
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14727  | https://doi.org/10.1038/s41598-022-19090-y

www.nature.com/scientificreports

Digital twin key technology on rare 
earth process
Hui Yang1,2,5, Zhiqin Kuang1,2,5, Jianyong Zhu1,2*, Fangping Xu1,2,5, Feiping Nie3,5 & 
Shuchen Sun4,5

Digital twin can be defined as a digital equivalent of an object of which it can mirror its behavior and 
status or virtual replicas of real physical entities in Cyberspace. To an extent, it also can simulate and 
predict the states of equipment or systems through smart algorithms and massive data. Hence, the 
digital twin is emerging used in intelligent manufacturing Systems in real-time and predicting system 
failure and also has introduced into a variety of traditional industries such as construction, Agriculture. 
Rare earth production is a typical process industry, and its Extraction Process enjoys the top priority 
in the industry. However, the extraction process is usually characterized by nonlinear behavior, large 
time delays, and strong coupling of various process variables. In case of failures happened in the 
process, the whole line would be shut down. Therefore, the digital twin is introduced into the design of 
process simulation to promote the efficiency and intelligent level of the Extraction Process. This paper 
proposes the techniques to build the rare earth digital twin such as soft measurement of component 
content, component content process simulation, control optimization strategy, and virtual workshop, 
etc. At the end, the validity of the model is verified, and a case study is conducted to verify the 
feasibility of the whole Digital twin framework.

Currently, rare studies deal with the simulation and prediction of the complete manufacturing process. Even little 
study has been done on process optimization based on process simulation data. Rare Earths (RE), sometimes 
known as industrial vitamins, are widely applied in a variety of areas, including metallurgy, high-speed trains, 
and the national defense military industry. The Cascade Extraction Process, which is a cascade of several extrac-
tion tanks, is frequently used to increase the purity of rare earth in Chinese RE facilities. Furthermore, the Rare 
Earth Extraction Process (REEP), as a typical complex industrial process, is characterized by nonlinear behavior, 
long-time delays, and significant coupling of numerous process variables. In this study, we propose a DT system 
for REEP that incorporates inspection, virtual inspection, control, and process simulation modules. Cascade 
extraction is separated into thousands of extraction sub-processes, which is the principal reason of the lengthy 
process and over-reliance on human operation for failure judgment relating to the factory’s normal operation.

With the advancement of information technology, such as the industrial internet, the internet of things, and 
artificial intelligence, the concept of smart manufacturing is increasingly becoming such a reality. Germany, 
a powerful manufacturing country, suggested the ’industry 4.0’ concept1. One of the key challenges for smart 
manufacturing is to connect the physical and virtual spaces. It is necessary to set up Cyber-physical systems2, 
even Cyber-physical production systems3. Currently, The importance of digital twin (DT) is increasingly recog-
nized by both academia and industry. many DT applications have been successfully implemented in equipment 
maintenance, production health management, process simulation, auxiliary design, fault diagnostics, and so on4.

The DT may be traced back to a product life-cycle management program lectured by Dr. Michael Grieves,who 
proposed an unique notion called “Information Mirroring Model”,which was then refined to “Digital Twin”5. Yang 
covered essential DT technologies such as data capture, transmission, and processing, data-driven and model 
fusion collaborative control, virtual interaction and collaboration, and its applications in smart manufacturing, 
product development, and smart cities, among others6.

This paper proposes four key methods to build a rare earth digital twin system to achieve the functions of 
real-time sensing, rapid prediction, control optimization and efficient inspection of the digital twin system: a soft 
measurement method of solution component based on the color characteristics of rare earth solution is proposed 
to obtain the solution component content in the rare earth extraction process in real time, a component content 
prediction method based on mechanism compensation is proposed to simulate the component content change 
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of the extraction solution In order to improve the control effect, a control optimization method based on case 
search is proposed, and a virtual plant using virtual reality technology is proposed to facilitate quick understand-
ing of the working conditions and equipment status.

The paper’s overall structure is as follows: A literature review on digital twin shop intelligent production lines 
technology and Digital twin technology for the process industry are provided in “Related works” section “rare 
earth production DT framework” section describes the architecture of a rare earth digital twin system. “Key 
technologies” section introduces and discusses four key enabling technologies, including soft measurement 
of rare earth component content, as well as the modeling approach of process simulation and the principle of 
parameter optimization “Model validation and case study” section presents illustrative applications and discus-
sions to verify the proposed model. Finally, conclusions are presented in “Conclusions” section.

