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The utility of texture analysis 
of kidney MRI for evaluating 
renal dysfunction with multiclass 
classification model
Yuki Hara1, Keita Nagawa1,2*, Yuya Yamamoto1, Kaiji Inoue1, Kazuto Funakoshi1, 
Tsutomu Inoue3, Hirokazu Okada3, Masahiro Ishikawa4, Naoki Kobayashi4 & Eito Kozawa1

We evaluated a multiclass classification model to predict estimated glomerular filtration rate 
(eGFR) groups in chronic kidney disease (CKD) patients using magnetic resonance imaging (MRI) 
texture analysis (TA). We identified 166 CKD patients who underwent MRI comprising Dixon-based 
T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images, apparent diffusion coefficient 
(ADC) maps, and T2* maps. The patients were divided into severe, moderate, and control groups 
based on eGFR borderlines of 30 and 60 mL/min/1.73  m2. After extracting 93 texture features (TFs), 
dimension reduction was performed using inter-observer reproducibility analysis and sequential 
feature selection (SFS) algorithm. Models were created using linear discriminant analysis (LDA); 
support vector machine (SVM) with linear, rbf, and sigmoid kernels; decision tree (DT); and random 
forest (RF) classifiers, with synthetic minority oversampling technique (SMOTE). Models underwent 
100-time repeat nested cross-validation. Overall performances of our classification models were 
modest, and TA based on T1-weighted IP/OP/WO images provided better performance than those 
based on ADC and T2* maps. The most favorable result was observed in the T1-weighted WO image 
using RF classifier and the combination model was derived from all T1-weighted images using SVM 
classifier with rbf kernel. Among the selected TFs, total energy and energy had weak correlations with 
eGFR.
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ROC  Receiver operating characteristic
ROI  Region of interest
se-RD  Severe renal dysfunction
SFS  Sequential feature selection
SVM  Support vector machine
SWI  Susceptibility-weighted imaging
T1WI  T1-weighted imaging
T2*WI  T2*-weighted imaging
TA  Texture analysis
WO  Water-only

Chronic kidney disease (CKD) affects 8–16% of the population worldwide and remains a major threat to global 
public health due to its increasing incidence and mortality. Common causes of CKD include diabetes and 
hypertension, especially in developed countries. However, less than 5% of patients with early CKD report being 
aware of their  disease1. Therefore, appropriate screening, early diagnosis, and management are significant in 
preventing CKD-associated adverse clinical outcomes, such as end-stage kidney disease, cardiovascular disease, 
and increased mortality. The Kidney Disease Improving Global Outcomes  guidelines2 suggested a risk-based 
approach to the evaluation and management of CKD and proposed six disease categories related to the estimated 
glomerular filtration rate (eGFR): G1–G5, with G3 subdivided into 3a and 3b. The most essential cutoff points 
of eGFR are 60 and 30 mL/min/1.73  m2 (as the borderlines of G2/G3 and G3/G4, respectively); therefore, the 
risk of death was reported to increase as the eGFR decreased below 60 mL/min/1.73  m2 in recent CKD cohort 
 studies3. In addition, an eGFR of less than 30 mL/min/1.73  m2 is important from a radiological point of view as it 
relates to the availability of the contrast  media4. The risk stratification of CKD based on the eGFR has undisputed 
advantages and has helped achieve greater awareness of CKD and its impact on global health.

Ischemia and hypoxia are associated with the progression of CKD; however, clinical tools to quantify these 
factors in patients are lacking. Renal biopsy is the gold standard method to histologically evaluate renal pathol-
ogy; nevertheless, it carries certain risks due to complications, such as bleeding. Conversely, magnetic resonance 
imaging (MRI) of the kidney has been used to non-invasively assess CKD progression. Several MRI methods 
have been successfully used to evaluate renal function, including diffusion-weighted imaging (DWI) and blood 
oxygen level-dependent imaging (BOLD). DWI and apparent diffusion coefficient (ADC) values are the most 
studied methods and have demonstrated a good correlation with renal function decline and renal fibrosis in 
 CKD5–8. BOLD based on the T2* map reflects the regional renal oxygenation status and can assess hypoxia 
occurring during renal  dysfunction9,10. Although Dixon-based gradient-echo MRI is another imaging method 
that is routinely performed in abdominal imaging and can measure renal lipid accumulation in type II diabetes 
 mellitus11, its utility in the evaluation of CKD has not been thoroughly studied.

Texture analysis (TA) is an emerging technique that permits the quantification of image characteristics based 
on the distribution of pixels and their surface intensity or  patterns12,13. TA has been applied to several medical 
image analyses, including oncologic  imaging14,  neuroimaging15, and abdominal  imaging16,17. Recent reports have 
demonstrated the utility of TA based on DWI, BOLD, Susceptibility-weighted imaging (SWI), and T1 and T2 
 mapping18,19. However, TA of other essential MRI methods, including Dixon-based T1-weighted imaging (T1WI), 
has not been fully studied. Previous studies have described that as the renal function declines, a decreased 
difference between the values in the cortex and those in the medulla is observed in  T1WI20,21. Therefore, we 
hypothesized that TA based on Dixon-based T1WI is especially important because of its capacity to capture the 
clearest images and reflect the morphological characteristics of the kidney.

Thus, this study aimed to assess and compare the performance of TA based on Dixon-based T1WI, ADC 
maps, and T2* maps (BOLD) for evaluating renal dysfunction.

Results
Clinical characteristics. The study included 166 participants. The major etiologies of CKD were hyper-
tensive nephrosclerosis (n = 80), diabetic mellitus nephropathy (n = 25), immunoglobulin A (IgA) nephropathy 
(n = 22), and nephrotic syndrome (n = 5). No abnormalities were observed in the remaining 34 patients.

According to the eGFR, 36 patients had severe renal dysfunction (se-RD) (men, n [%] = 26 [72], mean age 
60.9 ± 16.4 years, mean eGFR 19.8 ± 7.7 mL/min/1.73  m2), 85 patients had moderate renal dysfunction (mo-
RD) (men, n [%] = 57 [67], mean age 62.3 ± 13.3 years, mean eGFR 46.3 ± 8.1 mL/min/1.73  m2), and 45 patients 
were in the control group (CG) (men, n [%] = 19 [42], mean age 43.7 ± 18.1 years, mean eGFR 78.1 ± 16.7 mL/
min/1.73  m2).

Table 1 details the distribution of the study population in each eGFR group. The age, percentage of men, 
and incidence rates of hypertension and diabetes increased significantly with progressive renal dysfunction. 
There was no significant difference in the incidence rate of IgA nephropathy and nephrotic syndrome among 
the three groups.

Dimension reduction of texture features. The T1-weighted in-phase (IP)/opposed-phase (OP)/water-
only (WO) images showed good reproducibility in the inter-observer reproducibility analysis, with mean inter-
class correlation coefficient (ICC) values of 0.767, 0.774, and 0.781, respectively. Conversely, the ADC and T2* 
maps showed slightly lower reproducibility, with mean ICC values of 0.732 and 0.718, respectively. Good inter-
observer reproducibility was observed for 59, 60, 61, 54, and 50 features (ICC ≥ 0.75 and lower 95% confidence 
interval [CI] ≥ 0.6) in T1-weighted IP/OP/WO images, ADC map, and T2* map, respectively. By excluding fea-
tures with poor reproducibility (ICC < 0.75 or lower 95% CI < 0.6) from any one of the imaging methods, the 
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number of features for each imaging method was reduced to 40. Table 2 lists the ICC values of these 40 features 
for each imaging method.

Subsequently, the sequential feature selection (SFS) algorithm was used for feature selection. For each imag-
ing method and machine learning (ML) classifier, a subset of five features that provided good classification 
accuracies was identified. The selected features for each classification attempt are listed in Tables 3, 4, 5, 6 and 7.

Concurrently, cross-correlation analyses were conducted between the eGFR and the 40 texture features. The 
highest correlation coefficients were observed for two texture features (total energy [0.55, p < 0.001] and energy 
[0.55, p < 0.001]) in T1-weighted WO images. Table 8 shows the relationship between the eGFR and the 40 
selected texture features in each imaging modality.

Classification and validation. Receiver-operating characteristic (ROC) curve analyses were performed 
to compare the capacity of TA quantified from each imaging method to differentiate the three groups of CKD. 
Overall, the TA based on T1-weighted IP/OP/WO images provided better classification performance than that 
based on the ADC and T2* maps. Among the five imaging methods, the T1-weighted WO images obtained the 
highest classification scores: an accuracy of 76.5–82.0% and a macro-average area under the curve (AUC) of 
0.812–0.884. Among the six classifiers we studied, the most favorable performance was observed in the random 
forest (RF) classifier. As for the support vector machine (SVM) classifier, the favorable results were obtained 
in the SVM with rbf kernel, whereas the results were poor in the SVM with sigmoid kernel. The results of all 
classification attempts are summarized in Tables 3, 4, 5, 6 and 7. Figures 1a and 2a present the ROC curve and 
the confusion matrix of the representative model (T1-weighted WO image with RF classifier). The confusion 
matrices and ROC curves of all classification attempts are summarized online in Supplementary Figs. S1–S5 and 
S8–S12, respectively.

