38(39, 3.7)∗∗

II
ATTA 77(77, 2.6) 95(94, 2.3) 72(72, 2.9) 41(42, 4.3)

Tsarouchi et al.9 (+0.1) 79(80, 1.6)∗∗ 67(67, 3.6)∗∗ 88(88, 1.9)∗∗ 38(39, 4.5)∗
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be a benefit to team performance and team total reward when learning a trustee’s capabilities rather than using 
underestimated or overestimated inaccurate capabilities.

ATTA method capabilities belief progression and trust evolution. For the ATTA method in case 
II, the belief over the human’s capabilities is updated as task outcomes from the human are observed. The com-
plete progression of the lower and upper bounds for bel(�H1 ) and bel(�H2 ) for this sample are shown in Fig. 5 and 
the convergence offset is listed in Table 3. The convergence offset between the capabilities belief distribution and 
the human’s actual capabilities for each capability dimension is computed using Eq. (9), where ℓH

i,kH
 and uH

i,kH
 are 

the lower and upper bounds for the human’s capabilities belief distribution for capability dimension �i after the 
human has executed kH tasks.

As outcomes for tasks allocated to the human were observed, the human’s capabilities belief narrowed and 
converged near the human’s actual capabilities. When a task was observed as a failure, the upper bound of the 
capabilities belief decreased to reflect that the human’s actual capabilities were likely to be lower than the failed 
task requirements. When a task was observed as a success, the lower bound of the capabilities belief increased 
to reflect that the human’s actual capabilities were likely to be greater than the succeeded task requirements.

The evolution of trust in the human across the capability hypercube � for this sample is shown in Fig. 6. Since 
the human’s capabilities were not known initially, trust in the human was built over time. The evolution in human 
trust across the capability hypercube � for this sample in Fig. 6 shows how trust was initially distributed, but as 
the human’s capabilities belief narrowed, trust was more refined. When the human’s capabilities belief converges, 
trust in the human across the capability hypercube � approaches a binary value.

(9)convergence offseti = |ℓHi,kH − �
H
i | + |uHi,kH − �

H
i |

Figure 5.  Progression of the human’s capabilities belief distribution. The update in the human’s capabilities 
belief distribution bel(�H ) for (ℓH1 , u

H
1 ) (blue solid, blue dashed) and (ℓH2 , u

H
2 ) (green solid, green dashed) for 

one sample converged near the human’s actual �H1  (blue asterisk) and �H2  (green asterisk) capabilities as task 
outcomes were observed.

Table 3.  Median and average convergence offset after execution of task kH for each capability dimension �i
†. 

†10 Simulations: Median (Average, Standard Deviation).

Capability Dimension k
H
= 5 k

H
= 10 k

H
= 20 k

H
= 40

�1 0.57(0.60, 0.1) 0.25(0.35, 0.2) 0.14(0.16, 0.1) 0.12(0.12, 0.0)

�2 0.42(0.41, 0.1) 0.25(0.26, 0.1) 0.13(0.13, 0.0) 0.08(0.08, 0.0)

Figure 6.  Evolution in human trust. The evolution in human trust across the capability hypercube � for one 
sample shows the initial trust distribution ( kH = 0 ) when no task outcomes have been observed to the updated 
trust distribution ( kH = 100 ) after the capabilities belief converged, which approached a binary value for trust.
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Discussion
Our goal in this research was twofold: first, to develop a human–robot task allocation method that can deal with 
both unknown agent capabilities and handle novel tasks; and second, to compare this method with existing task 
allocation methods. We tested our task allocation method in two scenarios: case I, when the human’s capabilities 
belief distribution has converged to the human’s actual capabilities, and case II, when the human’s capabilities 
are unknown and initialized as a uniform distribution. Overall, we found the team total reward of our method 
outperformed other methods for both case I and case II. In this section, we discuss the implications of our find-
ings. The study limitations are discussed in the limitations and future work section.

One contribution of our ATTA method is that agent capabilities are not required to be known in advance but 
can be learned using stochastic task outcomes. The progression of the human’s capabilities belief distribution 
for this sample in Fig. 5 and the convergence offset after kH tasks were executed by the human in Table 3 show 
how the lower and upper bounds converged near the human’s actual capabilities, proving the effectiveness of 
our method in determining an agent’s capabilities when they were initially unknown. When a trustee’s capability 
belief for a capability dimension converges, it represents the point where tasks above were mostly observed as 
failures and tasks below were mostly observed as successes when executed by the trustee. The capabilities belief 
started to narrow after observing just a few tasks executed by the human. As the number of tasks to narrow the 
human’s capabilities belief distribution was relatively low, this can be representative of actual human–robot teams 
that can quickly determine an agent’s capabilities after observing just a few tasks. While it may take a greater 
number of tasks to achieve exact convergence between the lower and upper bounds of an agent’s capabilities 
belief distribution, the agent does not need to execute a long list of tasks immediately. Regardless of when a task is 
executed, the robot will use the procedure outlined in Eqs. (3) and (4) to refine its belief in an agent’s capabilities.

Despite decreasing convergence offset in the human’s capabilities belief, the progression of the lower and 
upper bounds reveal an opportunity to make our ATTA method more robust to prevent incorrect convergence 
as the lower and upper bounds can change quickly after a task outcome. If the human were to fail on a task well 
below the human’s actual capabilities early on, the capabilities belief may quickly converge below the human’s 
actual capabilities. In the future, tasks that the human is capable of can yield a low trust due to the incorrectly 
converged capabilities belief, and may instead get allocated to a less optimal agent. If tasks are not being allo-
cated to the human, our method cannot accurately learn the human’s capabilities. Hence, both the order of task 
requirements and the level of task requirements can influence the update of the capabilities belief distribution.

