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Intra‑beat biomarker for accurate 
continuous non‑invasive blood 
pressure monitoring
Arash Abiri1, En‑Fan Chou1, Chengyang Qian1, Joseph Rinehart2 & Michelle Khine1*

Accurate continuous non‑invasive blood pressure (CNIBP) monitoring is the holy grail of digital 
medicine but remains elusive largely due to significant drifts in signal and motion artifacts that 
necessitate frequent device recalibration. To address these challenges, we developed a unique 
approach by creating a novel intra‑beat biomarker (Diastolic Transit Time, DTT) to achieve highly 
accurate blood pressure (BP) estimations. We demonstrated our approach’s superior performance, 
compared to other common signal processing techniques, in eliminating stochastic baseline wander, 
while maintaining signal integrity and measurement accuracy, even during significant hemodynamic 
changes. We applied this new algorithm to BP data collected using non‑invasive sensors from a 
diverse cohort of high acuity patients and demonstrated that we could achieve close agreement with 
the gold standard invasive arterial line BP measurements, for up to 20 min without recalibration. We 
established our approach’s generalizability by successfully applying it to pulse waveforms obtained 
from various sensors, including photoplethysmography and capacitive‑based pressure sensors. Our 
algorithm also maintained signal integrity, enabling reliable assessments of BP variability. Moreover, 
our algorithm demonstrated tolerance to both low‑ and high‑frequency motion artifacts during abrupt 
hand movements and prolonged periods of walking. Thus, our approach shows promise in constituting 
a necessary advance and can be applied to a wide range of wearable sensors for CNIBP monitoring in 
the ambulatory and inpatient settings.

Blood pressure (BP) is an important physiologic metric that provides insights on a patient’s cardiac function, 
volume status, organ perfusion, and overall hemodynamic  stability1. Most commonly, BP is measured intermit-
tently at the arm using a non-invasive sphygmomanometer (i.e., arm cuff). In high acuity medical settings, such 
as the operating room (OR) and intensive care unit (ICU), continuous BP monitoring is achieved via an invasive 
arterial catheter (A-line) placed in a peripheral  artery2. While the A-line allows for the detection of sudden 
hemodynamic changes, since A-lines are highly invasive and associated with a number of medical complica-
tions, including hematoma, arterial thrombosis, and infection, their use is often limited to patients who are “high 
risk”3–6. In the U.S., it is estimated that only 36% of critically ill patients in the ICU receive an A-line7. Given 
the arm cuff ’s relatively low precision compared to the A-line, and its tendency to overestimate low BPs and 
underestimate high BPs, its use as the sole instrument for measuring BP in most patients results in undetected 
critical hemodynamic changes that may have otherwise influenced patient  care8–11. Additionally, recent studies 
have correlated continuous BP patterns with cardiovascular outcomes; for example, the variability in beat-to-
beat BP measurements can be used to assess important physiological parameters, such as vascular tone, fluid 
responsiveness, and sympathetic  autoregulation12–15.

For this reason, continuous noninvasive BP (CNIBP) monitoring has garnered increasing interest over the 
past several decades yet remains an elusive unmet need. One of the first discovered CNIBP techniques was 
the volume-clamp method, which has been implemented in several commercial devices, including ClearSight 
(Edwards Lifesciences, Irvine, CA, USA), Caretaker (Caretaker Medical NA, Charlottesville, VA, USA), and 
CNAP (CNSystems, Graz, Austria)16–18. Despite meeting the accuracy guidelines (mean average error ≤ ± 5 mmHg 
and standard deviation < 8 mmHg) cited by the Association of Advancement of Medical Instrumentation (AAMI) 
and U.S. Food and Drug Administration (FDA), their widespread use has been largely limited due to their bulki-
ness, high cost, and inconvenient form  factor19,20.

Photoplethysmography (PPG)-based devices have attracted attention for their smaller form factor compared 
to volume-clamp  devices19. As they are susceptible to interference from ambient light, skin tone, changes in 
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applanation pressure, and low-frequency baseline wander, PPG-based devices rely on a number of pre-processing 
steps, and often include moving average filters, frequency filters, and other noise-reduction techniques, such 
as discrete wavelet transformation (DWT) or empirical mode decomposition (EMD)21–26. Furthermore, since 
PPG requires high applanation pressures to achieve adequate morphologic resolution, many devices have tran-
sitioned to using the PPG signal’s temporal dimension via pulse wave velocity (PWV) to more reliably estimate 
 BP20,27. PWV can be calculated from either the pulse transit time (PTT) or pulse arrival time (PAT). The former 
is defined as the time taken by a pressure wave to travel between two arterial sites and can be calculated by using 
two synchronized PPG signals at two different peripheral sites. The latter is defined as the PTT interval plus the 
pre-ejection period, which represents the delay between electrical depolarization of the left ventricle and the onset 
of ventricular  ejection28,29. By using an additional nearby electrocardiogram (ECG) device, PAT was developed 
to overcome the significant challenge of calibrating two anatomically distant PPG devices.