Combination models. The combination models derived from T1-weighted IP/OP/WO images (ALL 
T1WIs) and those derived from all imaging methods (ALL IMs) were evaluated. The selected texture features 
are listed in Tables 9 and 10. The best classification performance was observed in ALL T1WIs using the SVM 
with rbf kernel classifier: an accuracy of 82.8% and a macro-average AUC of 0.887. The results of all classification 
attempts are summarized in Tables 9 and 10. Figures 1b and 2b present the ROC curve and the confusion matrix 
of the representative model (ALL T1WIs using the SVM with rbf kernel classifier). The confusion matrices and 
ROC curves of all classification attempts are summarized online in Supplementary Figs.  S6,S7 and S13,S14, 
respectively.

Discussion
In the present study, we sought to investigate whether multiclass classification models based on TA of kidney 
MRI could predict the three eGFR groups of renal dysfunction. The results of our study suggest that TA of kidney 
MRI would be a modest predictor of these eGFR groups, but might not be a valuable differentiator in a clinical 
setting. TA quantified from T1-weighted IP/OP/WO images provided better classification performance com-
pared with that of those based on ADC maps and T2* maps. Furthermore, we examined the combination models 
and showed that texture models derived from ALL T1WIs using the SVM with rbf kernel classifier afforded the 
moderate diagnostic performance as well. To our knowledge, this is the first study to evaluate the possibility of 
using multiclass models in the classification of eGFR groups. Several attempts have been made to differentiate 
between eGFR groups using TA of kidney MRI. Previous reports have shown the possibility of using TA based 
on DWI, BOLD, SWI, and T1 and T2  mapping18,19. In all these attempts, only binary classifiers were examined 
to differentiate between each eGFR group separately. However, in clinical practice, it is not uncommon for the 
classification of diseases to extend to three or more groups; therefore, it is reasonable to build multiclass problems 
for clinical use. According to the recent  guidelines2, renal impairment and prognosis have been stratified into 
six disease groups based on the eGFR: G1 to G5, with G3 split into 3a and 3b. The most important cutoff points 
are eGFR 60 and 30 mL/min/1.73  m2, and previous studies on TA of kidney MRI were designed to classify the 

Table 1.  The demographic and clinical characteristics of the study population. Unless otherwise indicated, 
data are represented as the number (%) of patients. se-RD severe renal dysfunction (estimated glomerular 
filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), mo-RD moderate renal dysfunction 
(30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control group (eGFR ≥ 60 mL/min/1.73  m2, i.e., 
CKD stage G1–2), IgA immunoglobulin A, SD standard deviation.

Variable se-RD mo-RD CG P

N 36 85 45

Age, years, mean ± SD 60.9 ± 16.4 62.3 ± 13.3 43.7 ± 18.1 < 0.001

Sex, men, n (%) 26 (72) 57 (67) 19 (42) 0.006

Hypertension, n (%) 29 (81) 41 (48) 10 (22) < 0.001

Diabetes, n (%) 12 (33) 11 (13) 2 (4) < 0.001

IgA nephropathy, n (%) 5 (14) 10 (12) 7 (16) 0.54

Nephrotic syndrome, n (%) 1 (2.8) 2 (2) 2 (4.4) 0.51

eGFR, mL/min/1.73  m2, mean ± SD 19.8 ± 7.7 46.3 ± 8.1 78.1 ± 16.7 < 0.001
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eGFR according to these cutoffs, except for one study that considered eGFR 90 mL/min/1.73  m2 as an additional 
cutoff  point19,22. Therefore, our research also aimed to classify three groups, with cutoffs at eGFR 60 and 30 mL/
min/1.73  m2. Ideally, the classification system of all six eGFR groups would be beneficial, although a large devia-
tion in the distribution of each group prohibited these attempts.

Our study used Dixon-based T1-weighted images, which have not been fully discussed in the assessment of 
renal dysfunction. Dixon-based imaging, also called chemical shift imaging, uses the IP/OP cycling of fat and 
water molecules and allows the acquired images to be combined mathematically into four sequences: IP/OP/
WO/fat-only (FO)  images23. This technique has been used as a homogeneous fat suppression or fat quantification 
method in various medical imaging fields. The Dixon method has the potential for measuring the renal lipid 
accumulation in type II diabetes  mellitus11. Moreover, the Dixon technique is useful in detecting iron deposition 

Table 2.  Representative texture features and their respective intraclass correlation coefficient. ADC apparent 
diffusion coefficient, GLCM gray-level co-occurrence matrix, GLDM gray-level dependence matrix, GLRLM 
gray-level run length matrix, GLSZM gray-level size zone matrix, IP in-phase, OP opposed-phase, TF texture 
feature, WO water-only.

Code Feature class Feature name code

Imaging method

T1WI
IP

T1WI
OP

T1WI
WO ADC map T2* map

TF1 First-order 10th percentile 0.998 0.983 0.965 0.982 0.757

TF2 First-order 90th percentile 0.993 0.989 0.997 0.979 0.992

TF3 First-order Energy 0.949 0.942 0.870 0.882 0.759

TF4 First-order Entropy 0.905 0.912 0.912 0.887 0.919

TF5 First-order Interquartile range 0.984 0.973 0.987 0.957 0.966

TF6 First-order Mean absolute deviation 0.940 0.946 0.952 0.893 0.950

TF7 First-order Mean 0.998 0.992 0.993 0.985 0.973

TF8 First-order Median 0.999 0.995 0.996 0.987 0.979

TF9 First-order Robust mean absolute deviation 0.982 0.975 0.986 0.951 0.971

TF10 First-order Root mean squared 0.997 0.993 0.995 0.985 0.944

TF11 First-order Total energy 0.987 0.943 0.872 0.948 0.800

TF12 First-order Uniformity 0.951 0.949 0.961 0.930 0.849

TF13 GLCM Difference average 0.857 0.883 0.805 0.872 0.917

TF14 GLCM Difference entropy 0.849 0.874 0.808 0.846 0.948

TF15 GLCM Id 0.948 0.953 0.936 0.937 0.956

TF16 GLCM Idm 0.953 0.959 0.949 0.941 0.956

TF17 GLCM Inverse variance 0.927 0.957 0.945 0.913 0.944

TF18 GLCM Joint energy 0.940 0.946 0.955 0.937 0.856

TF19 GLCM Joint entropy 0.887 0.910 0.890 0.905 0.935

TF20 GLCM Maximum probability 0.955 0.957 0.972 0.949 0.855

TF21 GLCM Sum entropy 0.938 0.931 0.931 0.903 0.908

TF22 GLDM Dependence non uniformity 0.906 0.905 0.803 0.850 0.841

TF23 GLDM Dependence non uniformity normalized 0.984 0.974 0.968 0.981 0.981

TF24 GLDM Dependence variance 0.995 0.976 0.992 0.981 0.925

TF25 GLDM Gray level non uniformity 0.974 0.965 0.987 0.985 0.846

TF26 GLDM Large dependence emphasis 0.986 0.972 0.978 0.968 0.930

TF27 GLDM Small dependence emphasis 0.956 0.964 0.951 0.940 0.957

TF28 GLRLM Gray level non uniformity 0.963 0.967 0.983 0.983 0.772

TF29 GLRLM Gray level non uniformity normalized 0.940 0.945 0.955 0.909 0.854

TF30 GLRLM Long run emphasis 0.986 0.970 0.976 0.963 0.893

TF31 GLRLM Run entropy 0.926 0.886 0.896 0.771 0.764

TF32 GLRLM Run length non uniformity 0.880 0.916 0.833 0.801 0.786

TF33 GLRLM Run length non uniformity normalized 0.970 0.969 0.964 0.951 0.948

TF34 GLRLM Run percentage 0.980 0.971 0.971 0.963 0.941

TF35 GLRLM Run variance 0.991 0.970 0.982 0.970 0.875

TF36 GLRLM Short run emphasis 0.971 0.969 0.965 0.947 0.936

TF37 GLSZM Gray level non uniformity normalized 0.883 0.925 0.929 0.799 0.845

TF38 GLSZM Size zone non uniformity normalized 0.912 0.951 0.917 0.856 0.890

TF39 GLSZM Small area emphasis 0.910 0.949 0.916 0.838 0.842

TF40 GLSZM Zone percentage 0.970 0.968 0.964 0.953 0.952



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14776  | https://doi.org/10.1038/s41598-022-19009-7

www.nature.com/scientificreports/

related to T2* effects and susceptibility artifacts owing to the double-echo  sequence24. Additionally, Dixon-based 
images provide better signal-to-noise efficiency than other conventional fat-suppressed  methods25. In our results, 
TA based on T1-weighted IP/OP/WO images demonstrated moderate classification scores, and the favorable 
classification scores were obtained by T1-weighted WO images. Although we could not analyze the FO image 
and fat fraction ratio map, as these were not available in all patients, a T1-weighted WO image can be regarded 
as a total fat-suppressed image and contains T1 information on components other than fat. In a recent study on 
T1 mapping, increased cortical T1 values and decreased T1 cortico-medullary differentiation correlated with the 
severity of renal  impairment20,21. The changes in the T1 values could be attributed to renal physiological states, 
such as inflammation, hypoxia, and  fibrosis20,26–29. In our opinion, T1-weighted WO images may represent these 
changes and could be useful in the non-invasive assessment of CKD etiologies.

