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Learning to predict synchronization 
of coupled oscillators on randomly 
generated graphs
Hardeep Bassi1,6, Richard P. Yim2,6, Joshua Vendrow3, Rohith Koduluka3, Cherlin Zhu4 & 
Hanbaek Lyu5*

Suppose we are given a system of coupled oscillators on an unknown graph along with the trajectory 
of the system during some period. Can we predict whether the system will eventually synchronize? 
Even with a known underlying graph structure, this is an important yet analytically intractable 
question in general. In this work, we take an alternative approach to the synchronization prediction 
problem by viewing it as a classification problem based on the fact that any given system will 
eventually synchronize or converge to a non-synchronizing limit cycle. By only using some basic 
statistics of the underlying graphs such as edge density and diameter, our method can achieve perfect 
accuracy when there is a significant difference in the topology of the underlying graphs between the 
synchronizing and the non-synchronizing examples. However, in the problem setting where these 
graph statistics cannot distinguish the two classes very well (e.g., when the graphs are generated from 
the same random graph model), we find that pairing a few iterations of the initial dynamics along with 
the graph statistics as the input to our classification algorithms can lead to significant improvement in 
accuracy; far exceeding what is known by the classical oscillator theory. More surprisingly, we find that 
in almost all such settings, dropping out the basic graph statistics and training our algorithms with 
only initial dynamics achieves nearly the same accuracy. We demonstrate our method on three models 
of continuous and discrete coupled oscillators—the Kuramoto model, Firefly Cellular Automata, 
and Greenberg-Hastings model. Finally, we also propose an “ensemble prediction” algorithm that 
successfully scales our method to large graphs by training on dynamics observed from multiple 
random subgraphs.

Many important phenomena that we would like to understand—formation of public opinion, trending topics 
on social networks, movement of stock markets, development of cancer cells, the outbreak of epidemics, and 
collective computation in distributed systems − are closely related to predicting large-scale behaviors in networks 
of locally interacting dynamic agents. Perhaps the most widely studied and mathematically intractable of such 
collective behavior is the synchronization of coupled oscillators (e.g., blinking fireflies, circadian pacemakers, 
BZ chemical oscillators), and has been an important subject of research in mathematics and various areas of 
science for decades1,2. Moreover, it is closely related to the clock synchronization problem, which is essential in 
establishing shared notions of time in distributed systems and has enjoyed fruitful applications in many areas 
including wildfire monitoring, electric power networks, robotic vehicle networks, large-scale information fusion, 
and wireless sensor networks3–5.

For a system of deterministic coupled oscillators (e.g., the Kuramoto model6), the entire forward dynamics 
(i.e., the evolution of phase configurations) is analytically determined by (1) the initial phase configuration and 
(2) the graph structure (see Fig. 1). In this paper, we are concerned with the fundamental problem of predicting 
whether a given system of coupled oscillators will eventually synchronize, using some information on the underly-
ing graph or on the initial dynamics (that is, early-stage of the forward dynamics). More specifically, we consider 
the following three types of synchronization prediction problems (see Fig. 4):

Q1 Given the initial dynamics and graph structure, can we predict whether the system will eventually 
synchronize?
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Q2 Given the initial dynamics and not knowing the graph structure, can we predict whether the system will 
eventually synchronize?

Q3 Given the initial dynamics partially observed on a subset of nodes and possibly not knowing the graph 
structure, can we predict whether the whole system will eventually synchronize?

Analytical characterization of synchronization would lead to a perfect algorithm for the synchronization 
prediction problems above. However, while a number of sufficient conditions on graph topology7–10 (e.g., com-
plete graphs or trees), model parameters (e.g., large coupling strength) or on initial configuration (e.g., phase 
concentration into open half-circle) for synchronization are known, obtaining an analytic or asymptotic solution 
to the prediction question, in general, appears to be out of reach, especially when these sufficient conditions for 
synchronization are not satisfied. Namely, we are interested in predicting the synchronization of coupled oscilla-
tors where the underlying graphs are non-isomorphic and the initial configuration is not confined within an open 
half-circle in the cyclic phase space. Since the global behavior of coupled oscillators is built on non-linear local 
interactions, as the number of nodes increase and the topology of the underlying graphs become more diverse, 
the behavior of the system becomes rapidly intractable. To provide a sense of the complexity of the problem, note 
that there are more than 109 non-isomorphic connected simple graphs with 11 nodes11.