Many studies have described methods for estimating BP using PTT or PAT. Two of the most cited algorithms, 
developed under the basis of the Moens–Kortweg equation, were created by Chen et al. and Poon et al., and 
proposed quick calibration of PTT/PAT values by using a single reference BP value (e.g., arm cuff)30–32. While 
both studies had initially shown satisfactory correlations to the radial A-line, McCarthy et al. demonstrated that 
Chen’s algorithm actually required recalibration every 4 minutes and tracked BP changes  poorly33. Furthermore, 
in the context of vasoactive drugs, Payne et al. suggested that the calibration interval be further reduced to every 
60  beats34. Conversely, Poon’s algorithm demonstrated improved BP tracking capabilities; however, it required 
recalibration every 45 seconds to stay within AAMI  standards33. Indeed, since their inception, numerous vari-
ations of these algorithms have been developed with the aims of improving accuracy and reducing calibration 
 dependency19–21. Moreover, pulse wave decomposition analysis and more complex models (e.g., via machine 
learning) have been implemented to improve measurement  performance35,36. However, the external validity of 
these algorithms and their ability to perform in different clinical contexts has been difficult to assess, since most 
studies do not report their calibration intervals and data’s hemodynamic ranges.

In 2016, Addison et al. proposed a single intra-beat PPG signal feature coined slope transit time (STT) as an 
alternative of PTT for tracking blood  pressure37. While this approach was not validated against the A-line or an 
FDA-cleared device, a recent study demonstrated its ability to estimate systolic blood pressure (SBP) in the con-
text of artificially generated baseline  wander38. Most recently, Xu et al. proposed normalized STT (NSTT), which 
aimed to improve the stability of STT with normalization by PPG  height39. Among 40 hemodynamically stable 
subjects, this approach demonstrated comparable results to an FDA-cleared tonometry device. However, since 
their technique relied on performing linear regression on their recorded waveform features, future investigation 
using clearly defined, distinct training and validation datasets are still needed in order to assess its accuracy.

The advent of Microelectromechanical System (MEMS) technology has introduced the prospect of using 
small, wearable capacitive pressure (CAP) sensors for CNIBP  monitoring40,41. Over the years, CAP sensors 
have grown increasingly popular due to their convenient form factor, high spatial resolution, quick response 
times, and low power consumption  requirements40–42. Unlike PPG- and oscillometry-based devices, CAP sen-
sors detect pulsatile flow from the artery by measuring the changes in capacitance that result from compression 
and expansion of the soft dielectric layer. Thus, similar to arterial tonometry, CAP sensors are placed directly 
over the artery, and with the use of an initial arm cuff measurement, can be calibrated to measure beat-to-beat 
 BP43. Although CAP sensors were previously limited by their low sensitivities, recent advancements in sensor 
design have largely overcome this  challenge20,44,45. While studies have previously demonstrated the potential for 
CAP sensors to correlate well with measurements from the A-line, similar to PPG, quality of the data is highly 
dependent on applanation  pressures46. Additionally, due to respiratory variations and the stochastic behavior 
of the viscoelastic polymer sensors, they are highly susceptible to baseline  wander47. Thus, as with PPG signals, 
scientists have had to employ a variety of filters to eliminate this low frequency baseline wander. While seem-
ingly successful, these filters have been primarily tested on short signal segments where there were little to no 
changes in BP. For example, studies have often employed high-pass frequency filters with cut-offs of 0.25–0.5 Hz 
to reduce baseline wander; however, this approach may impede the ability to perceive slow physiological drifts 
in BP that fall below this frequency  range21,48,49. Moreover, studies have not examined how these filters may alter 
interpretations of blood pressure variability (BPV). Therefore, the validity and safety of using such filters on 
physiological signals that are intended to inform medical decisions remains largely unknown.