In our study, TA based on the ADC and T2* maps showed relatively low diagnostic performance compared 
with that of those based on Dixon-based T1WI. In the ADC map, the texture features in the renal cortex had a 
good correlation with fibrosis and chronic lesions, and the texture features in the renal medulla were more related 
to renal function than those quantified from the renal  cortex19. Additionally, the difference between the cortical 
and medullary ADC, the so-called delta-ADC, has been correlated with fibrosis in  CKD5,30. However, since BOLD 
provides a marker of blood oxygenation levels, relative hypoxia associated with renal injury may be reflected by 
the T2* map. T2* measurement demonstrated a good correlation with the eGFR in patients with CKD, and TA 

Table 3.  Performance of each classification attempt in discriminating between the three groups in 
T1-weighted in-phase imaging (T1WI IP). TF texture feature, DT decision tree, LDA linear discriminant 
analysis, SVM support vector machine, RF random forest classifier, AUC  area under the curve, se-RD severe 
renal dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), 
mo-RD moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control 
group (eGFR ≥ 60 mL/min/1.73  m2, i.e., CKD stage G1–2). Feature name codes are as follows: TF1 = 10th 
percentile, TF3 = energy, TF4 = entropy, TF5 = interquartile range, TF8 = median, TF9 = robust mean absolute 
deviation, TF11 = total energy, TF13 = difference average, TF18 = joint energy, TF20 = maximum probability, 
TF22 = dependence non uniformity, TF24 = dependence variance, TF25 = gray level non uniformity (gray-level 
dependence matrix), TF28 = gray level non uniformity (gray-level run length matrix), TF31 = run entropy, 
TF32 = run length non uniformity. The data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF1, TF3, TF4, TF8, and TF20)

Macro-average 71.1 ± 1.0 56.7 ± 1.8 78.4 ± 1.0 0.764 ± 0.004

se-RD 70.0 ± 1.1 54.8 ± 1.5 77.6 ± 1.1 0.763 ± 0.004

mo-RD 64.4 ± 1.0 49.3 ± 2.3 72.0 ± 0.9 0.676 ± 0.007

CG 79.0 ± 1.1 66.0 ± 1.5 85.5 ± 0.9 0.840 ± 0.005

SVM with linear kernel (selected TFs = TF3, TF11, TF13, TF20, and TF24)

Macro-average 75.0 ± 1.2 62.5 ± 1.8 81.2 ± 1.1 0.804 ± 0.005

se-RD 78.2 ± 1.2 65.0 ± 1.8 84.7 ± 1.0 0.836 ± 0.008

mo-RD 67.2 ± 1.0 55.0 ± 2.1 73.3 ± 1.2 0.702 ± 0.005

CG 79.7 ± 1.2 67.5 ± 1.4 85.7 ± 1.1 0.861 ± 0.007

SVM with rbf kernel (selected TFs = TF3, TF11, TF20, TF28, and TF32)

Macro-average 78.8 ± 1.4 68.2 ± 2.1 84.1 ± 1.3 0.826 ± 0.006

se-RD 79.5 ± 1.3 68.2 ± 2.2 85.2 ± 1.6 0.865 ± 0.008

mo-RD 72.1 ± 1.3 64.3 ± 2.6 76.0 ± 1.4 0.729 ± 0.009

CG 84.7 ± 1.6 72.0 ± 1.6 91.0 ± 0.8 0.871 ± 0.005

SVM with sigmoid kernel (selected TFs = TF1, TF5, TF22, TF25, and TF31)

Macro-average 74.2 ± 1.2 62.1 ± 1.9 80.7 ± 1.1 0.766 ± 0.005

se-RD 75.3 ± 1.2 68.7 ± 1.4 78.7 ± 1.3 0.780 ± 0.006

mo-RD 68.6 ± 1.1 45.3 ± 2.2 80.2 ± 1.2 0.659 ± 0.005

CG 78.9 ± 1.2 70.2 ± 2.0 83.2 ± 0.7 0.844 ± 0.005

DT (selected TFs = TF3, TF11, TF18, TF24, and TF28)

Macro-average 78.2 ± 2.3 67.3 ± 4.0 83.6 ± 2.2 0.805 ± 0.012

se-RD 80.0 ± 2.5 72.6 ± 3.6 83.7 ± 2.0 0.835 ± 0.025

mo-RD 71.6 ± 2.1 57.4 ± 4.5 78.6 ± 2.8 0.716 ± 0.022

CG 83.0 ± 2.5 71.8 ± 3.9 88.6 ± 1.9 0.863 ± 0.019

RF (selected TFs = TF3, TF5, TF9, TF25, and TF28)

Macro-average 81.2 ± 1.6 71.7 ± 2.6 85.9 ± 1.5 0.871 ± 0.005

se-RD 82.8 ± 1.6 74.2 ± 2.9 87.2 ± 1.2 0.901 ± 0.005

mo-RD 76.9 ± 1.5 62.5 ± 2.8 84.1 ± 1.8 0.802 ± 0.009

CG 83.7 ± 1.7 78.4 ± 2.1 86.3 ± 1.4 0.898 ± 0.005
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of BOLD was linearly correlated with the eGFR in several  studies18,31–33. In our results, TA of the ADC and T2* 
maps showed little correlation with the eGFR, and unsatisfactory results were obtained in multiclass problems. 
A possible explanation for the lower performances in the ADC and T2* maps is the difference in the quantifi-
cation methods of texture features. We quantified the texture features from the renal parenchyma as a whole, 
whereas most other studies quantified the texture features from the renal cortex or  medulla5–10,19. As described 
above, it would be favorable to consider the renal cortex and medulla separately for the assessment of the ADC 
and T2* maps. Moreover, our classification system was a multiclass model, and TA using non-linear classifiers 
based on clear images, such as Dixon-based T1WI, may be suitable for such systems. Regarding inter-reader 
reproducibility, the ICC values for the ADC and T2* maps were relatively low. These unsatisfactory results may 
be attributed to their relatively low resolution. Lower discriminative performance and reproducibility in TA of 
ADC maps have been reported due to the low resolution of the  images34,35.

In our research, the texture features were extracted from the whole area of both kidneys, although in most 
studies, these were measured in the renal cortex and medulla separately, and in the ipsilateral kidney, mostly 
on the right side due to artifacts caused by factors such as intestinal gas, poor breath holds, and susceptibility 
 effects18. Considering the different functionalities of the renal cortex and medulla, it might be more appropriate 
to assess them separately. However, in clinical practice, we contemplated that evaluating them as a whole would 
be simpler and easier to understand. For the ADC and T2* maps, in particular, the delineation between the renal 

Table 4.  Performance of each classification attempt in discriminating between the three groups in 
T1-weighted opposed-phase imaging (T1WI OP). TF texture feature, DT decision tree, LDA linear 
discriminant analysis, SVM support vector machine, RF random forest classifier, AUC  area under the curve, 
se-RD severe renal dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., 
CKD stage G4–5), mo-RD moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage 
G3a/3b), CG control group (eGFR ≥ 60 mL/min/1.73  m2, i.e., CKD stage G1–2). Feature name codes are 
as follows: TF2 = 90th percentile, TF3 = energy, TF5 = interquartile range, TF7 = mean, TF10 = root mean 
squared, TF11 = total energy, TF13 = difference average, TF15 = id, TF16 = idm, TF17 = inverse variance, 
TF22 = dependence non uniformity, TF24 = dependence variance, TF25 = gray level non uniformity (gray-
level dependence matrix), TF26 = large dependence emphasis, TF31 = run entropy, TF34 = run percentage, 
TF38 = size zone non uniformity normalized. The data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF2, TF3, TF13, TF22, and TF24)

Macro-average 76.4 ± 0.7 64.5 ± 1.2 82.3 ± 0.8 0.813 ± 0.003

se-RD 75.9 ± 0.8 63.7 ± 0.9 82.0 ± 0.7 0.816 ± 0.005

mo-RD 70.1 ± 0.7 49.6 ± 1.8 80.4 ± 0.7 0.732 ± 0.006

CG 83.1 ± 0.7 80.2 ± 1.0 84.5 ± 0.9 0.879 ± 0.004

SVM with linear kernel (selected TFs = TF3, TF5, TF15, TF22, and TF25)

Macro-average 76.2 ± 1.1 64.3 ± 2.1 82.1 ± 1.1 0.782 ± 0.005

se-RD 74.3 ± 1.1 63.2 ± 1.9 79.8 ± 1.3 0.777 ± 0.007

mo-RD 70.9 ± 0.9 49.0 ± 2.6 81.9 ± 1.3 0.691 ± 0.005

CG 83.4 ± 1.2 80.6 ± 1.7 84.7 ± 0.8 0.864 ± 0.008

SVM with rbf kernel (selected TFs = TF2, TF3, TF11, TF16, and TF17)

Macro-average 77.2 ± 1.0 65.8 ± 1.7 82.9 ± 1.0 0.766 ± 0.005

se-RD 77.6 ± 1.0 64.6 ± 2.2 84.1 ± 0.9 0.775 ± 0.008

mo-RD 71.4 ± 0.9 60.8 ± 1.8 76.7 ± 1.4 0.670 ± 0.009

CG 82.6 ± 1.1 72.0 ± 1.1 87.9 ± 0,6 0.840 ± 0.007

SVM with sigmoid kernel (selected TFs = TF2, TF3, TF24, TF25, and TF31)

Macro-average 76.2 ± 1.2 67.7 ± 2.0 83.9 ± 1.1 0.812 ± 0.006

se-RD 74.3 ± 1.1 71.2 ± 1.6 82.6 ± 1.1 0.813 ± 0.008

mo-RD 70.9 ± 0.9 54.6 ± 2.5 80.7 ± 1.4 0.720 ± 0.006

CG 83.4 ± 1.2 77.4 ± 1.8 88.3 ± 0.8 0.890 ± 0.008

DT (selected TFs = TF3, TF13, TF24, TF26, and TF34)