However, the lack of a general analytical solution does not necessarily preclude the possibility of successful 
prediction of synchronization. In this work, we propose a radically different approach to this problem that we 
call Learning To Predict Synchronization (L2PSync), where we view the synchronization prediction problem as 
a binary classification problem for two classes of ‘synchronizing’ and ‘non-synchronizing’, based on the fact that 
any given deterministic coupled oscillator system eventually synchronizes or converges to a non-synchronizing 
limit cycle. In this work, we consider three models of continuous and discrete coupled oscillators—the Kuramoto 
model (KM)2, Firefly Cellular Automata (FCA)10, and Greenberg-Hastings model (GHM)12.

Utilizing a few basic statistics of the underlying graphs, our method can achieve perfect accuracy when 
there is a significant difference in the topology of the underlying graphs between the synchronizing and the 
non-synchronizing examples (see Figs. 2, 3). We find that when these graph statistics cannot separate the two 
classes of synchronizing and non-synchronizing very well (e.g., when the graphs are generated from the same 
random graph model, see Tables 2, 3), pairing a few iterations of phase configurations in the initial dynamics 
along with the graph statistics as the input to the classification algorithms can lead to significant improvement in 
accuracy. Our methods far surpass what is known by the half-circle concentration principle in classical oscillator 
theory (see our “Methods” section). We also find that in almost all such settings, dropping out the basic graph 
statistics and training our algorithms with only initial dynamics achieves nearly the same accuracy as with the 
graph statistics. Furthermore, we find that our methods are robust under using incomplete initial dynamics only 
observed on a few small subgraphs of large underlying graphs.

Problem statement.  A graph G = (V ,E) consists of sets V of nodes and E of edges. Let � denote the phase 
space of each node, which may be taken to be the circle R/2πZ for continuous-state oscillators or the color 

Figure 1.   Sample points in the 30-node dynamics dataset for synchronization prediction. The heat maps show 
phase dynamics on graphs beneath them, where colors represent phases and time is measured by iterations 
from bottom to top (e.g. t = 0–t = 25 ). Each example is labeled as ‘synchronizing’ if it synchronizes at iteration 
1758 for the Kuramoto model (70 for FCA and GHM) and ‘non-synchronizing’ otherwise. Synchronizing 
examples have mostly uniform colors in the top row. For training, only a portion of dynamics is used so that the 
algorithms rarely see a fully synchronized example (see Fig. 4).
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wheel Z/κZ , κ ∈ N for discrete-state oscillators. We call a map X : V → � a phase configuration, and say it is 
synchronized if it takes a constant value across nodes (i.e., X(v) = Const. for all v ∈ V  ). A coupling is a function 
F that maps each pair (G,X0) of graph and initial configuration X0 : V → � deterministically to a trajectory 
(Xt)t≥0 of phase configurations Xt : V → � . For instance, F could be the time evolution rule for the KM, FCA, 
or GHM. Throughout the paper, 1(·) denotes the indicator function. The main problem we investigate in this 
work is stated below:

•	 (Synchronization Prediction) Fix parameters n ∈ N , T ≫ r > 0 , and coupling F . Predict the following indi-
cator function 1(XT is synchronized) given the initial trajectory (Xt)0≤t≤r and optionally also with statistics of 
graph G.

We remark that as T tends to infinity, the indicator in the problem statement converges to the following indicator 
function 1(Xt is eventually synchronized) which aligns more directly with the initial questions Q1 and Q2 than 
the indicator in the above problem statement, but determining whether a given system will never synchronize 
in amounts to finding a non-synchronizing periodic orbit, which is computationally infeasible in general. See 
Fig. 4 for an illustration of the synchronization prediction problem.

Figure 2.   Examples of synchronizing and non-synchronizing dynamics of Kuramoto, Greenberg-Hastings, and 
FCA oscillators on 30-node graphs with two topologies (complete vs. ring, path vs. complete, and tree vs. ring, 
respectively). The heat maps show phase dynamics on graphs beneath them, where colors represent phases and 
time is measured by iterations from bottom-to-top (e.g. t = 0–t = 70 ). Synchronizing examples have uniform 
color in the top row. The horizontal bar indicates the ‘training iteration’, which is the maximum number of 
iterations in the initial dynamics fed into the classification algorithm for prediction.