In this study, we aimed to overcome the aforementioned shortcomings by developing a new intra-beat bio-
marker that we coined Diastolic Transit Time (DTT) to achieve highly accurate BP estimations. We defined DTT 
as the time from systolic peak to diastolic trough within a heartbeat. Unlike PTT or PAT that necessitate the use 
of multi-sensor systems, our algorithm utilizes the morphology of the hemodynamic waveform to enable single-
sensor BP  monitoring21,32,50. Compared to other commonly employed signal processing techniques, including 
bandpass filter (BF), DWT, and STT, we demonstrated our approach’s superior performance in eliminating 
stochastic baseline wander, while maintaining signal integrity and BP estimation accuracy in the context of 
significant (> 10% from baseline) hemodynamic changes. We applied this novel algorithm in a demographically 
and medically diverse cohort of 15 OR patients and showed that we could achieve high correlations between the 
adjusted non-invasive CAP sensor data and gold standard A-line BP measurements in the context of stress- and 
drug-induced hemodynamic perturbations for as long as 20 min without re-calibration (Fig. 1). Furthermore, 
we established our approach’s generalizability and ability to be applied to other waveforms by demonstrating 
its efficacy in correlating PPG waveforms obtained from ICU patients to A-line measurements. Using BPV as a 
spatiotemporal signal measure, we also verified that our algorithm did not significantly alter BP signal integrity. 
Moreover, as a proof-of-concept, we demonstrated that our algorithm could be applied to BPV analyses by identi-
fying associations between beat-to-beat BPV and age, hypertension, and vascular disease. Finally, to establish our 
approach’s potential for future applications in ambulatory or outpatient monitoring, we examined its performance 
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in the context of motion artifacts and demonstrated that, when applied to CAP sensor measurements, our DTT 
algorithm was able to compensate for baseline shifts from sudden arm/hand movements and walking.

In summary, our algorithm demonstrates several advantages to existing techniques, including: (1) enabling 
single-sensor BP monitoring, (2) removing stochastic baseline wander, (3) maintaining spatiotemporal signal 
integrity, (4) mitigating motion artifacts from sudden (e.g., hand movements) or cyclic (e.g., walking) move-
ments, thereby (5) facilitating accurate BP measurements for patient monitoring. Thus, we introduce a unique and 
generalizable algorithm based on a novel intra-beat biomarker to correct raw BP data (i.e., continuous hemody-
namic waveforms) obtained from various sensor sources to accurately estimate BP parameters, with significant 
implications in enhancing CNIBP technologies and overcoming challenges that have heretofore hindered their 
wide-scale adoption and usefulness.

Results
Participants. BP data was obtained from 15 surgical patients (Table 1), 10 of whom were female. For the 
OR cohort, the average age was 57.8 (range: 22–79) years and average BMI was 27.4 (range: 20.0–34.0) kg/m2. A 
total of 10,226 s of intra-operative BP recordings were extracted, with an average segment length of 204.5 (range: 
60–1200) seconds. The ICU cohort consisted of 20 BP recordings, totaling 8405 s in duration, from different 
patients being treated at an ICU. The average segment length of the ICU recordings was 420.3 (range: 180–590) 
seconds. Due to the anonymized nature of the database, demographics were not available for the ICU patients.

Figure 1.  Overview of DTT approach. (a) Inpatient BP data was acquired using an invasive radial A-line and 
contralaterally-placed noninvasive CAP or PPG sensor. (b) BP signals from noninvasive sensors were processed 
using our DTT algorithm to obtain measurements comparable to those of the A-line. Gray shaded region 
indicates the offset between raw (gray line) and DTT-processed (blue line) signals.
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Comparing algorithm performance. To compare our algorithm’s accuracy, calibration dependency, and 
BP tracking ability with those of other commonly employed methods, we utilized a 300-s segment of CAP sen-
sor and A-line BP recordings from a hemodynamically unstable surgical patient (Fig. 2). Based on our review 
of the literature, we selected to compare our algorithm to 3 common methods: bandpass filtering (BF) using a 
4th order Chebyshev II filter with cutoff frequencies of 0.5 and 10  Hz23,45, reduction of 7th level approximation 
coefficients using DWT with Daubechies 4  wavelets51,52, and BP estimation using the STT  approach37,38. When 
applied to the raw BP signal, our DTT algorithm demonstrated average SBP and DBP errors of 1.69% ± 0.85 and 
4.15% ± 1.70, respectively. In contrast, average SBP errors were found to be significantly higher using the BF 
(4.48% ± 3.07), DWT (4.70% ± 3.51), and STT (2.80% ± 1.10) algorithms (all p < 0.001). Moreover, average DBP 
errors were higher using the DWT (4.38% ± 3.06, p = 0.048) and STT (11.98% ± 2.50, p < 0.001) methods. While 
measurement errors from the DTT algorithm were consistently below 8%, significant deviations in accuracy 
were observed with the other algorithms during hemodynamic changes (e.g., increasing BP), with errors sur-
passing 15%.

Inpatient BP monitoring. Using BP recordings from high acuity patients (OR and ICU), we evaluated 
our algorithm’s ability to correct raw BP signals and accurately measure critical cardiovascular parameters 
(Figs. 3 and 4). Overall, our algorithm was applied across a wide hemodynamic range: SBP 79–158 mmHg, DBP 
34–92 mmHg, MAP 49–115 mmHg, HR 44–123 beats per minute (bpm).