Related works
Previously, More applications for digital twins can be found in the fields of equipment maintenance and flaw diag-
nosis. The Airframe Digital Twin (ADT), which is envisioned to be an ultra-realistic, cradle-to-grave computer 
model of an aircraft structure, was built by Gockel to analyze the aircraft’s capacity to satisfy mission criteria7. 
Bielefeldt then ingeniously constructed a DT of an aircraft wing subjected to flight loading and replicates the 
behavior of these localized particles while simultaneously lowering computing time8. Wang introduced a data-
driven DT of the rotor system for accurate diagnosis and adaptive deterioration analysis of rotating equipment 
since this rotor system emulates an imbalance fault and its advancement, unbalanced quantification9. Jiang pre-
sented a single description and standardization of DT, which is used in a 110 kV substation’s designed prognosis 
and health management (PHM) system10. Li employed the notion of a dynamic Bayesian network to construct 
an adaptable probabilistic model for diagnosis and prognosis, and it showed the Feasible technique using an 
aircraft wing fatigue crack growth example11.

With advancements in virtualization, sensor technologies, and computing capacity, the notion of DT 
has grown to design, create, and operate complex systems by providing a secure virtual area for testing and 
validation12. Virtual reality (VR) technology captures human movements in a virtual environment, which are 
subsequently replicated by a real robot13. Bilderberg and Malik discuss an object-oriented and event-driven 
simulation of a flexible assembly cell coordinated with a robot to execute assembly duties alongside humans14. 
Corral-Acero created a visual DT for cardiology diagnosis and uses computer models and artificial intelligence to 
properly forecast cardiology. They give remedies that are personalized to each patient and optimize the healthcare 
system’s efficacy and efficiency15. Kang used DT technology to create a multimedia knowledge-based bridge health 
monitoring system that evaluates aberrant bridge circumstances and suggests the best time for maintenance16.

Scholars mainly work on the application of the digital twin in the Manufacturing industry. The implement 
of DT in manufacturing can optimize production processes and reduce energy consumption and costs . Tao 
conducted a framework to construct a digital twin system that included a real workshop, a virtual workshop, a 
database, and a service system17. Stark focused on the theoretical underpinning for the DT design framework 
and offered an 8-dimension Digital Twin model. The DT design components and their effect factors on the DT 
8-dimension model were used to the smart manufacturing cell’s development and ramp-up operations18. Jones 
summarized important vocabulary, and associated procedures, and lists 13 major features such as physical 
Entity, virtual Entity, and so on19. The use of simulation techniques brings digital twins to life and allows them 
to be tested. Schluse pioneered the notion of EDTs(experimental digital twins) as a new structuring element 
for simulation-based systems engineering processes and their interdisciplinary and cross-domain simulation, 
which enables comprehensive simulations on the system level20. A DT case for a welding manufacturing line is 
created using an application framework and a virtual model21. Wu introduced four important technologies for 
achieving real-time monitoring based on DT, including data modeling and transmission, event-driven virtual and 
real mapping, workshop logic modeling, and information visualization22. Considering the influence of carbon 
emissions from manufacturing processes, Zhao presented a method for dynamically optimizing machining pro-
cess parameters to decrease carbon emissions based on real-time observation of the machining circumstances23. 
Zhang presented a special framework for simulation optimization utilizing a virtual workshop in response to 
several issues encountered during the design stage of a dual-manipulator cooperative unit24.

The current state of digital twin technology is mostly employed in the discrete industry. Due to the complexi-
ties of process modeling, the process industry, is still missing in DT trials. Among the six essential technologies 
advocated by Li for process industry DT are data intelligent perception, multisource heterogeneous data integra-
tion, data-efficient transmission, digital twin creation, enhanced interaction, and transformation application25. 
Zhou streamlined the raw materials delivery schedule at an ironmaking factory with five sintering machines 
and seven blast furnaces utilizing cloud computing and DT technology to cut production expenses to reduce 
the mean coke ratio of an ironmaking plant26. Soares showed how a digital twin was successfully implemented 
to simulate a four-stage multi-effect evaporation train from an industrial sugar-cane processing facility27. There 
is presently no reference model especially established for risk control and prevention in the oil and gas indus-
tries. Bevilacqua created a Digital Twin reference model to offer conceptual criteria for DT deployment for risk 
prediction and prevention28.