Macro-average 76.6 ± 2.0 64.8 ± 4.1 82.4 ± 2.5 0.792 ± 0.012

se-RD 78.3 ± 2.1 59.9 ± 3.3 87.4 ± 2.7 0.804 ± 0.022

mo-RD 69.8 ± 1.8 63.4 ± 5.1 73.0 ± 2.9 0.723 ± 0.020

CG 81.6 ± 2.1 71.2 ± 3.8 86.8 ± 2.0 0.848 ± 0.018

RF (selected TFs = TF3, TF7, TF10, TF17, and TF38)

Macro-average 81.0 ± 1.5 71.6 ± 2.2 85.8 ± 1.3 0.869 ± 0.005

se-RD 83.3 ± 1.5 74.7 ± 2.4 87.7 ± 1.4 0.894 ± 0.006

mo-RD 75.4 ± 1.3 67.5 ± 2.6 79.4 ± 1.4 0.805 ± 0.009

CG 84.4 ± 1.7 72.5 ± 1.7 90.3 ± 1.0 0.895 ± 0.004
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cortex and medulla is difficult because of their relatively low resolution, and poor reproducibility is expected 
when considering the renal cortex and medulla separately. Moreover, in patients with advanced renal dysfunction, 
it is often difficult to distinguish between them because of cortical  thinning36,37. Another point where our research 
differs from others is whether one or both sides of the kidney are considered. Our study evaluated both kidneys 
based on the idea that they might contain more integrated information concerning renal function. However, 
considering the time-consuming process of region of interest (ROI) delineation, it would be favorable to seg-
ment only one side of the kidney. If TA derived from one side of the kidney is sufficient, it would be beneficial to 
consider only one side of the kidney because of the severe artifacts on the other side. Moreover, in our study, we 
performed manual segmentation instead of using automatic methods. A method that automatically divides the 
renal parenchyma into 12 layers using a computer (twelve-layer concentric objects method) has been validated 
so  far32,38,39. Its use may improve the discrimination capacity and reproducibility of our models, especially for 
the ADC and T2* maps, which need to be examined in the future.

In recent years, TA has become a promising technique for quantitative imaging analysis, providing biomark-
ers for pathological changes or the response to  treatment12–17. In our analysis, TA of kidney MRI was not a good 
discriminator of eGFR groups, especially in the clinical setting. Texture features such as energy and total energy 
were frequently included in the selected features in most classification attempts, although their correlation with 
the eGFR was not good. It might be interesting to know the existence of universal texture parameters, as such 

Table 5.  Performance of each classification attempt in discriminating between the three groups in 
T1-weighted water-only imaging (T1WI WO). TF texture feature, DT decision tree, LDA linear discriminant 
analysis, SVM support vector machine, RF random forest classifier, AUC  area under the curve, se-RD severe 
renal dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), 
mo-RD moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control 
group (eGFR ≥ 60 mL/min/1.73  m2, i.e., CKD stage G1–2). Feature name codes are as follows: TF1 = 10th 
percentile, TF3 = energy, TF5 = interquartile range, TF6 = mean absolute deviation, TF11 = total energy, 
TF12 = uniformity, TF13 = difference average, TF14 = difference entropy, TF16 = idm, TF18 = joint energy, 
TF19 = joint entropy, TF22 = dependence non uniformity, TF24 = dependence variance, TF29 = gray level non 
uniformity normalized, TF30 = long run emphasis, TF31 = run entropy, TF32 = run length non uniformity, 
TF39 = small area emphasis. The data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF3, TF6, TF12, TF19, and TF24)

Macro-average 76.8 ± 0.8 65.3 ± 1.3 82.6 ± 0.8 0.824 ± 0.003

se-RD 81.4 ± 0.9 73.4 ± 1.4 85.4 ± 0.7 0.862 ± 0.004

mo-RD 71.1 ± 0.8 55.3 ± 1.4 79.1 ± 0.9 0.752 ± 0.006

CG 78.0 ± 0.9 67.1 ± 1.2 83.4 ± 0.7 0.844 ± 0.004

SVM with linear kernel (selected TFs = TF5, TF11, TF18, TF24, and TF32)

Macro-average 76.7 ± 1.2 65.0 ± 2.1 82.5 ± 1.2 0.834 ± 0.005

se-RD 81.9 ± 1.2 76.5 ± 1.7 84.5 ± 0.9 0.887 ± 0.005

mo-RD 69.0 ± 1.1 51.9 ± 2.4 77.5 ± 1.4 0.741 ± 0.006

CG 79.1 ± 1.2 66.5 ± 2.2 85.4 ± 1.1 0.860 ± 0.006

SVM with rbf kernel (selected TFs = TF3, TF13, TF18, TF32, and TF39)

Macro-average 78.9 ± 1.6 68.4 ± 2.8 84.2 ± 1.6 0.832 ± 0.005

se-RD 83.3 ± 1.7 71.7 ± 2.8 89.1 ± 1.6 0.881 ± 0.007

mo-RD 70.0 ± 1.4 57.4 ± 3.1 76.4 ± 1.8 0.712 ± 0.005

CG 83.3 ± 1.7 76.0 ± 2.6 87.0 ± 1.3 0.890 ± 0.005

SVM with sigmoid kernel (selected TFs = TF1, TF13, TF22, TF31, and TF32)

Macro-average 76.5 ± 1.6 64.7 ± 2.6 82.3 ± 1.5 0.812 ± 0.006

se-RD 79.6 ± 1.7 70.1 ± 3.3 84.3 ± 1.1 0.844 ± 0.007

mo-RD 70.1 ± 1.5 54.0 ± 2.6 78.1 ± 1.9 0.724 ± 0.006

CG 79.7 ± 1.7 70.0 ± 1.8 84.6 ± 1.4 0.853 ± 0.007

DT (selected TFs = TF3, TF12, TF24, TF29, and TF30)

Macro-average 81.3 ± 1.7 71.9 ± 3.0 86.0 ± 1.3 0.818 ± 0.012

se-RD 83.9 ± 1.7 67.3 ± 3.0 92.1 ± 2.0 0.853 ± 0.017

mo-RD 75.1 ± 1.5 74.0 ± 3.4 75.6 ± 1.8 0.743 ± 0.021

CG 85.0 ± 1.9 74.5 ± 2.6 90.2 ± 1.2 0.855 ± 0.020

RF (selected TFs = TF11, TF14, TF16, TF29, and TF32)

Macro-average 82.0 ± 1.6 73.0 ± 2.6 86.5 ± 1.4 0.884 ± 0.005

se-RD 86.7 ± 1.7 78.4 ± 2.3 90.9 ± 1.3 0.924 ± 0.006

mo-RD 75.6 ± 1.4 63.0 ± 3.3 81.9 ± 1.6 0.809 ± 0.009

CG 83.6 ± 1.7 77.5 ± 2.5 86.7 ± 1.4 0.907 ± 0.005
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features may represent the underlying pathophysiology of kidney disease. The energy and total energy show the 
magnitude of pixel values and accentuate the high signal intensities in the  images40. In our opinion, cortico-med-
ullary differentiation may have played a role in the renal dysfunction; as the renal function declined, decreased 
cortico-medullary differentiation was noted, as described  above20,21. Both parameters showed decreased values 
in our results, implying decreased signal intensities in the whole area of the kidneys, and this may be affected 
by a decrease in the cortico-medullary difference. However, in most studies, entropy correlated well with the 
eGFR and showed the capacity to differentiate between the eGFR groups of patients with  CKD18,19,41. Other 
reports state that skewness, kurtosis, and correlation may be useful in discriminating between these  groups18,19. 
None of the studies commented on the energy and total energy. One reason for this discrepancy could be the 
difference in the classification system: a multiclass classification model was used in our study. Although we did 
not examine the binary classification for each border, it is suspected that the energy and total energy could be 
weak indicators for the overall classification of the eGFR groups. Another reason for the discrepancy is that we 
considered Dixon-based T1WI, whereas other studies mainly discussed DWI, BOLD, and SWI: the classifiers 
used in this study were mainly non-linear ML methods. In addition, TA was conducted on the whole region of 
the kidneys, whereas in other studies the renal cortex and medulla were analyzed separately. In this study, we also 
demonstrated the possible candidates of classifiers, such as SVM and RF. SVM has high generalizability since it 

Table 6.  Performance of each classification attempt in discriminating between the three groups in ADC map 
imaging. TF texture feature, DT decision tree, LDA linear discriminant analysis, SVM support vector machine, 
RF random forest classifier, AUC  area under the curve, se-RD severe renal dysfunction (estimated glomerular 
filtration rate; eGFR < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), mo-RD moderate renal dysfunction 
(30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control group (eGFR ≥ 60 mL/min/1.73  m2, 
i.e., CKD stage G1–2). Feature name codes are as follows: TF3 = energy, TF4 = entropy, TF6 = mean absolute 
deviation, TF11 = total energy, TF13 = difference average, TF14 = difference entropy, TF15 = id, TF16 = idm, 
TF25 = gray level non uniformity (gray-level dependence matrix), TF27 = small dependence emphasis, 
TF28 = gray level non uniformity (gray-level run length matrix), TF29 = gray level non uniformity normalized, 
TF30 = long run emphasis, TF33 = run length non uniformity normalized, TF36 = short run emphasis, 
TF37 = gray level non uniformity normalized, TF38 = size zone non uniformity normalized, TF39 = small area 
emphasis. The data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF3, TF13, TF15, TF27, and TF36)