In the OR cohort, we demonstrated strong linear correlations between CAP sensor estimations and gold 
standard A-line measurements, with Pearson coefficients of 0.987, 0.960, and 0.980 for SBP, DBP, and MAP, 
respectively (Fig. 3a). The resulting mean bias (SD) for SBP, DBP, and MAP were 0.05 (3.07), − 0.21 (2.47), 
and − 0.12 (2.35) mmHg, respectively (Fig. 3b). Additionally, HR measurements from the CAP sensor strongly 
agreed with those from the A-line (mean bias: 0.02 ± 1.53 bpm). This was a stark improvement from measure-
ments obtained without using our DTT algorithm, which exhibited mean biases (SD) of − 6.63 (16.30), − 6.56 
(16.35), and − 6.59 (16.20) for SBP, DBP, and MAP, respectively.

To demonstrate the generalizability of the DTT algorithm to other modalities, we further evaluated the 
accuracy of our approach by applying it to PPG measurements obtained from ICU patients. We similarly showed 
strong linear correlations to the A-line, with Pearson coefficients of 0.982, 0.958, and 0.952 for SBP, DBP, and 
MAP, respectively (Fig. 4a). Moreover, we demonstrated high estimation accuracies, with mean bias (SD) of − 0.14 
(3.20), 0.36 (1.99), and 0.19 (2.09) mmHg for SBP, DBP, and MAP, respectively (Fig. 4b). Additionally, HR 
measurements from the PPG sensor strongly agreed with those from the A-line (mean bias: − 0.02 ± 1.58 bpm). 
This was once again a significant improvement in accuracy compared to measurements obtained without using 
our DTT algorithm, which exhibited mean biases (SD) of − 1.71 (7.20), − 1.12 (5.20), and − 1.32 (5.08) for SBP, 
DBP, and MAP, respectively.

BPV as a predictor of cardiovascular health. Assessment of beat-to-beat BPV can provide unique 
perspectives on important cardiovascular parameters and physiologic states. Thus, to verify that our approach 
maintained BPV integrity, we applied our DTT algorithm to the gold standard A-line measurements for all 15 
OR patients and evaluated if BPV would be significantly altered. On average, the SDs of processed and unpro-
cessed A-line measurements were 1.35 and 1.40 mmHg for SBP, 0.97 and 0.90 mmHg for DBP, and 1.02 and 

Table 1.  Surgical patient demographics. BMI body mass index, SBP systolic blood pressure, DBP diastolic 
blood pressure, AF atrial fibrillation, HTN hypertension, T2DM type 2 diabetes mellitus, VD vascular disease. 
a Blood pressure was measured from an arterial line and ranges are representative of the recordings that were 
tested in this study.

Subject Age Sex BMI
SBP  Rangea

(mmHg)
DBP  Rangea

(mmHg) Procedure Comorbidities

1 24 F 24.0 88–108 41–56 Open abdominal surgery None

2 74 M 34.0 126–157 69–81 Microvascular decompression AF, bigeminy

3 78 F 33.5 97–122 42–53 Laparoscopic abdominal surgery Asthma

4 23 F 20.0 84–97 41–50 Right calf sarcoma resection None

5 55 F 32.0 86–109 51–67 Open abdominal surgery HTN

6 62 M 30.7 98–133 49–63 Radical cystoprostatectomy HTN, smoker

7 79 F 25.0 126–158 73–92 Open abdominal surgery HTN

8 61 F 27.0 108–124 51–66 Pancreaticoduodenectomy T2DM

9 64 F 29.0 91–153 47–79 Pancreaticoduodenectomy None

10 22 F 30.2 90–106 50–62 Hip surgery None

11 72 M 26.6 79–148 34–61 Open abdominal surgery None

12 52 F 23.0 93–134 47–71 Ankle surgery None

13 61 F 21.6 102–143 45–58 Pancreaticoduodenectomy VD

14 61 M 23.0 102–138 52–76 Open abdominal surgery None

15 79 M 31.0 126–155 53–69 Open abdominal surgery HTN
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1.01 mmHg for MAP, respectively. Overall, there was no statistically significant difference in BPV between these 
two groups for SBP (p = 0.351), DBP (p = 0.272), and MAP (p = 0.426).

Hence, to uncover associations between BPV and cardiovascular health, OR patients were stratified into 
cohorts according to their age, history of hypertension, and history of vascular disease (VD). The systolic (SBPV) 
and diastolic BPV (DBPV) of subjects were subsequently evaluated and compared across groups (Fig. 5). In the 
age-stratified cohort, older subjects (> 60 years old) were found to have significantly higher SBPV and DBPV 
than younger subjects (< 30 years old) across all variability indices (all p < 0.05, Supplementary Table S1). On the 
other hand, hypertensive patients demonstrated significantly higher SD and average real variability (ARV) than 
healthy patients for both SBP and DBP (all p < 0.05). Finally, vascular disease was found to be associated with a 
significantly higher SBPV and DBPV (all p < 0.05).