Rare earth production DT framework
Figure 1 depicts the REEP (rare earth extraction process), which includes a dissolve circuit, extraction circuit, 
disposal circuit, and dehydration circuit. In an acid solution, the feed liquid and raw material powder are dis-
solved. In the dissolution process, the raw material powder is mixed with acid and water, and then neutralized 
with alkali to a certain pH value, and then precipitated and filtered to obtain the next stage of the raw material. 
In the extraction process, the solution configured in the previous stage is separated from a variety of separation 
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products through the action of multi-stage extraction tank. These separated products can be obtained by adding 
precipitating agent in the precipitation process and stirring to obtain various desired products.

Figure 2 depicts the four key components of the DT architecture, which comprise a physical workshop, a 
virtual workshop in digital space, DT service systems, and dynamic data bases. Firstly, the physical workshop 
transmits the process index control data such as motor, PH, temperature, level, temperature and the collected 
component content data to the database for easy use by the service system and the virtual system. Then the 
virtual equipment in the virtual shop will synchronize the collected data in the database and realize the overrun 
warning and the corresponding process animation.

Figure 1.   The Main procedure of rare earth production.

Figure 2.   Basic framework of rare earth DT.
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Finally, according to the real-time data, the service system can optimize the control index to facilitate the 
setting of control parameters and simulate the component content of the extraction process at all levels, while 
the user can quickly inspect the virtual workshop through the virtual inspection module. Taking the rare earth 
extraction process as an example, the digital twin system data flow is described as follows.

(1) The physical workshop realizes the control of motor, dosing pump and solenoid valve, and gets the real-
time data such as solution component content of detection level and extraction tank level, temperature, inlet and 
outlet flow through the soft measurement system of solution component content, which is transmitted to the 
digital twin data platform. (2) The digital twin data platform will update the collected data into the database of 
the virtual workshop and the database of the service system. (3) The virtual workshop synchronizes the process 
simulation data from the data platform to the corresponding extraction tank with real-time data. (4) The service 
system includes control optimization, virtual inspection module, and process simulation module. The process 
simulation module can read real-time data from the DT data platform and then simulate the component con-
tent of each extraction level based on the algorithm. The control optimization module will calculate the optimal 
control strategy based on the real-time control data and the case-based control optimization strategy.

Figure 3 presents the Framework for real-time collection, composition, management data of workshop. The 
framework is divided into two parts: DCS and database, where the DCS is responsible for flow, level, tempera-
ture, motor control and process index detection in each production step. The control and inspection data are 
transferred to the SCADA system29 via Ethernet and sensor networks and then uploaded to the database. The 
database contains real-time data, management data, operation data, and optimization data. The real-time data 
mainly includes the actual site control and testing data, and the operation information includes the solution 
proportioning, controller parameters, raw material component content and other artificially set data. Manage-
ment data includes order, inventory, operator, equipment, and raw material data. Optimization data is used to 
store the parameter settings of the control optimization strategy such as controller settings, flow rate settings, 
and to send them to the SCADA system to guide the production.

Key technologies
Soft measurement of rare earth component content.  In actual production, process engineers 
mainly use the color change of the extracted rare earth solution to determine the component content and abnor-
mal working conditions. Inspired by this, Yang proposed a soft measurement model of component content using 
the color characteristics of the extracted solution30. Zhu further improved the accuracy of the soft measurement 
model by considering the interference generated by light changes on the solution image acquisition31. The soft 
measurement method proposed in this paper can effectively decrease the influence of illumination on the detec-
tion, and the detection accuracy is better.

The soft measurement method is used to detect the color features of the liquid to be tested and then estimate 
component amount. However, detection errors will arise in the field inspection due to the fading of the light 
source and the hostile environment. To solve this issue, the initial picture must be compensated before modeling. 

Figure 3.   Framework for real-time collection, composition, management data of workshop.
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it is ought to set an objective function based on the Grey Edge algorithm, establish the parameters to be improved, 
and then apply the Grey Edge algorithm based on the Genetic Algorithm (GA) to optimize the illumination com-
pensation model. To use Extraction of RGB features and HSI traits from light-compensated acquisition photos 
as the soft measurement model’s input variables. The component content is gently measured using the weighted 
least squares support vector machine (WLSSVM). To guarantee that the recovered color features are accurate, 
the lighting conditions at the time of data collecting must be consistent, hence color constancy is required for 
color feature extraction. The color constancy computation is a two-step method that begins with estimating the 
picture’s light color and ends with using the diagonal model to adjust the image to the standard light. The Grey 
Edge technique is a well-known unsupervised lighting estimating algorithm. The color constancy approach 
derived from the gray world hypothesis and the gray edge method is as Eq. (1).

f σ = f
⊗

Gσ show the convolution of the image f and the Gauss filter Gσ and ∂n(.)/∂Xn refers the n order 
derivation. The color under two diverse Illumination conditions can be translated by a diagonal matrix. For an 
instance, the color of the imagefunder the light eu = [Ru,Gu,Bu]  can convert to the color f c under the light 
ec = [Rc ,Gc ,Bc] . only needs to be multiplied by a diagonal matrix, which is as Eq. (2).