Figure 3.   Binary classification accuracies of synchronizing vs. non-synchronizing dynamics when the 
underlying graphs in either of these two classes share the same topology. For the Kuramoto model, we 
compare complete graphs (synchronizing) to rings (non-synchronizing), for the GHM model we compare 
rings (synchronizing) vs complete graphs (non-synchronizing), and for FCA we compare trees with maximum 
degree 4 (synchronizing) to rings (non-synchronizing). FFNN (Features) uses FFNN as the binary classification 
algorithm with five basic graph features—the number of edges, min/max degree, diameter, and the number 
of nodes—as the input, which achieves perfect classification in all cases. FFNN (Dynamics) uses FFNN as 
the binary classification algorithm with a varying number of iterations of initial dynamics as input (specified 
as the horizontal axis), without any information about the underlying graph. The baseline predictor uses the 
concentration principle (see the main text for more details). Notice that FFNN (Dynamics) far surpasses the 
baseline.
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Related works.  There are a number of recent works incorporating machine learning methods to investigate 
problems on coupled oscillators or other related dynamical systems, which we briefly survey in this section and 
summarize in Table 1.

In Fan et al.13, the authors are concerned with identifying the critical coupling strength at which a system 
of coupled oscillators undergo a phase transition into synchronization, where the underlying graph consists of 
2-4 nodes with a fixed topology (e.g., a triangle or a star with three leaves). Guth et al.14 use binary classification 
methods with surrogate optimization (SO) in order to learn optimal parameters and predictors of extreme events. 
Their work is primarily concerned with learning whether or not intermittent extreme events will occur in various 
1D or 2D partial differential equation models. Similarly, Chowdhury et al.15 utilize a long-short term memory 
(LSTM)16 network to predict whether or not an extreme event will occur on globally coupled mean-field logistic 
maps on complete graphs. Thiem et al.17 use Feed-forward neural networks (FFNN)18 to learn coarse-grained 
dynamics of Kuramoto oscillators and recover the classical order parameter. Biccari et al.19 use gradient descent 
(GD) and the random batch method (RBM) to learn control parameters to enhance the synchronization of 
Kuramoto oscillators. Slightly less related work is Hefny et al.20, where the authors use hidden Markov models, 
LASSO regression, and spectral algorithms for learning lower-dimensional state representations of dynamical 
systems and apply their method to a knowledge tracing model for a dataset of students’ responses to a survey.

On the other hand, Itabashi et al.21 consider classifying coupled Kuramoto oscillators according to their 
future dynamics from certain features derived (using topological data analysis (TDA)) from their early-stage 
dynamics (or ‘initial dynamics’ in our terminology). As in the other references above, the underlying graph is 
fixed in each classification task (a complete graph with weighted edges, which may have two or four communi-
ties). But unlike in the references above, the initial configuration, instead of the model parameter, is varied to 
generate different examples on the same underlying graph. The authors observed that some long-term dynamical 

Figure 4.   Sample points in the 30-node training data set for synchronization prediction. The full dataset 
consists of 40 K synchronizing and 40 K non-synchronizing 30-node connected non-isomorphic graphs and 
dynamics on them for each of the three models the KM, FCA, and GHM (see Table 2).

Table 1.   Comparison of settings in related works on learning coupled oscillator dynamics using machine 
learning methods. Recent works in the table focus on learning features of dynamics on fixed graphs. In 
contrast, we aim to classify the long-term dynamics of a given system on a diverse set of underlying graphs. 
The column for ‘# configs.’ refers to the number of distinct initial phase configurations considered for each 
graph in training.