Ambulatory BP monitoring. Intermittent motion artifacts present a significant challenge for ambulatory 
and outpatient CNIBP. To investigate our algorithm’s potential for future implementation into these settings, we 
assessed its performance in correcting CAP sensor measurements in the context of common arm/hand move-
ments − 180° wrist rotation, 90° wrist flexion, hand closure, and wrist hit/impulse—and walking (Fig. 6). Move-
ments were tracked using an accelerometer embedded in the CAP sensor’s wireless board, which was attached to 
the subject’s hand using an elastic strap. Motion was represented by the normalized magnitude (− 1 to 1) of the 
accelerometer’s measurements.

Overall, the processed CAP sensor signals exhibited excellent agreement with Caretaker measurements. On 
average, the mean biases (SD) were 2.03 (2.55), 0.82 (2.83), 0.75 (2.6), and 2.10 (3.60) mmHg for SBP and 0.16 
(2.09), 0.51 (1.86), 0.34 (2.16), and 0.84 (3.73) mmHg for DBP during wrist rotation, wrist flexion, hand closure, 

Figure 2.  Evaluating algorithm accuracy and BP tracking ability. (left) A 300-s BP recording from the CAP 
sensor was processed using four different methods: bandpass filter (BF), discrete wavelet transformation 
(DWT), slope transit time (STT), and diastolic transit time (DTT). (right) BP estimates from the processed 
signals were compared to A-line measurements to assess errors in SBP (red line) and DBP (blue line).
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and wrist hit/impulse, respectively. Additionally, over the duration of three minutes of walking, our algorithm’s 
BP estimates agreed well with Caretaker measurements and demonstrated mean biases of 3.94 (5.49) and 1.03 
(3.23) mmHg for SBP and DBP, respectively.

Discussion
In this study, we demonstrated the efficacy of our novel DTT approach in eliminating stochastic baseline wander 
to achieve accurate beat-to-beat BP measurements, well-within the limits demanded by AAMI/ISO standards, 
using noninvasive CAP and PPG sensor recordings from surgical and ICU patients. Despite their many advance-
ments over the years, CNIBP monitors (e.g., PPG, tonometry) all continue to face significant baseline drift 
and noise that prevent accurate, long-term continuous BP  measurements53. For example, Kaisti et al. recently 
developed a non-invasive wearable MEMS pressure sensor that demonstrated remarkable temporal and mor-
phological BP waveform accuracy; however, they were unable to measure BP amplitude due to reported baseline 
 variations54. Some devices have attempted to circumvent this issue by requiring recalibration as frequent as 
every  minute46,55,56. Naturally, this has made such devices often impractical and has stymied their adoption into 
clinical practice. Therefore, our algorithm’s ability to effectively remove this problematic drift and overcome this 
long-existing challenge can have significant implications in bringing existing and future CNIBP monitoring 
technologies closer to clinical use. Additionally, unlike many methods that require a posteriori signal process-
ing, such as filters or regressions, or machine learning-based approaches that are computationally expensive and 
require training on large datasets, our DTT approach is algorithmically simple and may be more adaptable to 
real-time monitoring applications.

Since a number of cardiovascular changes occur at varying BPs and heart rates, it is important for measure-
ment techniques to be validated across a wide hemodynamic range before being considered sufficiently reliable 
for use in clinical  practice53. Thus, by using a heterogenous and hemodynamically labile cohort of patients for our 
analyses, we were to evaluate our algorithm’s performance across a wide range of physiologic states and establish 
its validity for clinical use. However, nearly 52% of prior studies have reportedly used only normotensive patients 
for testing, severely limiting their external validity. Moreover, only 4% of studies have included hypotensive 

Figure 3.  Assessing accuracy and precision of inpatient BP monitoring using a CAP sensor. (a) Pearson 
correlation and (b) Bland–Altman analyses compared beat-to-beat (left) SBP, (middle) DBP, and (right) MAP 
measurements between the noninvasive CAP sensor and invasive A-line. (a) CAP sensor measurements 
(n = 11,002) showed strong linear correlations to the A-line, with Pearson coefficients of 0.987, 0.960, and 0.980 
for SBP, DBP, and MAP, respectively. (b) CAP sensor measurements (n = 11,002) demonstrated mean biases of 
0.05 (3.07), − 0.21 (2.47), and − 0.12 (2.35) mmHg for SBP, DBP, and MAP, respectively. Light- and dark-shaded 
areas represent 68% (1 SD) and 95% (1.96 SD) limits of agreement, respectively.
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Figure 4.  Assessing accuracy and precision of inpatient BP monitoring using a PPG sensor. (a) Pearson 
correlation and (b) Bland–Altman analyses compared beat-to-beat (left) SBP, (middle) DBP, and (right) 
MAP measurements between the noninvasive PPG sensor and invasive A-line. (a) PPG sensor measurements 
(n = 9628) showed strong linear correlations to the A-line, with Pearson coefficients of 0.982, 0.958, and 0.952 for 
SBP, DBP, and MAP, respectively. (b) PPG sensor measurements (n = 9628) demonstrated mean biases of − 0.14 
(3.20), 0.36 (1.99), and 0.19 (2.09) mmHg for SBP, DBP, and MAP, respectively. Light- and dark-shaded areas 
represent 68% (1 SD) and 95% (1.96 SD) limits of agreement, respectively.