According to the production requirements of the actual site, only the middle solution image is valid for the 
acquired image, so we only need to calculate the error for the area of the solution region. The color of the central 
region of the image to be estimated is (Ra,Ga,Ba) , the average RGB value of the image region after the algorithm 
is (Rc ,Rc ,Ra) Angle error is calculated by Eq. (3):

 Pre-correction color f u = [Ru,Gu,Bu] is known, only estimate the unknown light source in the image to 
be corrected eu = [Ru,Gu,Bu]and standard light sources in standard images ec = [Rc ,Gc ,Bc],The corrected 
color can be obtained f c = (Rc ,Gc ,Bc) Thus, the image correction problem based on illumination estimation 
is transformed into an optimization problem containing three parameters with the following optimization for-
mulas as Eqs. (4)–(6).

These three parameters n, p, σ can be used as a set of independent variables, and the best estimate of the actual 
light color can be obtained by parameter optimization through genetic algorithms(GA), particle swarm optimi-
zation (PSO), differential evolution and other optimization algorithms.According to the optimal combination 
n, p, σ . The estimated light color can be obtained using above equation. After substituting the above results into 
the transformation matrix The final corrected color is obtained f ′c = (R

′

c ,G
′

c ,B
′

c) . 
The H, S and I color characteristic components are extracted from the images of rare earth solutions acquired 

at industrial sites under the HSI color space. Since each value of HSI has different degrees of influence on the 
component content, each color component is weighted. Similarly, RGB features can be added and the relationship 
between the solution image color and component content can be expressed as Eq. (7).

wh,ws ,wi ,wR,wG ,wB denote the weights of the H, S and I components of the HSI color space, respectively, 
Ch,Cs ,Ci ,CR ,CG ,CB The H, S and I components of the HSI color space and R G B components of the RGB color 
space are represented respectively. soft measurements of rare earth component content are mainly established, 
with a nonlinear relationship between the solution color HSI characteristics and the rare earth component 
content. The nonlinear relationship can be modeled using nonlinear regression, neural network methods.Due 
to the limitations of the field process, it is difficult to collect a large amount of continuous data as the training 
set of the neural network, so the model of soft measurement uses WLSSVM. this method features fast learning 
capability, simple calculation and is suitable for small sample objects.
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Process simulation of the extraction process.  Rare earth, a vital raw material, has been widely 
employed in the production of military projects, electronic and communication equipment. The process of rare 
earth production can be classified a series of sub-processes. What matters most is Extraction Process which 
characterized by nonlinear behavior, large time delays, and strong coupling of various process variables. The 
extraction process has the features of long process flow, complex mechanism and many influence factors. Fig-
ure 4 shows the flow chart of rare earth extraction process. The process consists of an extraction stage and a 
washing stage. The mixed liquid of raw material liquid is poured into meddle stage, the extraction solvent P507 
and washing liquid HCL are separately added into first stage and last stage. hard extracted product YB in aqueous 
phase can be exported ,and the easy extracted product YA in organic phase is originated from the last stage. The 
organic phase flows in the opposite direction of the aqueous phase.

An accurate Mathematical model is critical in anticipating the states of component content in each mixer-
setter in order to simulate the component content. To simulate the extraction process, Wu developed a primary 
model that relies on mass and element balance32. Most academics deny the accuracy, yet it sheds insight on a 
suitable strategy for rare earth extraction simulation. JIA developed a soft-sensor model technique by incorpo-
rating the subtraction clustering algorithm33. Yang proposed a model that was based on an enhanced principal 
model with optimized parameters34. The previous process simulation method mainly uses a static mechanism 
method, which cannot adjust the model according to the actual field data, resulting in large errors in the pre-
dicted component content.In this paper, the approaches are utilized to develop a dynamically optimized model 
of process simulation which could further improve the accuracy of process simulation Training with historical 
data Compared to previous studies.