Macro-average 70.6 ± 1.0 55.9 ± 1.7 77.9 ± 1.1 0.748 ± 0.004

se-RD 72.7 ± 1.0 63.7 ± 1.6 77.2 ± 1.1 0.785 ± 0.006

mo-RD 62.6 ± 0.9 34.9 ± 2.3 76.5 ± 1.2 0.619 ± 0.008

CG 76.4 ± 1.1 69.0 ± 1.3 80.1 ± 0.9 0.828 ± 0.004

SVM with linear kernel (selected TFs = TF3, TF6, TF16, TF29, and TF37)

Macro-average 69.9 ± 1.3 54.8 ± 2.1 77.4 ± 1.3 0.736 ± 0.006

se-RD 69.0 ± 1.2 60.7 ± 2.4 73.2 ± 1.5 0.781 ± 0.007

mo-RD 61.2 ± 1.1 32.6 ± 2.4 75.5 ± 1.6 0.573 ± 0.006

CG 79.3 ± 1.4 71.1 ± 1.6 83.5 ± 0.7 0.842 ± 0.008

SVM with rbf kernel (selected TFs = TF3, TF15, TF30, TF38, and TF39)

Macro-average 72.1 ± 1.6 58.1 ± 2.9 79.3 ± 1.9 0.757 ± 0.007

se-RD 74.6 ± 1.6 64.0 ± 2.9 80.0 ± 1.7 0.803 ± 0.009

mo-RD 65.0 ± 1.5 45.0 ± 3.4 75.0 ± 2.2 0.633 ± 0.008

CG 76.6 ± 1.7 65.3 ± 2.3 82.2 ± 1.7 0.823 ± 0.010

SVM with sigmoid kernel (selected TFs = TF3, TF11, TF25, TF28, and TF39)

Macro-average 69.2 ± 1.6 53.8 ± 3.5 76.9 ± 2.3 0.696 ± 0.006

se-RD 67.8 ± 1.5 71.8 ± 4.8 65.8 ± 2.1 0.739 ± 0.006

mo-RD 63.5 ± 1.4 14.4 ± 3.8 88.0 ± 3.2 0.529 ± 0.006

CG 76.4 ± 1.8 75.3 ± 1.9 77.0 ± 1.5 0.808 ± 0.010

DT (selected TFs = TF13, TF14, TF25, TF33, and TF36)

Macro-average 70.0 ± 2.5 55.0 ± 4.5 77.5 ± 2.7 0.713 ± 0.014

se-RD 74.2 ± 2.7 72.7 ± 3.9 75.0 ± 2.6 0.791 ± 0.020

mo-RD 62.2 ± 2.3 33.8 ± 4.6 76.4 ± 3.1 0.574 ± 0.026

CG 73.5 ± 2.6 58.4 ± 5.0 81.1 ± 2.3 0.773 ± 0.021

RF (selected TFs = TF4, TF11, TF15, TF16, and TF25)

Macro-average 75.0 ± 1.5 62.4 ± 2.7 81.2 ± 1.5 0.808 ± 0.005

se-RD 75.4 ± 1.5 73.0 ± 2.7 76.6 ± 1.6 0.843 ± 0.008

mo-RD 68.8 ± 1.3 39.3 ± 3.4 83.5 ± 1.6 0.699 ± 0.010

CG 80.7 ± 1.6 75.0 ± 2.0 83.5 ± 1.3 0.870 ± 0.006



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14776  | https://doi.org/10.1038/s41598-022-19009-7

www.nature.com/scientificreports/

can be used to select linear or non-linear kernels, and the ’rbf ’ (non-linear) kernel could be the most suited to 
our models. Generally, non-linear classifiers would show good performance in multiclass  classification42, and 
our results showed this tendency as well.

Our study had many limitations. First, we retrospectively enrolled 166 patients from a single institution; this 
was a small sample with some imbalance between each group. A greater number of patients with more balanced 
grouping is needed to validate the results in the future. Second, since we excluded patients with renal lesions, 
some important renal diseases, such as polycystic kidney disease, were ignored in this analysis, which would have 
caused a selection bias. Third, the data were not divided into training and validation sets because of the limited 
number of patients; hence, further investigation using an external validation cohort should be performed in the 
future. Fourth, since we focused on classifications predicting the eGFR group, other important laboratory data or 
underlying pathologies were missed in this study. As stated above, renal lipid accumulation in diabetes mellitus 
can be assessed using the Dixon  method11, which is worth investigating in the future. Fifth, we extracted texture 
features from one layer of the image as two-dimensional data; the use of only one layer may result in important 
texture features being missed. This problem can be solved by extracting three-dimensional features, although 
this approach may be time-consuming. Sixth, in this study, the individual texture feature sets were selected for 
each classifier and imaging method. Future studies should strictly compare the performances of classifiers or 
imaging methods by selecting one common feature set. Lastly, we should have examined other T1-weighted 

Table 7.  Performance of each classification attempt in discriminating between the three groups in T2* map 
imaging. TF texture feature, DT decision tree, LDA linear discriminant analysis, SVM support vector machine, 
RF random forest classifier, AUC  area under the curve, se-RD severe renal dysfunction (estimated glomerular 
filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), mo-RD moderate renal dysfunction 
(30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control group (eGFR ≥ 60 mL/min/1.73  m2, i.e., 
CKD stage G1–2). Feature name codes are as follows: TF2 = 90th percentile, TF3 = energy, TF5 = interquartile 
range, TF6 = mean absolute deviation, TF7 = mean, TF10 = root mean squared, TF11 = total energy, 
TF13 = difference average, TF22 = dependence non uniformity, TF24 = dependence variance, TF25 = gray level 
non uniformity (gray-level dependence matrix), TF26 = large dependence emphasis, TF32 = run length non 
uniformity, TF35 = run variance, TF38 = size zone non uniformity normalized, TF40 = zone percentage. The 
data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF2, TF11, TF22, TF24, and TF38)

Macro-average 73.2 ± 0.7 59.9 ± 1.3 80.0 ± 1.1 0.737 ± 0.004

se-RD 71.4 ± 0.7 61.0 ± 1.6 76.7 ± 1.2 0.740 ± 0.006

mo-RD 71.0 ± 0.7 50.7 ± 1.5 81.2 ± 1.2 0.667 ± 0.007

CG 77.3 ± 0.8 67.9 ± 0.9 82.0 ± 0.8 0.792 ± 0.004

SVM with linear kernel (selected TFs = TF2, TF3, TF10, TF11, and TF35)

Macro-average 67.1 ± 1.3 50.7 ± 2.4 75.4 ± 1.7 0.694 ± 0.006

se-RD 62.5 ± 1.2 63.5 ± 3.0 62.0 ± 2.0 0.689 ± 0.006

mo-RD 63.0 ± 1.2 23.4 ± 3.3 82.9 ± 2.0 0.578 ± 0.007

CG 75.9 ± 1.5 65.1 ± 1.0 81.2 ± 1.0 0.802 ± 0.010

SVM with rbf kernel (selected TFs = TF3, TF6, TF11, TF13, and TF22)

Macro-average 71.9 ± 1.7 57.8 ± 3.2 78.9 ± 2.1 0.739 ± 0.007

se-RD 72.5 ± 1.6 56.0 ± 3.6 80.7 ± 2.4 0.751 ± 0.010

mo-RD 63.9 ± 1.6 54.8 ± 4.2 68.4 ± 2.0 0.642 ± 0.012

CG 79.2 ± 1.9 62.5 ± 1.7 87.6 ± 1.8 0.811 ± 0.007

SVM with sigmoid kernel (selected TFs = TF3, TF5, TF7, TF11, and TF26)

Macro-average 69.8 ± 1.7 54.7 ± 3.0 77.4 ± 1.9 0.729 ± 0.007

se-RD 68.1 ± 1.7 57.5 ± 3.1 73.4 ± 2.4 0.747 ± 0.008

mo-RD 62.4 ± 1.5 39.3 ± 3.9 74.0 ± 1.9 0.590 ± 0.006

CG 78.9 ± 1.9 67.3 ± 2.0 84.7 ± 1.4 0.837 ± 0.009

DT (selected TFs = TF3, TF13, TF25, TF32, and TF40)

Macro-average 69.8 ± 2.4 54.7 ± 4.9 77.3 ± 3.2 0.721 ± 0.014

se-RD 69.9 ± 2.4 53.0 ± 5.0 78.4 ± 3.5 0.743 ± 0.023

mo-RD 61.8 ± 2.2 46.0 ± 6.2 69.8 ± 3.4 0.620 ± 0.024

CG 77.6 ± 2.7 65.0 ± 3.4 83.8 ± 2.8 0.798 ± 0.018

RF (selected TFs = TF6, TF10, TF11, TF13, and TF22)

Macro-average 74.9 ± 2.1 62.3 ± 3.5 81.1 ± 1.9 0.821 ± 0.006

se-RD 76.0 ± 2.0 63.6 ± 3.6 82.2 ± 1.9 0.832 ± 0.009

mo-RD 67.5 ± 1.8 51.2 ± 4.1 75.6 ± 2.3 0.725 ± 0.014

CG 81.1 ± 2.3 72.1 ± 2.8 85.6 ± 1.4 0.895 ± 0.006
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Dixon-based images, such as FO image and fat fraction ratio map, as well as other diffusion-based images such 
as intra-voxel incoherent motion.

In conclusion, multiclass classification models based on TA of kidney MRI showed modest classification 
performance for predicting the eGFR in patients with CKD. TA based on Dixon-based T1WI, particularly WO 
images, showed moderate performance. Energy and total energy were weakly correlated with the eGFR. Our 
results were limited in terms of the clinical value of TA of kidney MRI, and thus further studies should verify 
its reproducibility and feasibility.