Figure 5.  Associations between BPV and patient demographics. OR patients (n = 15) were stratified by age, 
history of hypertension (HTN), and history of vascular disease (VD). BPV was assessed using three metrics: 
standard deviation (SD), coefficient of variation (COV), and average real variability (ARV). *signifies p < 0.05; ** 
signifies p < 0.01.
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patients and fewer than 8% have included hypertensive patients in their  analyses57. Therefore, this study serves 
as one of a select series of reports that have investigated CNIBP monitoring accuracy across a representative 
cohort of patients.

The ability for an algorithm to accurately track BP changes is also an important dynamic measure that is rarely 
assessed. Studies have frequently utilized pre-processing methods, such as BF and DWT, to reduce noise and 
baseline drift, with seemingly acceptable  results21,23–26. However, since these methods are commonly applied to 
healthy, young subjects and their results reported as aggregate averages, it is often not possible to characterize 
their behaviors in the context of active BP changes. By utilizing a hemodynamically labile segment of BP measure-
ments, we were able to characterize and compare our approach’s ability to track BP changes with other common 
techniques. As hypothesized, the accuracies of BF- and DWT-based methods faltered during changes in BP. This 

Figure 6.  Measurement performance in ambulatory BP monitoring. CAP sensor (blue line) and Caretaker 
(orange arrows) BP measurements with corresponding normalized accelerometer signal (green line) during (a) 
180° wrist rotation, (b) 90° wrist flexion, (c) hand closure, (d) wrist hit/impulse, and (e) walking. (a–d) Green 
shaded regions indicate periods of movement. Upward and downward facing arrows represent Caretaker SBP 
and DBP, respectively.
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is likely due to the filters’ inability to distinguish between artificial (i.e., noise) and physiological BP drift, since 
the basis of both methods rely on signal frequency without considering individual waveform characteristics. 
On the other hand, STT-based BP estimation exhibited slightly higher errors in SBP, but significantly greater 
deviations in DBP than our approach. As the BP waveform can be affected by many factors, it is possible that the 
STT method’s reliance on a single systolic feature limited its ability to the reflect changes in both SBP and  DBP39.

Validation experiments indicated that our DTT algorithm did not significantly alter BP signal variability, sug-
gesting that our approach may be applied to future studies on short-term BPV. Our proof-of-concept experiments 
supported this conclusion, as we were able to identify several interesting associations between short-term BPV 
and cardiovascular health. Our findings demonstrated that older age was associated with increased SBPV and 
DBPV, in agreement with other studies that have suggested it to be due to increased arterial stiffness and impaired 
baroceptor  function58,59. Additionally, we observed that patients with hypertension exhibited higher ARVs and 
SDs for SBP and DBP than healthy individuals. This is consistent with Xia et al. findings, which suggested that 
hypertensive patients may possess compromised vascular elasticity, and hence elevated  BPV60. While we did not 
observe a significant difference in coefficient of variation (COV) between the two groups, this may have been 
attributed to a type II error from a limited sample size or due to COV’s lower sensitivity for short-term changes 
than  ARV61,62. Finally, we demonstrated a significantly higher SBPV and DBPV in vascular disease patients than 
healthy individuals. Interestingly, there was an observably larger inter-group difference in DBPV than SBPV. 
This was likely a result of the characteristic increase in arterial wall stiffness associated with vascular  disease12,63.

As the demand increases for wearable devices that enable continuous day-to-day biomonitoring, significant 
efforts have been made towards developing systems that support long-term ambulatory recording. However, 
despite many advancements in CNIBP monitoring technologies over the years, ambulatory BP monitoring 
continues to be an elusive undertaking. The presence of motion-related artifacts and abrupt changes in signal 
baseline introduce an especially complex confounding factor in BP estimation algorithms that make accurate 
and precise ambulatory BP monitoring a significant  challenge48,53. While several promising techniques have been 
recently developed, compensating for motion artifacts, especially those from “macro-motions” during walking 
or jogging, that possess an overlapping frequency spectrum with the BP signal remains a  challenge48,64,65. In our 
experiments, we showed that our DTT algorithm was able to recover quickly from sudden baseline shifts caused 
by abrupt hand/arm movements. Additionally, we demonstrated our algorithm’s high tolerance to low- (e.g., 
arm swing) and high-frequency (e.g., step impulse) motion artifacts through its ability to accurately measure 
beat-to-beat BP during a prolonged period of walking. Importantly, these strong correlations were achieved 
without using any frequency filters or advanced signal processing techniques, as evidenced by the remnant signs 
of walking-induced enveloping in the DTT-processed BP signals. While additional testing during more intense 
activities is warranted, our DTT approach, nonetheless, shows potential as a means towards bringing CNIBP 
monitoring to the ambulatory setting.