When the extraction system reached stability, the organic phase component was set to Y and the aqueous 
phase component to X; A denotes easy extracted component content, B denotes hard extracted component 
content, N denotes the number of components, I denotes the number of components, and F denotes the raw 
material composition. There are n extraction steps and m scrubbing stages. Since its material liquid remains 
invariant after extraction, the following formulas for the separation coefficient of various components may be 
obtained as Eqs. (8)–(10).

N refers the last component, i refers component i.

To describe the relationship of single component between aqueous phase and organic phase, there are some 
formulas about the transformation with separation factor as Eqs. (11)–(12).

(8)β(i+1)/i =
Yi+1 × Xi

Yi × Xi+1

(9)β(1)/i =
Yi × X1

Y1 × Xi

(10)β(i)/N =
YN × Xi

Yi × XN

(11)Yi =

(

Xi ×

N
∏

i=1

β1/i

)

/

N
∑

i=1

(

Xi ×

N
∏

i=1

β1/i

)

Figure 4.   Structure of rare earth extraction process.
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According to the insufficient extraction, a compensation coefficient K have to be added in extraction coef-
ficient to improve accuracy of model. the expression like Eqs. (13)–(14).

To increase the accuracy of this model, an improved PSO (Particle Swarm Optimization) was employed in 
the optimization of compensation coefficient. It is necessary to set fitness function of optimization like following 
depiction. The fitness function of extraction stage as Eqs. (15)–(16).

An appropriate compensation coefficient requires the constant iteration through the optimization algorithm 
and massive date. Here presents the main process: In the initial stage of building mathematical model, the 
principal model with compensation coefficient was built before Application, the coefficient will be iterated by 
update parameters.

Compared the common PSO model, improved PSO model based on functional inertia weight and constant 
constriction factor to optimize compensation coefficient which is more excellent in effect of optimization. This 
paper is enlightened by the asynchronously improved PSO model applied in text feature selection and utilize it 
in compensation coefficient optimization35.

Common PSO model creates a large number of particles, which move in whole solution space with a fixed law. 
Each particle own a couple of messages about their position and fitness which also influence other particles to 
adjust their position and velocity of moving. The velocity of particle i expresses as Vi = (Vi1,Vi2, . . . ,ViD) , the loc-
tion of particlei express as(Xi1,Xi2, . . . ,XiD) , the optimal location of particle i expresses as Pi = (pi1, pi2, . . . , piD) 
it is also regarded as pbestThe best optimum location is Pg = (pg1, pg2, . . . , pgD) or express as gbest . Each particle 
own a single fitness calculated from fitness function. This kind of Improved PSO concentrate on the promotion 
of update formulae of the dimensiond in Eqs. (17) and (18):

In standard PSO, Q refers particle quantity,w refers inertia weight c1 and c2 both refers acceleration constant, 
vmax is the maximum velocity, Gmax refers the maximum number of iterations rand() or Rand() both refers the 
random functions with values in [0,1].

Due to massive data conducted in production process, common PSO model fail to rapidly search the global 
optimum through the fixed generation. the constriction factor K is conduced into Eq. (19) show the improved 
velocity formula.

In the early generation, the particle needs to move in a wide range to search the optimum location.it needs 
to develop the precision within a small range to determine the best single point. Hence, the constriction factor 
keep a large value in early iteration, and adjust its values with the generation change. the functional constriction 
factor is presented as Eq. (20). refers the iterations.

To Improve asynchronously inertia weight and constriction factor, the principal that original speed influenced 
by inertia weight, the convergence of PSO is affected by constriction can to be described as Eq. (21).

α is the default original velocity of particle. The change way of appears in Eq. (22).
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(17)vid =w × vid + c1 × Rand()× (Pid − xid)+ c2 × Rand()× (Pgd − xid)

(18)xid =xid + vid

(19)vid = K[vid + c1 × Rand()× (Pid − xid)+ c2 × Rand()× (Pgd − xid)]

(20)K =
cos(�/Gmax)× T + 2.5

4

(21)
{

vid = w × vid + c1 × Rannd()× (Pid − xid)+ c2 × Rand()× (Pgd − xid)ifT < Gmax
2

vid = K[α × vid + c1 × Rannd()× (Pid − xid)+ c2 × Rand()× (Pgd − xid)]ifT ≥ Gmax
2
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wend and wstart both are set by researchers, which determine the range of inertia weight. To predict the future 
behavior of plant-wide process, internal parameters of a principle model must be obtained and updated. The 
actual production process can infer a real model through idealization Approximation. Subsequently, a series of 
formulae are abstracted from this hypothetical model and constitute a principle model. The correlation between 
the principle model and actual collected data needs to be ensured by at least one optimal parameter. The opti-
mization model is perfect by iterative optimization using improved PSO.

