
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14774  | https://doi.org/10.1038/s41598-022-19119-2

www.nature.com/scientificreports

Geometry‑modulated 
dipole polarizability 
of the two‑dimensional 
Mott‑Wannier excitons 
in gate‑defined anisotropic 
quantum dot
A. Poszwa

A theoretical investigation on neutral excitons confined to a mono‑layer (ML) semiconductor 
transition metal dichalcogenide (TMDC) materials under the influence of elliptically deformed gate 
induced confining potential is presented. It has been shown that the anisotropy of the confinement 
induces the anisotropy of linear response of the system on in‑plane external electric field. The linear 
response is expressed in terms of principal moments of the static dipole polarizability tensor. In 
this manner the direction‑dependent polarizability of the system can be fully controlled by tuning 
the parameters of gate‑induced confining potential. The components of the polarizability tensor 
are determined using finite‑field method based on the exact diagonalization of the electron‑hole 
Hamiltonian including confining potential, Coulomb electron‑hole interaction and an external electric 
field, within effective mass approximation, close to the K‑points of the first Brillouin zone of a single‑
layer MX

2
 material. The useful scaling relations for energies and dipole polarizabilities as functions of 

material parameters have been found. The influence of the anisotropy of the confining potential on 
correlated behavior of charge distribution inside the neutral system has also been demonstrated.

The correlation between geometry and electronic properties in two-dimensional semiconductor structures has 
recently become an active area of theoretical and experimental research due to its potential application for 
electronic purposes. The interplying between electronic properties and geometry appears as an efficient tool for 
manipulation of band structure or transport properties what allows for the design of electronic nano-devices 
with a desired functionality. In graphene systems, the coupling between geometry and the electronic band 
structure is the most visible for graphene nanoribbons (GNRs) and carbon nanotubes (CNTs)1,2. In the case of 
GNRs, the electronic states strongly depend on the width and on the edge structure of the ribbon. In the case 
of CNTs the electrical properties essentially depend on the diameter and on the shape of the edges. One of the 
most recognized examples of ballistic transport devices exhibiting correlation between geometry and electronic 
properties is the geometric diode. In the geomeric diode the electric current rectification is obtained due to geo-
metrical  asymmetry3,4. In many materials, energy bands posses a discrete number of inequivalent local minima or 
maxima for specific values of momenta. The minima usually known as valleys seem to be promising candidates 
for components of pseudospin or a binary  variable5,6. The separation of charge current composed of electron 
states belonging to only one valley can be regarded to as valley polarization. For graphene in particular, several 
schemes have been proposed to achieve valley-current filtering depending on geometrical deformation. At the 
field of geometry-induced effects also strain-induced effects in graphene has been the topic of a large number 
of theoretical works aimed at understanding the impact of controlled geometrical deformations on electronic 
 properties7–13.

Recent advances in the epitaxial growth of 2D crystals have opened up new opportunities towards novel 
devices based on van der Waals heterostructures in which TMDCs play a major role. Two-dimensional TMDC 
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materials, such as MoS2 , WS2 , MoSe2 , and WSe2 , have received extensive attention in the past decade due to 
their extraordinary electronic, optical and thermal  properties14–16. They are considered as ideal materials for 
next-generation electronics, photonic and opto-electronic devices, relying on ultimate atomic  thicknesses17,18. 
The bandgap of semiconducting TMDCs can be sized by varying the number of layers, and it can be changed 
from indirect to direct approaching the single layer. This tunable bandgap in TMDCs is accompanied by a 
strong photoluminescence and large exciton binding energy, making them promising candidate for a variety of 
opto-electronic devices, including solar cells, photo-detectors, light-emitting diodes, and photo-transistors19–22. 
Similarly to traditional semiconductor heterostructures quantum dots (QDs) can be formed on atomically thin 
ML TMDCs materials by applying a gate voltage to tune the local band  structure23. Gate-defined QDs, in addi-
tion provide an efficient tool to tune electrically the confinement geometry and the strength. The realization of a 
quantum dot device has been obtained from the nanosheet on a Si/SiO2 substrate, and quantum dot confinement 
has been achieved by the top gate  technique24. The fabrication of single quantum dots defined by gates has been 
reported recently for bilayer and monolayer WSe2 and MoS2 materials and discrete levels at temperatures up 
to 10 K have been  observed25,26. The Coulomb blockade in single and coupled dots in high quality single layer 
MoS2 and the Shubnikov-de Haas oscillations occurring at magnetic fields as low as 3.3T have been  observed24. 
Intrinsic exciton-state mixing and nonlinear optical properties, particulary the mechanism of second harmonic 
generation in TMDCs monolayers have been recently investigated on the basis of symmetry  analysis27. Many 
other investigations based on several approaches including tight binding method, ab initio calculations, a many-
body Bethe-Salpeter equation, k · p perturbative method and effective mass approximation have been performed 
on properties of excitons formed in 2D semiconductor materials, also in the presence of  confinement28–35. One 
should be also added that the Coulomb-exchange interaction, having an important influence on the energy 
structure of the 2D excitons, can be separated into the long-range and the short-range parts. In particular, the 
long-range exchange interaction has quantum electrodynamic nature, by the analogy to the exchange interaction 
in a  positronium36. A theoretical study on the long-range exchange interaction in excitons has been performed 
treating the bright exciton as a microscopic dipole which produces an electric field and the backaction of this field 
on the exciton leads to the long-range electron-hole exchange interaction. Formally this treatment corresponds 
to the decomposition of the Coulomb interaction up to the dipole term and calculation of matrix element of the 
dipole term using the antisymmetrized Bloch  functions28.