References # nodes # graphs # configs. model ML Goal

Fan et al.13 2-4 1 1 Lorenz, KM FFNN Phase transition

Guth et al.14 N/A N/A 1 1D and 2D PDE SO Extreme events

Chowdhury et al.15 200 1 1 Mean-field logistic map LSTM Extreme events

Thiem et al.17 1500-8000 1 2000 KM FFNN Parameter estimation

Biccari et al.19 10-1000 1 1 KM GD, RBM Parameter estimation

Itabashi et al.21 128-256 1 100 KM TDA
Synchronization/ 
Non-synchronization/ 
Chimera state

This work 15-600 2K-200K 1 KM, FCA, GHM RF, GB, FFNN, LRCN Synchronization/ Non-
synchronization
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properties (e.g., multi-cluster synchronization) can be predicted by the derived features of the initial dynamics. 
This point is consistent with one of our findings that the first few iterations of the initial dynamics may contain 
crucial information in predicting the long-term behavior of coupled oscillator systems.

While sharing high-level ideas and approaches with the aforementioned works, our work has multiple dis-
tinguishing characteristics in the problem setting and approaches. First, in all of the aforementioned works, a 
dynamical system on a fixed underlying graph is considered. But in our setting, there are as many as 200 K non-
isomorphic underlying graphs and we seek to predict whether a given system of oscillators on highly varied or 
even unknown graphs will eventually synchronize or not. Furthermore, we also consider the case when machine 
learning algorithms are trained on partial observation (e.g., initial dynamics restricted on some subgraphs). 
Second, only in our work, are discrete models of coupled oscillators (e.g., FCA and GHM) considered, whereas 
only models with continuous phase space (e.g., the KM) are considered in the literature. Third, only in our 
work, is the classical concentration principle (a.k.a. the ‘half-circle concentration’, see our “Methods” section) 
in the oscillator theory used as a rigorous benchmark to evaluate the efficacy of employed machine learning 
methods. Finally, we employ various binary classification algorithms such as Random Forest (RF)22 Gradient 
Boosting (GB)23, Feed-forward Neural Networks (FFNN)18, and our own adaptation of a Long-term Recurrent 
Convolutional Networks (LRCN)24.

We remark that there are a number of cases where rigorous results are available for the question of predicting 
the long-term behavior of coupled oscillators on a graph G and initial configuration X0 . For instance, the κ = 3 
instances of GHM and another related model called Cyclic Cellular Automata (CCA)25 have been completely 
solved26. Namely, given the pair (G,X0) , the trajectory Xt synchronizes eventually if and only if the discrete vec-
tor field on the edges of G induced from X0 is conservative (see26 for details). Additionally, the behavior of FCA 
on finite trees is also well-known: given a finite tree T and κ ∈ {3, 4, 5, 6} , every κ-color initial configuration on 
T synchronizes eventually under κ-color FCA if and only if the maximum degree of T is less than κ ; for κ ≥ 7 , 
this phenomenon does not always hold10,27. This theoretical result on FCA was used in the experiment in Figs. 2 
and 3. Furthermore, there is a number of works on the clustering behavior of these models on the infinite one-
dimensional lattice, Z (FCA10,28, CCA​28–31 and GHM28,32).

Methods
The pipeline of our approach is as follows. Namely, (1) fix a model for coupled oscillators; (2) generate a dynamics 
dataset of a large number of non-isomorphic graphs with an even split of synchronizing and non-synchronizing 
dynamics; (3) train a selected binary classification algorithm on the dynamics dataset to classify each example 
(initial dynamics with or without underlying features of the graph) into one of two classes, ‘synchronizing’ or 
‘non-synchronizing’; (4) validate the accuracy of the trained algorithms on fresh examples by comparing the 
predicted behavior of the true long-term dynamics. We use the following classification algorithms: Random 
Forest (RF)22 Gradient Boosting (GB)23, Feed-forward Neural Networks (FFNN)18, and our own adaptation of 
Long-term Recurrent Convolutional Networks (LRCN)24 which we call the GraphLRCN (further information 
such as implementation details and hyperparameters can be found in the SI).

As a baseline for our approach, we use a variant of the well-known “concentration principle” in the literature 
on coupled oscillators. Namely, regardless of the details of graph structure and model, synchronization is guar-
anteed if the phases of the oscillators are concentrated in a small arc of the phase space at any given time (see 
the next subsection). This principle is applied at each configuration up to the training iteration used to train the 
binary classifiers.