Although our approach overcomes several critical obstacles in CNIBP monitoring, there are still limitations 
that warrant future study. While our DTT algorithm mitigates much of the challenges associated with baseline 
wander and motion artifacts, as with existing CNIBP  technologies48,49,66,67, it is still susceptible to the confound-
ing effects incurred by changing applanation pressure. Quantitative characterization of pulse waveforms shows 
promise as a method of automatically assessing signal quality and detecting perturbations in  applanation68. 
Several groups have also demonstrated the feasibility of using a secondary pressure sensor or force transducer 
as a feedback mechanism within their system to account for changes in contact  pressure69–71. For the purposes of 
demonstrating our DTT approach, we manually excluded segments of data with visibly low-quality waveforms 
and utilized a moving median filter as a coarse method to remove remaining intermittent disruptions in signal 
quality. Future iterations of our algorithm will benefit from a machine learning classification model (e.g., support-
vector machine, logistic regression) to automatically assess signal quality and more precisely exclude corrupt 
 waveforms72,73. Additionally, while we tested our algorithm against a wide and dynamic range of cardiovascular 
parameters, further testing of this technique against a larger sample of patients would better elucidate its gen-
eralizable efficacy. Moreover, future investigations are warranted to directly compare the accuracy and tracking 
performances of our DTT algorithm with multi-sensor approaches using PTT or PAT. Nonetheless, our DTT 
approach shows promise in constituting a necessary advance for wearable sensors for CNIBP monitoring in the 
ambulatory and inpatient settings.

Methods
Data acquisition. BP data was acquired from subjects in the OR, ICU, and ambulatory settings. The OR 
cohort consisted of 15 intraoperative patients receiving treatment at the University of California, Irvine (UCI) 
Medical Center between June 2020 and March 2021. All patients were under general anesthesia and received 
intravenous medications (e.g., ephedrine, phenylephrine) whenever clinically indicated. BP recordings from 
surgical patients were simultaneously obtained invasively via radial A-line and noninvasively using a CAP sensor 
placed on the contralateral radial artery (Fig. 1a). BP data for the ICU cohort was obtained from a public data-
base (UCI Machine Learning Repository) and consisted of 20 randomly-selected recordings of invasive radial 
A-line and non-invasive radial PPG measurements collected from patients being treated at ICU  facilities74,75. 
Ambulatory BP measurements used for motion artifact analysis were obtained from one healthy subject using 
an FDA-cleared CNIBP monitoring device (Caretaker; Caretaker Medical NA, Charlottesville, VA, USA) and a 
noninvasive CAP sensor placed at the contralateral radial artery. Informed consent was obtained from all OR 
and ambulatory subjects, and experimental protocols were approved by and conducted in accordance with the 
UCI Institutional Review Board (IRB no. 2019-5251 and 2016-2924). Usage of the ICU recordings was IRB 
exempt due to the anonymized and deidentified nature of the public database.
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Signal quality assessment and pre‑processing. All collected BP signals were pre-processed in MAT-
LAB (R2021a, The MathWorks, Natick, Massachusetts, USA) prior to analysis. Using the devices’ integrated 
clocks, noninvasive BP measurements (via CAP or PPG sensors) were synchronized with the recordings from 
reference devices (A-line or Caretaker) to a precision of one second. Next, BP recordings were manually deter-
mined by the authors to exclude sections of data with low-quality signal based on the following criteria: (1) sig-
nals were at least 30 s in length and (2) consisted of at least 30 s of continuous BP waveforms possessing clearly 
visible systolic peaks, dicrotic notches, and diastolic troughs. Since inconsistent applanation pressure is a major 
source of measurement error in CNIBP  monitors48,49, and manual manipulation (e.g., repositioning) of sensors 
could not be controlled for in the OR and ICU setting, an unsupervised algorithm was developed to objectively 
identify and exclude segments of data that contained significant deviations in applanation. Since perturbations 
in contact pressure alter signal amplitude, a change in BP waveform contractility, defined as the maximum of 
the first derivative of the systolic upstroke, was used as a surrogate marker of changing applanation. Hence, for 
a given pair of noninvasive and invasive BP signals, regressions of the change in normalized contractility were 
calculated and compared using a hypothesis test. The sensors were considered to have significant deviations in 
applanation if the pair of regressions were statistically different (p < 0.05). A 30-s sliding window was utilized in 
this step to minimize the amount of excluded data.