The purpose of this paper is a theoretical investigation of anisotropic quantum confinement effect on the linear 
response on external electric field of a neutral Mott-Wannier exciton formed inside the gate-defined quantum 
dot, for different geometries of the dot. The dot shape can be controlled electrostatically by appropriate system 
of metallic  electrodes25,26. The electrodes generate the confining potential trapping additional electron added 
into conduction band (CB) as well as the hole in the valence band (VB). We model the confinement using non-
centrosymmetric parabolic potential with the deformation of an elliptic type. In particular, we study the effect 
of the dot geometry on quantum properties of the Mott-Wannier exciton in terms of static dipole polarizability 
tensor and correlated probability distribution function of the electron-hole pair confined to the dot. Although 
obtained results can be directly linked with any ML TMDC system, due to relevant scalling relations derived in 
this paper, we explicitly demonstrate the dependence of static dipole polarizabilities on the dot geometry using 
material parameters appropriate for MoS2 ML structure. One should be noted that the static dipole polarizability 
is the property of atomic or molecular system that determines the behavior of neutral particles in the interac-
tion with other particles such as in collision phenomena. The polarizability, in particular, allows for effective 
description of a long-range van der Waals exciton-exciton interaction or exciton-electron scattering in terms of 
the dipol-dipol and dipol-monopol interaction,  respectively32. Moreover, the dipole polarizability is related to 
the dielectric constant and the reflection coefficient. Thus, in order to determine these parameters theoretically, 
the excitonic contribution to the total dielectric polarization should also be taken into  account37.

Model. The system under study is sketched in Fig. 1. Due to anisotropy of confining potential the circular 
symmetry of the system, supposed within the effective mass approximation, is broken and in a consequence the 
angular momentum is not conserved quantity. The anisotropy leads to the mixing of states with different angular 
momentum quantum numbers. However, in the absence of external electric field the parity quantum number 
is still a good quantum number and only the states with even or odd angular momentum quantum numbers 
are mixed. If the external electric field is applied then the inversion symmetry is also broken and all the angular 
momentum eigenstates are mixed. For this reason the use of a more sophisticate method such as tight binding 
atomistic approach or Bethe-Salpeter equation based treatment including the noncentrosymmetric confinement 
is highly limited. We can see in Fig. 2 that parabolic-like behavior of bands is strongly pronounced close to the 
K-point. This is true for every ML TMDCs and the effective mass approximation used in this work based on this 
observation is optimal.

The confining potential acting on a particle with the mass m is supposed in the form of anisotropic parabolic 
potential,

where r =
[

x, y
]

 is the coordinates vector of the electron and

where oscillator frequencies ωx and ωy are different, in a general case. The dynamics of the electron in the CB 
and VB in the presence of confining potential, given by Eq. (1) and in the presence of in-plane external electric 

(1)Vconf(r) = mUconf(r),
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1
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Figure 1.  Sketch of the system under study. The electron-hole pair is confined to the 2D elliptically deformed 
parabolic potential. Bright (dark) region correspond to high (low) values of the potential. The red arrow 
indicates external in-plane electric field, pointing in direction given by angle �.