For question Q3 on synchronization prediction on the initial dynamics partially observed on subgraphs, as 
well as reducing the computational cost of our methods for answering Q1 and Q2, we propose an “ensemble 
prediction” algorithm (Algorithm 1) that scales up our method to large graphs by training on dynamics observed 
from multiple random subgraphs. Namely, suppose we are to predict the dynamics of some connected N-node 
graphs, where only the initial dynamics are observed on a few small connected subgraphs of n ≪ N nodes. We 
first train a binary classification algorithm on the dynamics observed from those subgraphs and then aggregate 
the predictions from each subgraph (e.g., using a majority vote) to get a prediction for the full dynamics on N 
nodes.

The concentration principle for synchronization and baseline predictor.  In the literature on cou-
pled oscillators, there is a fundamental observation that concentration (e.g., into an open half-circle) of the 
initial phase of the oscillators leads to synchronization for a wide variety of models on arbitrary connected 
graphs (see, e.g.,33, Lem 5.5). This is stated in the following bullet point for the KM and FCA and we call it the 
“concentration principle”. This principle has been used pervasively in the literature of clock synchronization34–37 
and also in multi-agent consensus problems38–40.

•	 (Concentration Principle) Let G be an arbitrary connected graph. For the Kuramoto model (see Eq. (1) in 
SI) with identical intrinsic frequency and for FCA (see Eq. (3) in SI), given dynamics on G synchronize if all 
phases at any given time are confined in an open half-circle in the phase space � . Furthermore, if all states 
used in the time-t configuration Xt are confined in an open half-circle for any t ≥ 1 , then the trajectory on 
G eventually synchronizes.

The ‘open half-circle’ refers to any arc of length < π for the continuous phase space � = R/2πZ and any interval 
of < κ/2 consecutive integers ( mod κ ) for the discrete phase space � = Z/κZ . This is a standard fact known 
to the literature and it follows from the fact that the couplings in the statement monotonically contract given 
any initial phase configuration under the half-circle condition toward synchronization. It is not hard to see the 
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above half-circle concentration does not hold for GHM. Accordingly, for GHM, we say a phase configuration 
Xt is concentrated if Xt is synchronized.

We now introduce the following baseline synchronization predictor: given (Xt)0≤t≤r and T > r,

•	 (Baseline predictor) Predict synchronization of XT if Xt is concentrated for any 1 ≤ t ≤ r . Otherwise, flip a 
fair coin.

Notice that the baseline predictor never predicts synchronization incorrectly if Xr is concentrated. For non-
concentrated cases, the baseline does not assume any knowledge and gives a completely uninformed pre-
diction. Quantitatively, suppose we have a dataset where α proportion of entire samples are synchronizing 
(in all our datastes, α = 0.5 ). Suppose we apply the baseline predictor where we use the first r iterations of 
dynamics for each sample. Let x = x(r) denote the proportion of synchronizing samples that concentrate 
by iteration r among all among all synchronizing samples. Then the baseline predictor’s accuracy is given by 
xα + (1− α + (1− x)α)/2 = 0.5+ xα/2 , where the term xα/2 can be regarded as the gain obtained by using 
the concentration principle layered onto the uninformed decision.

An illustrative example: the Kuramoto model on complete vs. ring; GHM on path vs. com-
plete; FCA on tree vs. ring.  We first give a simple example to illustrate our machine learning approach to 
the synchronization prediction problem. More specifically, we create datasets of an equal number of synchroniz-
ing and non-synchronizing examples, where there is a significant difference in the topology of the underlying 
graphs between the synchronizing and the non-synchronizing examples. In such a setting, one can expect that 
knowing the basic graph features—the number of edges, min/max degree, diameter, and the number of nodes—
will be enough to distinguish between synchronizing and non-synchronizing examples.

For each of the coupled oscillator models of the KM, FCA, and GHM, we create a dataset that consists of 
1 K synchronizing examples and 1 K non-synchronizing examples on 30 node graphs, where all 1 K examples 
in each of the two classes share the same underlying graph topology. For the KM, the synchronizing and the 
non-synchronizing examples are on a complete graph and on a ring, respectively. For GHM (with κ = 5 ), the 
synchronizing and the non-synchronizing examples are on a path and on a complete graph, respectively. Lastly 
for FCA (with κ = 5 ), the synchronizing and the non-synchronizing examples are on a tree with a maximum 
degree at most four and on a ring, respectively. Our choice of these graph topologies reflects rigorously established 
results in the literature. Namely, it is well-known that coupled Kuramoto oscillators (with identical intrinsic fre-
quencies) on a complete graph will always synchronize, and one can easily generate a non-synchronizing initial 
configuration for Kuramoto oscillators on a ring1,2. For GHM, in the SI, we prove that a κ-color (arbitrary κ ≥ 3 ) 
GHM on a path of length n will always synchronize by iteration n+ κ , regardless of the initial configuration. 
Lastly for FCA, it is known that FCA with κ = 5 color dynamics always synchronize on trees with maximum 
degree at most four10. The results of our experiments for these three datasets are shown in Fig. 3.