Process control strategy.  The current production process has a low level of automation and production 
optimization relying on manual experience. In order to guarantee the quality of the extracted products, it is 
necessary to design a dosing control strategy with optimization function. Yang proposed the component con-
tent distribution profile control which can be automatically regulated by dynamically compensating the related 
extract or scrubbing liquid flow-rate36. Lu proposed a model based on generalized prediction of the content of 
rare earth extracted components to meet the demand of component content floating in a specific interval37. A 
paper applied Static Setting and dynamic compensation based optimal control strategy for the Flow Rate of the 
Reagent in Ce Pr/Nd Extraction Process38. It can be depicted as Fig. 5. The control strategy in this thesis can 
quickly generate optimized control parameters based on real-time measured component content and historical 
cases, which is more practical than previous studies.

Staff usually rely on operational experience to pre-set the extractant and detergent flow rate values based on 
the raw material processing volume, rare earth feed liquid element distribution, saponification degree, extract-
ant concentration, feed liquid concentration, acid concentration, and other entry conditions during the actual 
production process of the entire rare earth extraction. The control system obtains the detergent and acid set-
tings from the case library that best match the real process based on the production parameters of the actual 
production process. CBR(Case-based reasoning) is an artificial intelligence reasoning strategy that uses human 
thinking to gather expert knowledge from instances in order to solve new issues. The case inference approach 
is utilized to predetermine the extractant/detergent for the rare earth extraction procedure based on this. Using 
case-based reasoning, the starting value of the extractant and detergent for the rare earth extraction method 
was derived. To decide which class a new instance belongs to, the classifier based on CBR approach is primarily 
focused on the known classes in of a known class. The data demonstrates that the first production parameters, 
Process Indicators, both have a substantial influence on the initial setup of extractant and acid by studying the 
process mechanism and process circumstances of the rare earth extraction manufacturing process. Each case 
consists of a description of the working conditions and a case solution stated by Eq. (23):

Xk = (x1,k , . . . , x7,k) denotes the kth condition description. x1,k , . . . , x7,k presents all initial production param-
eters, Process Indicators. YA refers the rare earth material distribution, CF  refers raw material Liquid concentra-
tion,CS refers Extractant concentration, CW  refers Detergent concentration, G refers Material and liquid handling 
capacity,PB1  and PA,n+m both are Product purity indexes. vk = (v1,k , v2,k)  enotes the solution corresponding 
to the kth condition description; v1,k , v2,k  respectively denote the extraction volume preset Vs  and the washing 

(22)
{

w = wend + (wstart − wend)(1− (T/Gmax))ifPgd �= xid
w = wendifPgd = xid

(23)Case(Xk ,Vk) = Case((xx1,x ,...,x7,k ), (v1,k , v2,k))

Figure 5.   Control strategy for extraction process twin.
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volume preset Vw respectively. The case retrieval strategy can employ the nearest neighbor search strategy. case 
retrieval strategy can employ the nearest neighbor retrieval strategy, by calculating the distance between the target 
case and the source case. The smaller the distance, the higher the similarity between the two cases. Multiple search 
strategies are feasible such as KNN (K-nearest neighbor) search strategy. Intelligent compensation model for 
initial flow setting using a preset model based on case-based reasoning. Then a relatively reasonable preset value 
of extractant and detergent flow rate can be obtained. but the model does not take into account of the working 
conditions caused by real-time external disturbances. To ensure the requirements of the production process, the 
staff needs to periodically adjust the settings of the extractant and detergent according to the color of the solution.

Intelligent compensation model for initial flow setting is beneficial for the optimism of initial flow setting. The 
model mainly consists of a soft measurement model based on the color of rare earth solution and an intelligent 
compensation model based on fuzzy inference. The collected color images of rare earth solutions were extracted 
and converted to tree components. The H, S and I color components are extracted from the HSI color space. The 
color characteristics do not have a one-to-one correspondence with the component content, but the Least Squares 
Support Vector Machine can be applied in the Description of this correspondence since its excellent performance 
for modeling with small samples. To simulate the regulation of the initial flow by expert experience, a fuzzy 
control method can be utilized to build an intelligent compensation model. The process is presented as Fig. 6.