Table 8.  The cross-correlation analyses between the eGFR and the 40 texture features derived from each 
imaging method. ADC apparent diffusion coefficient, eGFR estimated glomerular filtration rate, GLCM 
gray-level co-occurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, 
GLSZM gray-level size zone matrix, IP in-phase, OP opposed-phase, PCC Pearson’s Correlation Coefficient, TF 
texture feature, WO water-only.

Code Feature name code

Imaging method

T1 IP T1 OP T1 WO ADC map T2* map

PCC p-value PCC p-value PCC p-value PCC p-value PCC p-value

TF1 10th percentile 0.325 < 0.001 0.255 < 0.001 − 0.018 0.817 0.135 0.083 − 0.003 0.970

TF2 90th percentile 0.355 < 0.001 0.205 0.008 0.085 0.272 0.013 0.873 − 0.007 0.926

TF3 Energy 0.504 < 0.001 0.474 < 0.001 0.560 < 0.001 0.429 < 0.001 0.308 < 0.001

TF4 Entropy − 0.004 0.955 − 0.078 0.314 0.172 0.027 − 0.207 0.008 0.009 0.909

TF5 Interquartile range 0.013 0.868 − 0.045 0.563 0.086 0.268 − 0.215 0.005 0.015 0.841

TF6 Mean absolute deviation − 0.011 0.888 − 0.083 0.283 0.103 0.186 − 0.200 0.010 − 0.056 0.469

TF7 Mean 0.349 < 0.001 0.236 0.002 0.042 0.584 0.076 0.326 − 0.006 0.937

TF8 Median 0.346 < 0.001 0.208 0.007 0.026 0.738 0.086 0.268 0.029 0.706

TF9 Robust mean absolute deviation 0.005 0.948 − 0.050 0.520 0.085 0.271 − 0.207 0.007 0.008 0.915

TF10 Root mean squared 0.350 < 0.001 0.232 0.003 0.045 0.558 0.074 0.343 − 0.029 0.704

TF11 Total energy 0.503 < 0.001 0.471 < 0.001 0.558 < 0.001 0.072 0.353 0.413 < 0.001

TF12 Uniformity − 0.042 0.591 0.021 0.786 − 0.207 0.007 0.251 0.001 − 0.065 0.400

TF13 Difference average − 0.256 < 0.001 − 0.343 < 0.001 − 0.166 0.032 − 0.210 0.007 − 0.101 0.194

TF14 Difference entropy − 0.271 < 0.001 − 0.348 < 0.001 − 0.159 0.040 − 0.212 0.006 − 0.091 0.243

TF15 Id 0.236 0.002 0.313 < 0.001 0.145 0.063 0.260 < 0.001 0.087 0.264

TF16 Idm 0.234 0.002 0.305 < 0.001 0.141 0.070 0.263 < 0.001 0.089 0.255

TF17 Inverse variance 0.255 < 0.001 0.308 < 0.001 0.143 0.067 0.213 0.006 0.056 0.469

TF18 Joint energy 0.034 0.667 0.093 0.230 − 0.129 0.098 0.281 < 0.001 − 0.038 0.626

TF19 Joint entropy − 0.073 0.351 − 0.151 0.053 0.092 0.237 − 0.217 0.005 − 0.009 0.910

TF20 Maximum probability − 0.039 0.612 − 0.005 0.945 − 0.149 0.055 0.284 < 0.001 − 0.058 0.455

TF21 Sum entropy 0.047 0.542 − 0.023 0.767 0.205 0.008 − 0.197 0.011 0.029 0.709

TF22 Dependence non uniformity 0.341 < 0.001 0.259 < 0.001 0.429 < 0.001 0.225 0.004 0.200 0.010

TF23 Dependence non uniformity normalized − 0.216 0.005 − 0.328 < 0.001 − 0.189 0.015 − 0.263 < 0.001 − 0.053 0.496

TF24 Dependence variance 0.172 0.027 0.270 < 0.001 0.178 0.022 0.267 < 0.001 0.065 0.403

TF25 Gray level non uniformity 0.311 < 0.001 0.300 < 0.001 0.148 0.056 0.402 < 0.001 0.224 0.004

TF26 Large dependence emphasis 0.234 0.002 0.298 < 0.001 0.163 0.036 0.293 < 0.001 0.112 0.152

TF27 Small dependence emphasis − 0.283 < 0.001 − 0.343 < 0.001 − 0.179 0.021 − 0.273 < 0.001 − 0.122 0.117

TF28 Gray level non uniformity 0.314 < 0.001 0.302 < 0.001 0.164 0.035 0.396 < 0.001 0.324 < 0.001

TF29 Gray level non uniformity normalized − 0.027 0.727 0.028 0.714 − 0.200 0.010 0.227 0.003 − 0.031 0.691

TF30 Long run emphasis 0.235 0.002 0.305 < 0.001 0.161 0.039 0.288 < 0.001 0.088 0.260

TF31 Run entropy 0.095 0.223 0.021 0.787 0.263 < 0.001 − 0.056 0.472 0.130 0.094

TF32 Run length non uniformity 0.347 < 0.001 0.341 < 0.001 0.459 < 0.001 0.231 0.003 0.204 0.008

TF33 Run length non uniformity normalized − 0.259 < 0.001 − 0.316 < 0.001 − 0.164 0.035 − 0.298 < 0.001 − 0.133 0.088

TF34 Run percentage − 0.250 0.001 − 0.315 < 0.001 − 0.168 0.030 − 0.293 < 0.001 − 0.121 0.120

TF35 Run variance 0.221 0.004 0.302 < 0.001 0.165 0.033 0.285 < 0.001 0.070 0.369

TF36 Short run emphasis − 0.257 < 0.001 − 0.312 < 0.001 − 0.158 0.041 − 0.299 < 0.001 − 0.136 0.081

TF37 Gray level non uniformity normalized 0.018 0.812 0.054 0.489 − 0.173 0.026 0.140 0.072 0.027 0.730

TF38 Size zone non uniformity normalized − 0.326 < 0.001 − 0.361 < 0.001 − 0.184 0.017 − 0.246 0.001 − 0.146 0.061

TF39 Small area emphasis − 0.332 < 0.001 − 0.359 < 0.001 − 0.179 0.021 − 0.246 0.001 − 0.156 0.044

TF40 Zone percentage − 0.273 < 0.001 − 0.334 < 0.001 − 0.172 0.027 − 0.278 < 0.001 − 0.133 0.087
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Methods
Subjects. This study was approved by the Research Ethics Committee of the Saitama Medical University 
Hospital. The requirement for informed consent was waived by the committee (approval number BYOU2022-
037). All experiments were performed in accordance with the relevant guidelines and regulations.

Figure 3 presents the inclusion and exclusion criteria for this study. We identified and reviewed 209 patients 
referred from the Department of Nephrology in our hospital who underwent kidney MRI between January 2017 
and September 2021. The inclusion criteria included: (1) age of 15 years or older; and (2) MRI scanning with 
Dixon-based T1WI, DWI, and ADC maps and T2* maps in our hospital. The exclusion criteria included: (1) 
lack of Dixon-based T1WI, DWI, and ADC maps or T2* maps (n = 5); (2) insufficient clinical or laboratory data 
(n = 1); (3) high-grade kidney atrophy (difficulty in segmentation) (n = 2); (4) severe artifacts on MRI (n = 17); 

Figure 1.  The receiver operating characteristic (ROC) curves and area under the curve (AUC) values of 
representative classification models using T1-weighted water-only images with a random forest classifier (A) 
and all T1-weighted images using a support vector machine with rbf kernel classifier (B) in classifying the three 
groups of chronic kidney disease. Severe renal dysfunction group (se-RD, estimated glomerular filtration rate 
[eGFR] < 30 mL/min/1.73  m2), moderate renal dysfunction group (mo-RD, 30 ≤ eGFR < 60 mL/min/1.73  m2), 
and control group (CG, eGFR ≥ 60 mL/min/1.73  m2). The AUC values are expressed as means.

Figure 2.  Confusion matrices show the status of representative classification models using T1-weighted water-
only images with a random forest classifier (A) and all T1-weighted images using a support vector machine with 
rbf kernel classifier (B) in classifying the three groups of chronic kidney disease. Severe renal dysfunction group 
(se-RD, estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2), moderate renal dysfunction group 
(mo-RD, 30 ≤ eGFR < 60 mL/min/1.73  m2), and control group (CG, eGFR ≥ 60 mL/min/1.73  m2). The data are 
expressed as means ± standard deviations.
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and (5) presence of renal lesions with maximal diameter > 1 cm or number of renal masses > 5 in each kidney, 
including polycystic kidney disease (n = 18). In total, 166 patients were enrolled.

The eGFR was calculated using Eq. (1): 

where age is in years and serum creatinine (sCr) is in mg/dL. The eGFR was defined as 120 mL/min/1.73  m2 if 
it was greater than 120 mL/min/1.73  m2 as calculated using Eq. (1).

The patients were divided into three groups according to the eGFR: se-RD group (eGFR < 30 mL/min/1.73  m2, 
i.e., CKD stage G4–5), mo-RD group (30 ≤ eGFR < 60 mL/min/1.73   m2, i.e., CKD stage G3a/b), and CG 
(eGFR ≥ 60 mL/min/1.73  m2, i.e., CKD stage G1–2).