For the three datasets described above, we achieve perfect classification accuracy with FFNN of distinguishing 
synchronizing vs non-synchronizing by using the following five basic statistics of the underlying graphs—the 
number of edges, min/max degree, diameter, and the number of nodes—as expected by the theoretical results 
we mentioned above. Additionally, we hide the graph statistics completely and train FFNN only using the initial 
dynamics up to a variable training iteration. As we feed in more initial dynamics for training, FFNN quickly 
improves in prediction accuracy, far more rapidly than the baseline does. This indicates that FFNN may be 
quickly learning some latent distinguishing features from the initial dynamics that are more effective than the 
half-circle concentration employed by the baseline predictor.

Generating the dynamics datasets.  In the example we considered in Figs. 2 and 3, there was a clear dis-
tinction between the topology of the underlying graphs that were synchronizing and the graphs that were non-
synchronizing, and basic graph statistics can yield perfect classification accuracy through FFNN as the choice 
of the binary classifier. In this section, we consider datasets for which it is much more difficult to classify based 
only on the same graph statistics. The way we do so is by generating a large number of underlying graphs from 
the same random graph model with the same parameters. In this way, even though individual graphs realized 
from the random graph model may have different topologies, graph statistics such as edge density or maximum 
degree are concentrated around their expected values. This is in contrast to the set of underlying graphs in the 
three datasets we considered in Figs. 2 and 3, where half of them are isomorphic to each other and another half 
are also isomorphic to each other. For the datasets we generate in this way, which we will describe in more detail 
shortly after, classifying only with the basic graph statistics achieves an accuracy of 60–70% (in comparison to 
100% as before).

We generate a total of tweleve datasets described in Tables 2 and 3 as follows. Data points in each dataset 
consist of three statistics computed for a pair (G,X0) of an underlying graph, G = (V ,E) , and initial configura-
tion, X0 : V → � : (1) first r iterations of dynamics (Xt)0≤t≤r (using either the KM, FCA, or GHM), (optional) 
(2) features of G and X0 , and (3) the label that indicates whether XT is concentrated or not. We optionally include 
the following six features: number of edges, min degree, max degree, diameter, number of nodes, and quartiles of 
initial phases in X0 . We say a data point is ‘synchronizing’ if the label is 1, and ‘non-synchronizing,’ label 0, oth-
erwise. Every dataset we generate contains an equal number of synchronizing and non-synchronizing examples, 
and the underlying graphs are all connected and non-isomorphic (as opposed to the datasets in Figs. 2 and 3).

To generate a single n-node graph, we use an instance of the Newman-Watts-Strogatz (NWS) model41, which 
originally has three parameters n (number of nodes), p (shortcut edge probability) and k (initial degree of nodes; 
We use the implementation in networkx python package, see42), with an added integer parameter M (number 
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of calls for adding shortcut edges). Namely, we start from a cycle of n nodes, where each node is connected to 
its k nearest neighbors. Then we attempt to add a new edge between each initial non-edge (u, v) with probability 
p/(n− k − 3) independently M times. The number of new edges added in this process follows the binomial 

distribution with 
(

n
2

)