The component content YB and YA obtained from soft measurement model are compared with target component 
content PB,1  and PA,n+m . The error can presented as formulas es = YA(K − 1)− PA,n+m , ew = YB(K − 1)− PB,1 . 
The Variation of error show as �es = YA(K − 1)− YA(K − 2) , �es = YA(K − 1)− YA(K − 2) The variation is 
set as the input of the fuzzy control model and the variation of extractant and acid is available as output.

Model validation and case study
Soft measurement model validation of solution component content.  In this paper, the solutions 
in 100 extraction tanks are collected as experimental samples, and after collecting the solution images, light 
compensation is performed with soft measurement modeling.

After extracting the HSI and RGB features of the compensated images, they are substituted into the WLSSVM 
model to obtain the predicted output of the component content. To Evaluate the accuracy of the soft-measure-
ment model by comparing the actual assay values with the soft-measurement component content values. Relative 
error percentage as the Critical metrics for evaluating models as shown in Fig. 7. In order to verify the proposed 
method, the experiments are conducted in four cases, WCC means without color compensation, and CC means 
with color compensation. The experiments show that CC-WLSSVM has the lowest relative error compared to 
the actual value and the soft measurement effect is the last.

Validation of process simulation methods.  The process parameters set in this paper are as follows: The 
Ce component content of the inlet is 0.445,the Pr component content of inlet is 0.1842, and the Nd component 
content of inlet is 0.3713. The separation coefficient between Ce and Pr is 2.03 and The separation coefficient 
between Pr and Nd is 1.55. The number of extraction stages n is 26 and the number of washing stages m is 34.The 
extraction amount is 0.9995 and the export index is 0.9995. The parameters of the improved PSO are set as: 
acceleration constants c1 is 1.3,c2 is 1.7,wend is set as 0.86 wstart is set as 1,α is 0.7.The predictive values of the 
component content of rare earth components at each stage are shown in Fig. 8.

To further evaluate the prediction effect of the model, In this paper, we use the mean relative error and the 
maximum relative error to evaluate the deviation of the model from the actual value, and the root mean square 
error to reflect the degree of deviation as Eqs. (24)–(26). z is the model output value, z* is the actual component 
content. Relative error of each component after calibration as shown in Table 1.

(24)MEANRE =
1

n+m

n+m
∑

i=1

|z − z
∗|

z∗
× 100

Figure 6.   Compensated control based on fuzzy inferences.
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(25)MAXRE = MAX

(

|z − z
∗|

z∗
× 100%

)

(26)RMSE =

√

√

√

√

1

n+m

n+m
∑

i=1

(z − z∗)2

Figure 7.   Relative error percentage of WLSSVM.

Figure 8.   Predicted values of component content for each stage.

Table 1.   Relative error of each component after calibration

Component content MEANRE(%) MAXRE(%) RMSE(%)

Ce 0.425422 4.434351 1.382× 10−4

Pr 0.417555 3.656577 2.246× 10−4

Nd 0.175327 3.269205 1.439× 10−4



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14727  | https://doi.org/10.1038/s41598-022-19090-y

www.nature.com/scientificreports/

The absolute value of the relative error between the prediction results and the actual data is shown in Fig. 9. If 
the maximum relative error of the component content of each level does not exceed 5%, the error of the model is 
deemed to lie within a reasonable error range, and it can be seen from the figure that the error of the established 
model is within the normal range.

System development and case study.  The specific applications include process simulation, virtual 
inspection, and data search. Finally, the contributions and limits of this research are examined.To further illus-
trate the efficacy of the aforementioned technique and framework, this study will perform experiments in the 
following areas: physical control and monitoring system, virtual workshop, service system, and human-DT con-
nection. Figure 10 depicts the total framework diagram.

This paper is based on an existing information management system for rare earths production that has 
been enhanced to enable the sensing, control, and data gathering tasks of the digital twin plant. Configuration 
software such as WINCC can be used to implement the module. The Physical control and monitoring system is 

Figure 9.   Absolute value of the relative error between the model and actual datal twin.

Figure 10.   Test of rare earth DT system.
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made up of three parts: the flow chart, the motor control module, and the flow control module. Here, the flow 
chart displays all procedures for monitoring each advice, such as the mixing motor and the extraction tank, 
and allows users to easily access the control and monitoring interface for the related process. The flow control 
and motor control modules generate reference control parameters such as material flow, extractant flow, and 
detergent flow. To develop control optimization strategies, these two modules can use the control optimization 
technique outlined above. The real-time data is synced to the database every two hours with the changeover of 
communication equipment for further analysis and utilization.