MRI acquisition. MRI images were acquired using a 3.0 Tesla superconducting unit (Skyra, Siemens Health-
care, Erlangen, Germany) with a spine coil and an 18-channel phased-array body coil. The standard dedicated 
MRI protocol consisted of the following sequences: Dixon-based T1WI with the 3D gradient-echo method, 

(1)eGFR (mL/min/1.73 m2) = 194× sCr−1.094
× age−0.287

× 0.739 (for women),

Table 9.  Performance of each classification attempt in discriminating between the three groups in all 
T1-weighted imaging methods (ALL T1WIs). AUC  area under the curve, IP in-phase, OP opposed-phase, 
T1WI T1-weighted imaging, TF texture feature, WO water-only, DT decision tree, LDA linear discriminant 
analysis, SVM support vector machine, RF random forest classifier, se-RD severe renal dysfunction (estimated 
glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), mo-RD moderate renal 
dysfunction (30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control group (eGFR ≥ 60 mL/
min/1.73  m2, i.e., CKD stage G1–2). Feature name codes are as follows: TF2 = 90th percentile, TF3 = energy, 
TF4 = entropy, TF8 = median, TF10 = root mean squared, TF12 = uniformity, TF13 = difference average, 
TF14 = difference entropy, TF18 = joint energy, TF19 = joint entropy, TF20 = maximum probability, 
TF24 = dependence variance, TF25 = gray level non uniformity (gray-level dependence matrix), TF28 = gray 
level non uniformity (gray-level run length matrix), TF31 = run entropy, TF37 = gray level non uniformity 
normalized. The data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF3 and TF19 derived from T1WI IP, TF3 from T1WI OP, and TF12 and TF31 from T1WI WO)

Macro-average 77.6 ± 0.9 66.5 ± 1.4 83.2 ± 0.8 0.844 ± 0.003

se-RD 81.0 ± 1.0 73.1 ± 1.6 84.9 ± 0.6 0.882 ± 0.003

mo-RD 68.7 ± 0.8 54.8 ± 1.5 75.6 ± 1.0 0.739 ± 0.006

CG 83.1 ± 1.0 71.1 ± 1.2 89.1 ± 0.8 0.897 ± 0.003

SVM with linear kernel (selected TFs = TF3 and TF37 derived from T1WI IP, TF10 from T1WI OP, and TF3 and TF20 from 
T1WI WO)

Macro-average 81.5 ± 0.8 72.2 ± 1.4 86.1 ± 0.8 0.860 ± 0.004

se-RD 84.2 ± 0.8 73.4 ± 0.9 89.6 ± 0.9 0.878 ± 0.004

mo-RD 76.0 ± 0.7 67.3 ± 2.0 80.3 ± 0.8 0.794 ± 0.005

CG 84.3 ± 0.9 75.9 ± 1.3 88.5 ± 0.7 0.894 ± 0.004

SVM with rbf kernel (selected TFs = TF3 and TF18 derived from T1WI IP, and TF18, TF20, and TF28 from T1WI WO)

Macro-average 82.8 ± 1.5 74.2 ± 2.4 87.1 ± 1.3 0.887 ± 0.006

se-RD 85.0 ± 1.6 74.5 ± 2.0 90.3 ± 1.3 0.925 ± 0.006

mo-RD 75.2 ± 1.3 67.3 ± 2.9 79.2 ± 1.4 0.782 ± 0.005

CG 88.1 ± 1.6 80.7 ± 2.4 91.8 ± 1.1 0.940 ± 0.006

SVM with sigmoid kernel (selected TFs = TF25 derived from T1WI IP, TF3 and TF18 from T1WI OP, and TF4 and TF8 from 
T1WI WO)

Macro-average 77.3 ± 1.3 66.0 ± 2.4 83.0 ± 1.2 0.794 ± 0.006

se-RD 78.3 ± 1.3 58.7 ± 2.7 88.0 ± 1.2 0.797 ± 0.006

mo-RD 69.5 ± 1.1 55.4 ± 2.8 76.5 ± 1.5 0.696 ± 0.008

CG 84.3 ± 1.6 83.9 ± 1.6 84.5 ± 1.0 0.876 ± 0.008

DT (selected TFs = TF3 and TF24 derived from T1WI IP, and TF28, TF31, and TF37 from T1WI OP)

Macro-average 75.3 ± 2.0 63.0 ± 4.0 81.5 ± 2.4 0.783 ± 0.013

se-RD 75.7 ± 1.9 65.3 ± 4.2 81.0 ± 2.7 0.816 ± 0.021

mo-RD 68.1 ± 1.8 54.3 ± 4.9 74.9 ± 2.8 0.688 ± 0.022

CG 82.2 ± 2.2 69.4 ± 3.0 88.6 ± 1.7 0.842 ± 0.017

RF (selected TFs = TF3 derived from T1WI IP, TF3, TF13 and TF14 from T1WI OP, and TF2 from T1WI WO)

Macro-average 80.5 ± 1.6 70.8 ± 2.7 85.4 ± 1.4 0.874 ± 0.004

se-RD 82.0 ± 1.7 70.0 ± 2.6 88.0 ± 1.4 0.898 ± 0.004

mo-RD 74.3 ± 1.4 64.1 ± 3.3 79.4 ± 1.5 0.797 ± 0.008

CG 85.3 ± 1.8 78.3 ± 2.1 88.7 ± 1.2 0.916 ± 0.003
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DWI with multiple b-factors, and T2*WI with multiple gradient-echoes obtained in the coronal plane. For the 
Dixon-based T1WI, only IP/OP/WO images were used in the analysis, as other images (such as fat-only images 
and fat fraction ratio maps) were not generated in all patients. The ADC map was automatically generated based 
on a monoexponential fitting model using DWI at the four b-factors. In BOLD, 12 T2* WIs corresponding to 
12 different gradient echoes were acquired. T2* maps were generated on a pixel-by-pixel basis by fitting a linear 
regression method through the logarithms of the signal intensities versus their 12 echo times.

Table 11 presents the representative MRI scanning sequences and parameters.

Data analysis procedures. Figure  4 presents the data analysis workflow. After segmentation, image 
processing, texture feature extraction, and reproducibility analysis were performed for each imaging method 
(T1-weighted IP/OP/WO images, ADC map, and T2* map), followed by texture feature selection and ML-based 
model construction in separate classification attempts. The combinations of the texture features were also exam-

Table 10.  Performance of each classification attempt in discriminating between the three groups in all 
imaging methods (ALL IMs). ADC apparent diffusion coefficient, AUC  area under the curve, IP in-phase, 
OP opposed-phase, T1WI T1-weighted imaging, TF texture feature, WO water-only, DT decision tree, LDA 
linear discriminant analysis, SVM support vector machine, RF random forest classifier, se-RD severe renal 
dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2, i.e., CKD stage G4–5), mo-RD 
moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73  m2, i.e., CKD stage G3a/3b), CG control group 
(eGFR ≥ 60 mL/min/1.73  m2, i.e., CKD stage G1–2). Feature name codes are as follows: TF1 = 10th percentile, 
TF3 = energy, TF7 = mean, TF10 = root mean squared, TF11 = total energy, TF12 = uniformity, TF13 = difference 
average, TF18 = joint energy, TF19 = joint entropy, TF20 = maximum probability, TF21 = sum entropy, 
TF25 = gray level non uniformity (gray-level dependence matrix), TF28 = gray level non uniformity (gray-level 
run length matrix), TF31 = run entropy, TF35 = run variance, TF37 = gray level non uniformity normalized, 
TF40 = zone percentage. The data are expressed as means ± standard deviations.

Accuracy (%) Sensitivity (%) Specificity (%) AUC 

LDA (selected TFs = TF3 and TF19 derived from T1WI IP, TF3 from T1WI OP, and TF12 and TF31 from T1WI WO)

Macro-average 77.5 ± 0.8 66.2 ± 1.3 83.1 ± 0.7 0.832 ± 0.003

se-RD 78.6 ± 0.8 67.4 ± 1.3 84.2 ± 0.7 0.850 ± 0.003

mo-RD 70.1 ± 0.7 54.1 ± 1.3 78.2 ± 0.9 0.744 ± 0.007

CG 83.7 ± 0.8 77.2 ± 1.3 87.0 ± 0.6 0.890 ± 0.002

SVM with linear kernel (selected TFs = TF3 and TF37 derived from T1WI IP, TF10 from T1WI OP, and TF3 and TF20 from 
T1WI WO)

Macro-average 81.9 ± 0.9 72.9 ± 1.7 86.5 ± 0.9 0.863 ± 0.003

se-RD 84.0 ± 1.0 79.9 ± 1.9 86.1 ± 0.9 0.885 ± 0.004

mo-RD 75.6 ± 0.8 58.9 ± 2.0 84.0 ± 0.9 0.781 ± 0.007

CG 86.2 ± 1.1 79.9 ± 1.1 89.3 ± 0.9 0.910 ± 0.004

SVM with rbf kernel (selected TFs = TF3 and TF18 derived from T1WI IP, TF18 and TF28 from T1WI WO, and TF20 from 
T2* map)

Macro-average 81.6 ± 1.5 72.3 ± 2.9 86.2 ± 1.5 0.890 ± 0.005

se-RD 81.2 ± 1.5 71.7 ± 3.1 85.9 ± 1.7 0.911 ± 0.006

mo-RD 74.1 ± 1.3 60.0 ± 3.4 81.1 ± 1.8 0.798 ± 0.009

CG 89.4 ± 1.7 85.2 ± 2.2 91.5 ± 1.1 0.949 ± 0.006

SVM with sigmoid kernel (selected TFs = TF25 derived from T1WI IP, TF7 and TF11 from T1WI OP, TF21 from T1WI WO, 
and TF35 from T2* map)