− nk
2  trials with success probability 

(

1−
(

1−
p

n−k−1

))M
≈ pm/(n− k − 1) . This easily 

yields that the expected number of edges in our random graph model is nk2 +
n2pM

2(n−k−1) + O(k).
The NWS model of random graphs is known to exhibit the ‘small world property’, which is to have relatively 

small mean path lengths in contrast to having a low local clustering coefficient. This is a widely observed property 
of many real-world complex networks41—as opposed to the commonly studied Erdös-Réyni graphs. It is known 
that many models of coupled oscillators have a hard time synchronizing when the underlying graph is a ring, as 
the discrepancy between oscillators tends to form traveling waves circulating on the ring43. On the other hand, 
it is observed that coupled oscillator systems on dense graphs are relatively easier to synchronize. For instance, 
Kassabov, Strogatz, and Townsend recently showed that Kuramoto oscillators with an identical natural frequency 
on a connected graph where each node is connected to at least 3/4 of all nodes are globally synchronizing for 
almost all initial configurations44. Since we intend to generate both synchronizing and non-synchronizing exam-
ples to form a balanced dataset, it is natural for us to use a random graph model that sits somewhere between 
rings and dense graphs. In this sense, NWS is a natural choice for a random graph model for our purpose. Using 
other models such as Erdös–Réyni, for example, for generating the balanced dataset of synchronizing and non-
synchronizing examples as in Tables 2 and 3, is computationally very demanding.

In Table 2, we make note of the average graph edge counts and standard deviations of the random graphs 
that were used to simulate our models. These characteristics, average edge count and standard deviation of edges 
counts, correspond to the clustering of edges in the graph, which intuitively affects the propagation of informa-
tion or states in our cellular automata.

Also in Table 2, we give a summary of the six datasets on the three models for two node counts n = 15, 30 , 
each with 200 K and 80 K examples, respectively, which we refer to as KMn , FCAn , GHMn for n = 15, 30 . Underlying 
graphs are sampled from the NWS model with parameters n ∈ {15, 30} , M = 1 , and p = 0.85 for the KM and 
p = 0.65 for FCA and GHM. In all cases, we generated about 400 K examples and subsampled 200 K and 80 K 
examples for n = 15, 30 , respectively, so that there are an equal number of synchronizing and non-synchronizing 
examples, with all underlying graphs as non-isomorphic. The limits for both sets were chosen by memory con-
straints imposed by the algorithms used. To give a glance at the datasets, we provide visual representations. In 
Fig. 4, we show five synchronizing and non-synchronizing examples in KM30 , FCA30 , and GHM30.

Table 2.   Dynamics datasets were generated for three models with two node counts. In each dataset, all graphs 
are connected and non-isomorphic. # Sync. denotes the number of examples in the dataset such that the phase 
configuration XT at iteration T is concentrated.

Datasets KM15 KM30 FCA15 FCA30 GHM15 GHM30

# nodes 15 30 15 30 15 30

avg of # edges 29.65 57.49 23.91 47.45 22.88 48.18

std of # edges 3.42 5.67 2.34 4.15 2.35 4.11

Avg diameter 4.32 7.00 4.32 6.01 4.30 6.12

std of diameter 0.68 1.29 0.67 0.95 0.66 0.98

r (training iter) 126 126 25 25 25 25

T (prediction iter) 1758 1758 70 70 70 70

# Sync. 100K 40K 100K 40K 100K 40K

# Nonsync. 100K 40K 100K 40K 100K 40K

Table 3.   Dynamics datasets generated for FCA and Kuramoto on 600 nodes ( FCA600 , KM600 , FCA′600 , KM
′
600 ) 

and on 300–600 nodes ( FCA′′600 , KM
′′
600). In each dataset, all graphs are connected and non-isomorphic. # 

Sync. denotes the number of examples in the dataset such that the phase configuration XT at iteration T is 
concentrated. Here r and T refers to the training and the prediction iterations defined in Table 2.