Figure 2.  Band structure of monolayer MoS2 calculated within three-band tight-binding  model43. Conduction 
(valence) band edge is given by Ec(Ev) . The free particle band gap Eg = 1.6eV. The effective masses at K-point 
are me = 0.60,mh = 0.54 in units of free electron mass. The reduced mass µ = 0.28 . Red circles denote 
regions where the effective mass approximation is used. The band structure has been calculated with the help of 
Pybinding Python  package44.
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field, F = F
[

cos�, sin�
]

 , oriented along the direction given by the angle � , is described by the Hamiltonian 
Hc
e and Hv

e , respectively. The Hamiltonians in the effective mass approximation are defined as

where Ec(v) is the edge energy of CB (VB), qe is the electron charge (qe < 0) , mc(v)
e  is the electron effective mass in 

the CB (VB), where mc
e > 0 (mv

e < 0) . In accordance with the commonly known interpretation, the absence of the 
electron in filled VB may be treated as a quasi-particle (hole) in the VB with the effective mass mh ≡ −mv

e > 0 
and the charge qh = −qe > 0 . Introducing the notation e =| qe | , mc

e ≡ me , rec ≡ re , rev ≡ rh , we can rewrite 
above equations in the forms

where the electron and the hole hamiltonians read

At this point we can note that observed experimentally excitonic spectra are a result of excitation of the electron 
from VB to CB, by photons. Thus, the excitonic energy levels correspond to the energy difference between the 
states in VB from which the electron is excited and the states in CB to which the electron is excited. This means 
that the spectrum, in the first approximation, is related to the eigenvalues of the operator Hc

e − Hv
e . Taking into 

account electrostatic Coulomb interaction between the electron and the hole,

where ε is the electric permittivity, we can define the excitonic Hamiltonian within the effective mass approxi-
mation as

We note that the above Hamiltonian is independent of the position of the zero-point energy in the energy scale, 
relatively to which the energy bands edges Ec ,Ev are defined. Finally, the two-particle Hamiltonian describing 
the exciton as a pair of two interacting particles (electron-hole), in a more explicit form reads

where Eg = Ec − Ev is the free-particle bandgap. Note that the free-particle bandgap becomes the optical band-
gap, when the exciton is formed. The optical bangap is the energy distance from Ev to the lowest excitonic bound 
state (1s), due to the Coulomb interaction between the electron and a hole. The eigenvalue problem,

can be effectively solved after introducing the center-of-mass vector R = (mere +mhrh)/(me +mh) and the rela-
tive motion vector r = re − rh , that separates the two-particle Hamiltonian (10) into the sum of two independent 
parts Hexc(R, r) = Hc.m.(R)+ Hrel(r) . In a consequence Eexc = Ec.m. + Erel and �exc(re , rh) = �c.m.(R)�(r) . 
Details of calculations are given in the Appendix. Since the external electric field does not affect the c.m. motion 
(due to opposite signs of the charges of two constituents), we consider only the relative motion part of the total 
Hamiltonian. It is convenient for further analysis to introduce atomic units: a0 = �

2

m0e2
≃ 0.529Å as unit of 

length, E0 = m0e
4

�2 ≃ 27.2 eV as unit of energy and F0 =
m2
0e

5

�4 ≃ 5.14× 1011V/m as unit of electric field. Finally 
the relative motion Schrödinger equation, in polar coordinates ( r,ϑ ) introduced in the plane of the system, 
takes the form:

where we have introduced following dimensionless parameters: µ = mr/m0 , where mr = memh/(me +mh) is 
the reduced mass of the system, � = �ω/E0 , where ω2 = (ω2

x + ω2
y)/2 is average square of the oscillator fre-

quency, a = ωx/ωy is the anisotropy parameter, η = F/F0 and E = Erel/E0 . Here r =| re − rh | /a0 . The energy 
eigenvalues are functions of the system parameters. Multiplying Eq. (12) by µ and using appropriate scaling of 
radial variable (rε/µ → r) , we can find usefull scaling relation for energies
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,
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that in the case ( � = 0, η = 0 ) reduces to the well known formula for energies of an ideal 2D hydrogen atom,

where n = 1, 2, . . . and energies are given in the units of E0 . By expanding both sides of the scaling relation, given 
by Eq. (13) in powers of η2 and equating coefficients with equal powers of η2 we obtain, in particular, a scaling 
relation for the dipole polarizability (see following section)

In the case of unconfined system ( � = 0 ) we obtain α = µ−3ε4α2D , where α2D = 21/128 is the polarizability of 
an ideal 2D H-like  atom38. The scaling (15) gives in particular a direct relation between Mott-Wannier exciton 
polarizabilities for two arbitrary ML MX2 materials, α1/α2 = (µ2/µ1)

3(ε1/ε2)
4.