Macro-average 76.5 ± 1.4 64.7 ± 2.7 82.3 ± 1.5 0.822 ± 0.005

se-RD 77.4 ± 1.4 60.2 ± 2.6 86.0 ± 1.8 0.834 ± 0.005

mo-RD 67.9 ± 1.2 55.7 ± 3.6 73.9 ± 1.5 0.724 ± 0.008

CG 84.2 ± 1.6 78.2 ± 1.8 87.1 ± 1.2 0.897 ± 0.005

DT (selected TFs = TF3 and TF13 derived from T1WI IP, TF40 from T1WI OP, TF25 from T1WI WO, TF1 from T2* map)

Macro-average 78.1 ± 1.9 67.1 ± 3.9 83.5 ± 2.1 0.806 ± 0.014

se-RD 81.7 ± 2.0 74.2 ± 3.7 85.5 ± 2.3 0.856 ± 0.020

mo-RD 69.9 ± 1.6 54.6 ± 4.8 77.5 ± 2.2 0.696 ± 0.024

CG 82.6 ± 2.1 72.5 ± 3.3 87.6 ± 1.9 0.864 ± 0.016

RF (selected TFs = TF3 derived from T1WI IP, TF3 from T1WI OP, TF18 from T2* map, and TF19 and TF40 from ADC 
map)

Macro-average 81.3 ± 1.2 72.0 ± 2.2 86.0 ± 1.1 0.865 ± 0.004

se-RD 83.8 ± 1.2 70.9 ± 2.4 90.3 ± 1.1 0.866 ± 0.005

mo-RD 75.8 ± 1.1 63.6 ± 2.3 82.0 ± 1.3 0.815 ± 0.009

CG 84.4 ± 1.3 81.6 ± 2.0 85.8 ± 0.9 0.903 ± 0.004
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ined: those derived from all T1-weighted images (ALL T1WIs) and those derived from all imaging methods 
(ALL IMs).

Texture feature extraction. Segmentation was performed using an open-source software (ITK-SNAP 
version 3.8.0). One slice of T1-weighted IP/OP/WO images, ADC maps, and T2* map images in the coronal 
plane were selected for each patient. An irregular two-dimensional ROI was drawn manually to contain the 
outline borders of the entire region of both kidneys on each selected image, and the cystic region was avoided 
to the maximum extent (Fig. 5). Two radiologists with 7 and 6 years of experience performed ROI delineation 
independently to assess the inter-observer reproducibility in the segmentation process. Both radiologists were 
blinded to the clinical information.

To avoid data heterogeneity bias, all MRI data were subjected to image normalization (the intensity of the 
image was scaled to 0–100) and resampled to the same resolution (3 × 3 × 3 mm) before feature extraction. The 
texture features were calculated using an open-source software package capable of extracting a large panel of 
engineered features from medical images (PyRadiomics version 2.1.0). Texture features were calculated based 
on six feature classes (first-order statistics, gray-level co-occurrence matrix, gray-level dependence matrix, gray-
level run-length matrix, gray-level size zone matrix, and neighboring gray-tone difference matrix). Ninety-three 
texture features were extracted and analyzed to select the most valuable features for discerning the three CKD 
groups with each imaging method.

Dimension reduction of texture features. We performed dimension reduction of texture features to 
avoid overfitting and generalization errors in the classification models. After normalizing the numeric values as 
z-scores, the ICC was measured to evaluate the inter-observer reproducibility. Features with poor reproducibility 
(ICC < 0.75 or lower 95% CI < 0.6) in any of the imaging methods were excluded. Furthermore, the SFS algo-

Figure 3.  Flow chart of the inclusion and exclusion criteria for the study. ADC apparent diffusion coefficient, 
DWI diffusion-weighted imaging, MRI magnetic resonance imaging, T1WI T1-weighted imaging.

Table 11.  Representative MRI scanning sequences and parameters. ADC apparent diffusion coefficient, BOLD 
blood oxygenation level-dependent imaging, DWI diffusion-weighted imaging, FA flip angle, FOV field of 
view, IP in-phase, OP opposed-phase, T1WI T1-weighted imaging, TE echo time, TR repetition time, WO 
water-only.

Parameters T1WI IP/OP/WO DWI/ADC map BOLD (T2* map)

TR (ms) 5.35 1100 175

TE (ms) 2.46, 3.69 70 4.92, 7.38, 9.84, 12.30, 14.76, 17.22, 19.68, 22.14, 24.60, 27.06, 29.52, 
and 31.98

FA (°) 10 N/A 50

FOV (mm) 360 × 360 × 144 360 × 360 × 45 360 × 360 × 27

Voxel size (mm) 1.1 × 1.1 × 3.0 1.4 × 1.4 × 3.0 1.4 × 1.4 × 5.0

Recon matrix 320 128 256

Slice thickness (mm) 3 3 5

b value  (mm2/s) 0, 200, 400, 600

Respiratory compensation Breath hold Free breathing Breath hold
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rithm, a wrapper-based greedy search algorithm, was used for feature selection. This algorithm identifies feature 
subsets that maximize the performance of predictive models by adding or eliminating features stepwise based on 
a user-defined classifier algorithm. We considered four representative ML classifiers in this study: linear discri-
minant analysis (LDA), SVM, decision tree (DT), and RF classifiers. As for the SVM algorithm, various kernel 
functions provide different decision-making algorithms and generate versatility. We adopted three representa-

Figure 4.  Flow chart showing the technical study pipeline. After segmentation, image processing, texture 
feature extraction, and reproducibility analysis were conducted for each imaging method (T1-weighted 
in-phase/opposed-phase/water-only images, ADC maps, and T2* maps), followed by texture feature selection 
and ML-based model construction in separate classification attempts. The combinations of texture features were 
also examined: those derived from all T1-weighted images and those derived from all imaging methods.

Figure 5.  A method to set the region of interest (ROI) for each group and each image. ROIs were manually 
drawn on the contour lines of both kidneys, as shown by the red curves (avoiding the cystic area). ADC apparent 
diffusion coefficient, IP in-phase, OP opposed-phase, WO water-only. Severe renal dysfunction group (se-RD, 
estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73  m2), moderate renal dysfunction group (mo-RD, 
30 ≤ eGFR < 60 mL/min/1.73  m2), and control group (CG, eGFR ≥ 60 mL/min/1.73  m2).
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tive kernels separately and compared their results in this study: linear, rbf, and sigmoid kernels. Thus, in total, we 
tested six different ML classifiers: LDA; SVM with linear, rbf, and sigmoid kernels; DT; and RF. By using the SFS 
algorithm, a subset of features that provided the best classification accuracies in each ML classifier was selected. 
The number of texture features was reduced to five in this step to prevent overfitting due to the small sample size.

Concurrently, the relationship between the eGFR and the selected texture features for each imaging modality 
was examined using Pearson’s correlation coefficient.

Classification and validation. Multiclass classification models were created using the six ML classifiers 
described above and validated using the cross-validation method. We adopted the following methods to obtain 
the generalizability of our classification models and to test their applicability: (1) synthetic minority oversam-
pling technique (SMOTE), (2) nested cross-validation with grid-search parameter tuning, and (3) 100-time 
repeat cross-validation method.

Since our data had an imbalance between classes, we applied a SMOTE method before the final classification 
and validation step. This method creates synthetic instances that are not exact replications and increases the 
datasets of the minority group without damaging the structure of the actual  data43–45. We applied this technique to 
augment the minority group datasets (i.e., 45 control cases and 36 severe RD cases), while preserving the major-
ity group datasets (i.e., 85 moderate RD cases), resulting in 85 labeled cases for each class (255 cases in total).

Several intrinsic hyperparameters are known for the SVM, DT, and RF classifiers, and the classification perfor-
mance could be changed by attenuating these values. Thus, a nested cross-validation method with tenfold inner 
loops and tenfold outer loops was adopted to tune the parameters of these classifiers to avoid the double-dipping 
phenomenon, a potential  bias46,47, which indicates that training and test data were used for feature selection and 
model development, along with validation. A grid-search system was used for parameter tuning, in which a set 
of parameters with a discrete number of values was tested repeatedly to obtain the best parameter combination. 
The following hyperparameters were tested: C-value = 1, 10, and 100 and gamma = 0.001, 0.01, and 0.1 for SVM; 
and max-depth = 2, 4, and 6 and min-samples-leaf = 0.1, 0.5, 1, 5, and 10 for DT and RF.

The cross-validation method was repeated 100 times to ensure the stability and reproducibility of our results. 
We repeated a SMOTE process along with a nested cross-validation as data augmented by the SMOTE may have 
some arbitrariness. The performance of the classifiers was evaluated using ROC curve analysis and the AUC. 
The accuracy, sensitivity, and specificity for each group and macro-average of all groups were calculated based 
on the confusion matrix of the classification results.

Combination models. We also evaluated the classification performance of the combination models derived 
from ALL T1WIs and those derived from ALL IMs. The SFS algorithm was used again for feature selection, and 
the number of texture features was reduced to 5. The multiclass classification models were created using the six 
ML classifiers mentioned above, and the performance of the classifiers was evaluated in the same manner as 
described above.

Statistical analyses were performed using an open-source software package (Python scikit-learn 0.22.1). 
Statistical significance was set at P < 0.05.

Data availability
The authors declare that all data supporting the findings of this study are available within the article.
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