Virtual workshop is mainly convenient for users to quickly inspect the status of equipment in each workshop, 
and real-time working conditions which is integrated into the DT service system.The rare earth production line’s 
virtual workshop module is created by merging a 3D model with real-time data. Virtual-real interaction, data syn-
chronization, and consistent behavior with Physical Equipment are the major goals of the virtual workshop . As 
a result, the virtual workshop may be broken down into three sections: process demonstration, data association, 
and virtual model. This section mostly relies on 3Dmaxs and Unity software to fulfill its goals. Demonstrating 
the change and distribution of materials liquid in the manufacturing process, which is accomplished by Fluid 
Animation in Unity, is a process demonstration. Data Association is realized by C# scripts about connection 
of data base with virtual model. The virtual system enables free inspection of each equipment and fast warning 
of abnormal working conditions, which greatly reduces production risks and unnecessary waste. To the end, A 
virtual workshop that allows data synchronization and free inspection is shown as Fig. 11.

The digital twin service system mainly realizes process simulation of rare earth production, virtual inspec-
tion, and soft measurement data retrieval of component content.The virtual workshop module, algorithms, and 
C# scripts, on the other hand, are enclosed inside subroutines for DT service system calls. A state searching 
application that can quickly display the states of motors retrieved from a database. To avoid possible failures in 
the process, the system may scan motor states using the time stamp and device ID and provide the predictive 
outcome of the component malfunction. The purpose of the virtual inspection is to guarantee that each piece of 
equipment receives a free and intuitive check, as well as a defect alarm. The process simulation is divided into 
two major subsystems: component content prediction for the extraction process and soft component content 
measurement. The proposed model with compensating coefficient is used to forecast component content.

Process simulation is the core function of DT system, to realize this function, it is necessary to solve the 
problem of soft measurement of component content. A subsystem was built based on the previously described 
soft measurement method for component content and Existing Soft measuring equipment and software.

After extracting the HSI and RGB features of 6 compensated images collected from Detection level, those 
are substituted into the WLSSVM model to obtain the predicted output of the component content. To Evaluate 
the accuracy of the soft-measurement model by comparing the actual assay values with the soft-measurement 
component content values. The results are shown in the Fig. 12a.

From Relative error percentage of soft measurement,it can be seen that the model is able to accurately predict 
the component content based on the RGB and HSI characteristics of the solution graph.In this paper, 200 groups 
of component contents were detected as the training set of the process simulation model. A mathematical model 
with parameter optimization for component content prediction can be achieved using the above method. In order 
to verify the applicability of the model, some parameters are preset, a large amount of actual data is provided to 
train the model, and finally the prediction effect of the model is evaluated using the data from the validation set. 
The predictive values of the component content of rare earth components at each stage are shown in Fig.12b. It 
can be seen from the error of the established that model is within the normal range.

The developed rare earth digital twin service system has greatly reduced the inspection time and detection 
time, the inspection time from the original 30 min to 5 min, and the component content detection time from 
the original 1 h to 10 min.

Figure 11.   virtual workshop for rare earth process.
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Conclusions
Rare earth production process relies heavily on manual labor for solution component content detection, process 
control and equipment inspection, and the production process has a large time lag and is prone to abnormal 
working conditions caused by untimely troubleshooting, which eventually affects the output quality of products. 
This paper proposes a soft measurement method of solution component based on the color characteristics of 
rare earth solution and a component process simulation method based on mechanism compensation for the 
problem of untimely detection of solution components, and adopts a case-based control optimization strategy for 
the problem of difficult control optimization, and builds a virtual scene to facilitate users to quickly understand 
the process and equipment conditions in order to reduce manual inspection. The soft measurement method of 
solution components is easily affected by the light and transparency of the container. The following points will 
be improved in future studies: Soft measurement method for solution fraction is slow to calculate and accuracy 
needs to be enhanced.The process simulation algorithm will be further improved to enhance the simulation 
accuracy. The control effect of the control strategy needs to be further improved, and the integration degree of 
the current DT system. The usability of the virtual workshop need to be enhanced. The interface will be presented 
in the form of a web page, and the server will complete the calculation and prediction.

Data availibility
The datasets generated and analysed during the current study are not publicly available due to sensitive data 
involving production units but are available from the corresponding author on reasonable request.
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