The finite-field method. In order to determine components of the dipole polarizability tensor we apply the 
finite-field method described below. The expectation value of the dipole moment of the system in the presence 
of external electric field is the sum of the permanent dipole moment and the contribution induced by the field F,

where αij is the polarizability tensor, γijk is the first hyperpolarizability and the summation over j, k is supposed. 
On the other hand according to the Hellman-Feynman theorem we can  write39

where E(F) is the energy of the system as function of electric field. Since the c.m. motion is not affected by the 
constant uniform electric field, E denotes effectively the relative motion energy. By comparing Eqs. (16) and 
(17) one obtains

The second-order derivatives of the energy with respect to the electric field can be defined by the Taylor expan-
sion of the field-dependent energy E(F),

that contains only even powers of the field magnitude, due to the parity conservation in the field-free system. 
The last expansion in the low-field limit is equivalent to the perturbation expansion and the components of 
the dipole polarizability tensor are conventionally obtained using the perturbative approach. For an ideal 2D 
hydrogen atom the perturbative expansion is known up to third-order in F240,

and the scalar (due to circular symmetry) polarizability of 2D H-like atom is α2D = 21/12838. However, in 
the problem considered in this paper the use of the perturbation method is very inefficient since we do not 
have analytical eigen-solutions of the unperturbed problem, summation over which must be performed in the 
second-order perturbation theory. Instead, we perform exact diagonalization of the total Hamiltonian includ-
ing an electric field for several different values of weak electric field (F(i), i = 1, 2, . . .) . This gives corresponding 
energies ( E(i) , i=1,2,...) In the next step we construct the system of linear equations

for unknown coefficients Ai and with given r.h.s. At this point we note that axes x, y are chosen according to 
the symmetry of the system. In a consequence the polarizability tensor is diagonal with respect to these axes. 
Thus, it is sufficient to calculate principal moments of the polarization tensor taking the electric field vector 
oriented along the axis x and y, separately. Taking the vector of electric field as F = (F, 0) and solving the linear 
system (21) we equate the coefficents of the perturbation expansion given by Eq. (19) with the coefficients Ai : 
E(0) = A0,αxx = −2A1, . . . Similarly, taking F = (0, F) we obtain the component αyy . In this manner we can 
reconstruct the perturbation series without summation over states. In particular, as the test of the method, the 
perturbative expansion corresponding to the 2D hydrogen problem, given in Eq. (20) has been reconstructed 
with high precision. Finally, the magnitude of the dipole polarizability for any direction is given by
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where the angel � indicates the spatial direction. We note that the finite-field method described above has been 
succesfully employed for determination of the relativistic magnetic susceptibilities of 3D Dirac H-like  atoms41.

Results and discussion
Figure 3a presents dependence of static dipole polarizability of the 2D Mott-Wannier exciton in the ground state, 
formed in MoS2 ML, for several values of the deformation parameter a = ωx/ωy , describing a degree of elliptical 
deformation of the confinement. The strength of the confinement is given by the dimensionless parameter � , 
that is fixed on the value 0.5. We can see that in the case of circular symmetry of the system ( a = 1 ) the polariz-
ability becomes a scalar and the symmetry of the system is reflected in the polarizability dependence on the 
angle � , that is isotropic in this case. For a < 1 , corresponding to the deformation extended along the x direction 
the polarizability becomes higher in the x direction that can be understood since the lower confinement in this 
direction causes the electron-hole distance to be larger relatively to the distance along the y direction and the 
response on the external electric field becomes higher in the x direction, that is reflected in higher polarizabil-
ity for � ≈ 0 . The situation is reversed in the case of a > 1 , when α becomes maximal for � ≈ π/2 . Figure 3b 
presents the direction-dependence of static dipole polarizability of 2D Mott-Wannier exciton for several values 
of the confinement strength � , for fixed values of the anisotropy parameter a = 0.2 (quantum dot extended in x 
direction) and a = 5 (quantum dot extended in y direction, with the same degree). We can see that in this case 
the polarizability is simply rotated by the angle π/2 relatively to the case of the x-extended quantum dot, that is 
a consequence of the symmetry transformation of the confining potential connecting the cases ’a’ and ’1/a’. One 
can also see that the polarizability increases with decreasing confinement strength.