Signal correction and BP estimation. To utilize as an input for our algorithm, BP data must consist 
of continuous (i.e., beat-to-beat) hemodynamic waveforms, as shown in Fig. S1. As an initial step, we used the 
BP_annotate package in MATLAB to identify the peaks and troughs in our raw BP signal and extract each BP 
 waveform76. Once extracted, these waveforms were used by our algorithm to calculate beat-to-beat DBP based 
on an initial calibration measurement and each waveform’s distinct morphology (Eq. 1). These “raw” waveforms 
were subsequently transformed into units of pressure (Eq. 2) and baseline-corrected using the calculated DBP 
values. The algorithm’s steps are further detailed below.

Using an initial BP measurement from a standard BP cuff, beat-to-beat diastolic blood pressure (DBP) was 
calculated as a function of DTT, defined as the time from systolic peak to diastolic trough, and waveform con-
tractility (Fig. S1):

where eDBP was the estimated DBP, t was time, SBP0 was the initial SBP cuff measurement, m0 was a calibration 
factor, and C was waveform contractility. The factor,  m0, was calculated as an average of the first five recorded 
beats:

where PP0 was the initial pulse pressure obtained by cuff measurement, PPs was the sensor pulse pressure, SBPs 
was the sensor SBP, and DBPs was the sensor DBP.

Thus, the calibration factor,  m0 [mm Hg/s], served two purposes: (1) to convert the raw signal into pressure 
measurements [mm Hg] and (2) to track changes in DBP relative to the initial DTT. Beat-to-beat change in 
contractility was included as a dynamic transformation factor to adjust for stress- or drug-induced physiologi-
cal changes in left ventricular contractility that can modify contraction and relaxation times and, consequently, 
alter BP waveform  morphology77,78.

Since our algorithm calculated DBP using intra-beat parameters that were independent of the confounding 
effects introduced by low-frequency noise, by comparing the estimated DBP to raw DBP, we were able to empiri-
cally model the baseline wander in our recordings, which served as an offset for the raw BP signals (Fig. 1b). 
The calculated baseline wander was smoothed using a 30-point moving median filter before being subtracted 
from the raw BP signal. The corrected signal was then used to extract beat-to-beat DBP, SBP, and mean arterial 
pressure (MAP, Eq. 3). Outlier measurements were excluded using a 30-point moving median filter.

Evaluating beat‑to‑beat BP variability. Since there is currently no well-established standard for meas-
uring BPV, short-term (beat-to-beat) SBPV and DBPV were quantified using three different metrics: SD, COV, 
and ARV. SD is the most commonly used index and represents the global fluctuation of BP measurements 
around the  mean79. COV is a normalized measure of SD and was defined by dividing by the mean  BP80. ARV, 
which aims to account for the temporal order of measurements and reduce the errors produced by signal noise, 
was defined by the mean of the absolute differences between adjacent BP  measurements80–82. Each BPV meas-
urement represented an average over a 30-beat window. Since intraoperative infusion of vasoactive medications 
could artificially increase BPV, this confounding factor was mitigated by excluding BPV measurements from 
segments that exhibited BP ranges exceeding 10 mmHg.

Statistical analysis. All statistical analyses were performed in MATLAB. A p-value less than 0.05 was con-
sidered statistically significant. A t-test or Wilcoxon signed rank test was used for continuous variables to evalu-

(1)eDBP(t) = SBP0 −

[

m0 ∗ DTT(t) ∗

(

C(t)

C0

)−1
]

(2)m0 =
1

5
∗

5
∑

i=1

PP0

PPs(i)
∗
SBPs(i)− DBPs(i + 1)

DTT(i)

(3)MAP = DBP +
1

3
∗ (SBP − DBP)
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ate differences between the means of two samples. Shapiro–Wilk tests were used to assess for normality. Brown–
Forsythe tests were used to determine statistical differences in BPV between two sets of measurements. Pearson 
linear correlation coefficients were calculated to assess how well beat-to-beat noninvasive sensor measurements 
correlated with those of the A-line. Mean bias, SD, and 95% confidence intervals (CIs) were also calculated, 
which in combination with the Bland–Altman method of paired measurements, were used to assess agreement 
between noninvasive (CAP or PPG sensor) and invasive (A-line) BP monitoring methods. The benchmark for 
acceptance was based on AAMI/ISO 81060-2 standards (mean bias: 5 ± 8 mmHg), which are used for FDA clear-
ance of non-invasive  sphygmomanometers83,84.

Data availability
The data that support the findings of this study are available from the corresponding author (M.K.) upon rea-
sonable request.
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