A second contribution of our ATTA method is that both existing and novel tasks can be allocated. In our 
artificial trust model, trust is predicted for any task using the task requirements and the belief in agent capabili-
ties. After trust in an agent to successfully execute the existing or novel task is predicted, the ATTA method 
allocates the task to an agent on the team. While human–robot teams may encounter many of the same tasks, 
they may also be faced with novel tasks, especially in dynamic environments (e.g., office, military). It may be 
impossible to prepare for or predict these tasks ahead of time. Yet, these tasks may be critical and our ATTA 
method can allocate them.

Although we have simulated our ATTA method with a team composed of one human and one robot, our 
ATTA method scales to heterogeneous teams with multiple humans and multiple robots by applying the same 
task allocation method and capabilities belief update procedure to each agent on the team. Trust will be computed 
for each agent using the capabilities belief distribution for that agent using Eqs. (1) and (2). The capabilities belief 
distribution for an agent will update after that agent executes a task, and the robot can learn each agent’s capa-
bilities using the same update procedure given in Eqs. (3) and (4). For small enough teams with plenty of tasks 
to allocate, our ATTA method is expected to work well. To address convergence concerns for larger teams with 
fewer tasks to allocate, a better initial capabilities estimate for each agent on the team can reduce the number of 
tasks that need to be executed to achieve a narrow capabilities belief distribution. In addition, the convergence 
rate can be affected by the level of task requirements and the ordering of the tasks. We do not envision significant 
calculation complexity issues when allocating tasks for larger teams. Only basic mathematical operations are 
performed to allocate a task and the calculations to update an agent’s capabilities belief distribution will only be 
performed once for the agent that executed the task regardless of the size of the team.

Limitations and future work
Our ATTA method extends existing human–robot task allocation methods, but under some limitations. First, 
our trust estimate is computed only along the capability dimension of trust, but trust is a function of multiple 
dimensions. Second, we assume that task requirements are embedded with the incoming task and fall within 
existing capability dimensions. Like other methods, we cannot handle a task that is entirely outside of the capabil-
ity hypercube. Third, an agent’s cost and the task reward may depend on other factors, such as the number and 
complexity of tasks that the agent has already executed or task urgency. Having the human cost depend on other 
factors can indicate an increased cost due to human fatigue and workload, which can influence the allocation of 
future tasks. In practice, it may be easier to quantify task requirements, task reward, and agent cost relative to 
another task instead of absolutely. Fourth, when a task is observed as a failure, we cannot yet determine which 
capability dimension(s) are responsible for the failure without knowledge of task outcomes from other tasks. 
Due to this, a capability belief could take longer to converge or converge incorrectly. Fifth, the ATTA method 
assumes that the time duration to execute each task is the same across agents. If agents take different amounts of 
time to execute a task, this should be considered so incoming tasks are executed quickly and efficiently. Finally, 
while the simulation results show potential for using ATTA in real human–robot teams, differences may emerge 
when used in practice. However, our framework is flexible enough to consider a new trust model, and other 
agent cost and task reward functions.
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Currently, both human and robotic agents have the same mathematical representation, albeit with different 
parameters. In the future, we plan to incorporate both capability and capacity to capture how agent characteristics 
can change over time and in different  situations31,72. Capacity is envisioned to include general elements known 
to influence performance, such as fatigue or workload for a human. Capability and capacity capture different 
factors that can influence trust. An agent can be capable of executing a task but not be in the best mental state to 
do so, or an agent can be mentally available but not have the necessary capabilities to complete a task. Including 
fatigue or workload can result in a more realistic representation for humans, which will be different from the 
mathematical representation for robots. After a numerical value is determined for the human’s capacity, this value 
can be used to scale down the human’s actual capabilities to reflect the human’s capabilities that are available.

Additionally, we have simulated static human capabilities, although human capabilities can be dynamic in 
practice. We plan to expand the ATTA method to account for dynamic capabilities (e.g., due to human learning).

Also, we have focused on artificial trust from a robotic agent in this paper; we plan to consider the evolution of 
human trust for task allocation in the future. A human may develop trust differently than the robot that allocates 
the tasks. Human trust may depend on subjective biases in addition to task outcomes; this needs to be explored 
further. Due to this, a human may disagree with the task allocation outcome. When there are disagreements 
among  agents61, we plan to explore how agents can negotiate the allocation of tasks and how agent preferences 
can be considered fairly. Negotiation and consideration of preferences are intended not only to enhance team 
performance, but also to foster team relationship satisfaction (e.g.,  see73).

Conclusion
This paper presented a task allocation method based on artificial trust in a heterogeneous human–robot team, 
where trust is the willingness of the trustor to be vulnerable to the actions of the trustee. Our method allows for 
the allocation of both existing and novel tasks by comparing task requirements with the belief in agent capa-
bilities, and our method learns a trustee agent’s capabilities over time when they are initially unknown using 
stochastic task outcomes. Our method outperformed other methods in terms of team total reward. This task 
allocation method can be used in various settings, but is especially beneficial to human–robot collaborative teams 
handling a variety of tasks or tasks with scalable complexities.

Data availability
All data generated and analyzed, along with corresponding code, results, paper figures, and paper source code 
are available in a public repository at https:// github. com/ arsha ali/ artifi cial- trust- task- alloc ation.
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