Figure 4 presents dependence of static dipole polarizability of the 2D Mott-Wannier exciton in the first excited 
state, formed in MoS2 ML, for several values of the deformation parameter a = ωx/ωy and for fixed confinement 
strength � = 2 . One can note that the dipole polarizability of any H-like system in excited state is greater than 
in the ground state since the electron is weaker bounded when it is in an excited state and as a consequence the 
system is more susceptible on the influence of an external electric field. The same concerns the dependence on 
the atomic number ZA . The greater ZA , the greater Coulomb attraction inside the system and the lower polariz-
ability. The exact dependence is α ∼ Z−4

A  , for both 2D and 3D H-like  atoms38. We can note that, similarly to 
the effect of increasing atomic number ZA in H-like atom, a large confinement ( � = 2 ) strongly reduces the 
polarizability of the exciton.

It is worth to note that contrary to the electron confined in the atom due to Coulomb interaction with a 
nucleus, the gate-defined confinement opens up the possibility of controlling the polarizability of the excitonic 
system by changing confinement strength and its geometry. More precisely, one can be observed the existence of 

(22)α(�) = αxx cos
2 �+ αyy sin

2 �,

Figure 3.  Ground state static dipole polarizabilities of Mott-Wannier excitons for different levels of anisotropy 
of confinement: (a) dependence on anisotropy parameter a = ωx/ωy with fixed confining strength � = 0.5 ; left 
(right) column listing anisotropy parameters a corresponds to the deformation along x (y) axis; (b) dependence 
on confining strength � with fixed anisotropy parameter a = ωx/ωy = 0.2 (deformation along x axis) and 
a = ωx/ωy = 5 (deformation along y axis). Material parameters of MoS2 monolayer has been used: µ = 0.28 
in units of free electron mass and ε = 5 . In the case of unconfined system ( � = 0 ) polarizability is given by 
α(� = 0,µ, ε) = µ−3ε4α2D , where α2D = 21/128 is the polarizability of ideal 2D hydrogen atom. The value of 
polarizability for any direction is equal to the distance of the point on the curve from origin. Polarizabilities are 
given in units of a30 , where a0 ≃ 0.529Å is the Bohr radius.
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a competition between the effective Coulomb interaction between electron and hole and the geometric confine-
ment in producing polarizability. We note that pure Coulomb attraction between electron and hole is effectively 
modified by material parameters µ and ε (see Appendix). This coupling leads to the two-parameter dependence 
of the excitonic energies and dipole polarizabilities, as is given in Eqs. (13) and (15). On the other hand the 
parameters µ and ε modify also the strength of the confinement, leading to effective strength �eff = �ε2/µ . 
Figure 5a presents dependence of dipole polarizability α on parameter ε with fixed parameter µ = 0.28 , for several 
confinements in isotropic case ( a = 1 ). One can see that the reduction of the Coulomb attraction via increasing 
ε leads to increasing α , up to some ε , at which α becomes maximal. A further increase in ε causes a decrease in 
polarizability, what can be understood based on scaling relation (15). We can see that in general α ∼ ε4 , what 
is responsible for increasing α with growing ε , while effective confinement strength �eff ∼ ε2 , what in turn is 
responsible for decrease of α with increasing ε , due to growing confinement. This competition between Coulomb 

Figure 4.  Static dipole polarizabilities of Mott-Wannier exciton in first excited state for different levels of 
anisotropy of confinement; left (right) column listing anisotropy parameters a corresponds to the deformation 
along x (y) axis. Material parameters of MoS2 monolayer has been used: µ = 0.28 in units of free electron mass 
and ε = 5 . The value of polarizability for any direction is equal to the distance of the point on the curve from 
origin. Polarizabilities are given in units of a30 , where a0 ≃ 0.529Å is the Bohr radius.

Figure 5.  Ground state static dipole polarizabilities (in units of a30 ) of Mott-Wannier exciton for isotropic 
confinement ( a = 1 ) for several values of confinement strength ( � ): (a) dependence on electric permittivity with 
fixed reduced mass of the system µ = 0.28 ; (b) dependence on reduced mass with fixed electric permittivity 
ε = 5.
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interaction and confinement possesses some critical point, corresponding to the maximum of α . Figure 5b pre-
sents dependence of α on the parameter µ , with fixed parameter ε = 5 . We can see that α discloses a monotonic 
decrease as a function of µ . This behavior may be also linked to the scaling relation (15). In this case, the decrease 
of α with growing µ , due to the factor µ−3 , exceeds the increase of α caused by the reduction of �eff  due to the 
factor µ−1 , within considered range of µ . As expected, in both types of the dependence, growing confinement 
leads to the reduction of the dipole polarizability.

In Fig. 6 is shown dependence on parameters of the confining potential of the electron-hole real-space den-
sity function (intracule density) defined  as42 |�(r)|2 =

∫

dredrhδ[r − (re − rh)]|�exc(re , rh)|
2, where δ(r) is 

the 2D Dirac delta function and �exc is the excitonic wavefunction. The c.m. part of the wavefunction is taken 
for the ground state of the c.m. motion, that reduces after integration, the electron-hole density function to the 
relative motion density. The intracule density describes the probability density distribution for the relative vec-
tor re − rh of the electron-hole pair, as r . It can be interpreted as the probability of finding one of the particles 
(electron) in some region around the point r , when the position of second particle (hole) is fixed, that is given 
by ρ(r,ϑ)dϑdr = |�(r,ϑ)|2rdϑdr . The electron-hole pair densities corresponding to the ground state of the 
relative motion, for the case of isotropic confinement ( a = 1 ) are shown in Fig. 6a, b. We can see that density ρ 
is also isotropic in this case. In Fig. 6c, d are given densities ρ for highly anisotropic confinement ( a = 10 ). We 
can see that larger confinement in the x direction reduces the extension of ρ in this direction and probabilities for 
distances between particles along ϑ ≈ 0 and ϑ ≈ π/2 directions differ, with preferred y direction. The extension 
in the y direction reduces the electron-hole Coulomb attraction, relatively to the x direction, that leads in turn 
to increase of the linear response of the exciton on external electric field, stretching the electron-hole pair more 
effectively in the y direction (due to weaker confinement), that is expressed in the difference in magnitudes of 
principal moments of the polarizability tensor.

Figure 7a, b present electron-hole densities corresponding to the first excited state of the relative motion of 
the electron-hole pair confined to the 2D Mott-Wannier exciton, for the case of isotropic external confinement 
( a = 1 ). We can see that similarly to the ground state, the density ρ is isotropic in this case. Figure 7c, d present 
densities ρ for the highly anisotropic confinement ( a = 10 ). We can see that the anisotropy of the confine-
ment is more visible in the electron-hole density function for excited states than for the ground state. This is 

Figure 6.  Ground state electron-hole density function (intracule density) of Mott-Wannier exciton for different 
levels of the deformation of confining potential: (a), (b) isotropic case ( a = 1 ); (c), (d) anisotropic case a = 10.
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a consequence of larger average extension of the system in excited state, leading to a stronger influence of the 
confining potential, that is an increasing function of the distance from the center of the dot. One can be also 
observed in Fig. 7d that due to the confinement, the two constituents of the exciton become well separated, which 
strongly reduces the probability of recombination.

Summary. In the paper, we have presented an realistic example of the interplaying between stable exter-
nal system and the quantum system subject to it. The exact theoretical study on the influence of the geometry 
of external quantum confinement on static dipole polarizability of Mott-Wannier exciton, formed close to the 
K-points of the first Brillouin zone of the TMDC monolayer material, has been presented. The properties of the 
quantum system expressed in terms of the static dipole polarizability as a linear response on the external electric 
field and the electron-hole density function have been linked with geometry of the external confinement. In par-
ticular, we have shown how both the magnitude and the anisotropy of the dipole polarizability may be effectively 
defined by the proper chose of the confinement strength and its geometry. One should be also noted that results 
obtained in this paper are universal in the sense that they are applicable for any MX2 monolayer structure, after 
using appropriate scaling relations obtained in this paper, connecting the results calculated (or measured) for 
any given family member ML MX2 with the results corresponding to arbitrary other ML TMDC structures with 
differing material parameters.

Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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Figure 7.  Electron-hole density function (intracule density) for first excited state of Mott-Wannier exciton for 
different levels of the deformation of confining potential: (a), (b) isotropic case ( a = 1 ); (c), (d) anisotropic case 
a = 10.
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