Datasets FCA600 FCA
′

600
FCA

′′

600
KM600 KM

′

600
KM

′′

600

# nodes 600 600 300-600 600 600 300-600

std of # nodes 0 0 86.60 0 0 86.60

avg of # edges 2985.53 4749.24 2799.49 1051.08 1109.85 757.89

std of # edges 37.85 2371.72 1461.08 19.66 79.47 56.81

r 50 50 50 400 400 400

T 600 600 600 1758 1758 1758

# Sync. 1K 1K 1K 1K 1K 1K

# Nonsync. 1K 1K 1K 1K 1K 1K
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We also generated six dynamics datasets with a larger number of nodes on FCA and Kuramoto dynamics, 
as described in Table 3. The fixed node datasets FCA600 , FCA′600 , KM600 , and KM′600 each consist of 1K syn-
chronizing and non-synchronizing examples of FCA and Kuramoto dynamics on non-isomorphic graphs of 
600 nodes. The underlying graphs for the fixed node FCA datasets are generated by the NWS model with 
parameters n = 600 , p = 0.6 and N = 5 for FCA600 and p ∼ Normal(µX , 0.04) , µX ∼ Uniform(0.32, 0.62) , 
for each N ∼ Uniform({1, 2, . . . , 20}) calls for FCA′600 . Similarly, to generate the fixed node Kuramoto data-
sets, KM600 and KM′600 , we used the NWS model with parameters n = 600 , p = 0.15 and N = 5 for KM600 and 
p ∼ Normal(µX , 0.04) , µX ∼ Uniform(0.32, 0.62) , for each N ∼ Uniform({1, 2, . . . , 20}) calls for KM′600 . Con-
sequently, the number of edges in the graphs from KM600 and FCA600 are sharply concentrated around its mean 
whereas KM′600 and FCA′600 have much greater overall variance in the number of edges (see Table 3). For the 
varied node datasets, FCA′′600 and KM′′600 , we kept p distributed in the same way as done for KM′600 FCA

′
600 , but for 

each N ∼ Uniform({1, 2, . . . , 20}) calls of adding shortcut edges, but additionally varied the number of nodes 
as n ∼ Uniform({300, 301, . . . , 600}) . In this case, both the number of nodes and edges have relatively greater 
variation compared to the other datasets.

We omit the GHM from this experiment because the dynamics are extremely prone to non-synchronization as 
a network has more cycles45. Hence, for these large graphs, almost all GHM dynamics will be non-synchronizing. 
For instance, for the same set of networks we used to generate the FCA600 dataset (consisting of 40K networks of 
600 nodes), none of the GHM dynamics synchronized. Hence, there is no meaningful classification problem to 
be discussed since the presence of synchronizing graphs that follow this model is extremely sparse.

Scaling up by learning from subgraphs.  In this subsection, we discuss a way to extend our method for 
the dynamics prediction problem simultaneously in two directions; (1) larger graphs and (2) a variable number 
of nodes. The idea is to train our dynamics predictor on subsampled dynamics of large graphs (specified as 
induced subgraphs and induced dynamics), and to combine the local classifiers to make a global prediction. 
In the algorithm below, f (XT ) := 1(XT is concentrated) , and if Xt is a phase configuration on G = (V ,E) and 
Gi = (Vi ,Ei) is a subgraph of G, then Xt |Gi denotes the restriction v  → Xt(v) for all v ∈ Vi.

Results
Regardless of the three models of coupled oscillators and selected binary classification algorithm, we find that 
our method used to address Q1 and Q2 on average shows at least a 30% improvement in prediction performance 
compared to this concentration–prediction baseline for dynamics on 30 node graphs. In other words, our results 
indicate that the concentration principle applied at each configuration is too conservative in predicting synchro-
nization, and there might be a generalized concentration principle that uses the whole initial dynamics, which 
our machine learning methods seem to learn implicitly.

Using Algorithm 1 for Q3, we achieve an accuracy score of over 85% for predicting the commonly studied 
Kuramoto model on 600 node graphs by only using four 30-node subgraphs where the corresponding baseline 
gets 55% accuracy. In particular, we observe the baseline with locally observed initial dynamics tends to misclas-
sify non-synchronizing examples as synchronizing, as locally observed dynamics can concentrate in a short time 
scale while the global dynamics do not.

Synchronization prediction accuracy for 15–30 node graphs.  We apply the four binary classifica-
tion algorithms for the six 15–30 node datasets described in Table 2 in order to learn to predict synchronization. 
Each experiment uses initial dynamics up to a variable number of training iterations r that is significantly less 
than the test iteration T, and the goal is to predict whether each example in the dataset is synchronized at an 
unseen time T. We also experiment with and without the additional graph information described in Table 2 in 
order to investigate the main questions Q1 and Q2, respectively. We plot prediction accuracy using four clas-
sification algorithms (RF, GB, FFNN, LRCN) and the baseline predictor versus the training iteration r, with and 
without the graph features. The problem of synchronization prediction becomes easier as we increase the train-
ing iteration r, as indicated by the baseline prediction accuracy in Fig. 5. For instance, for KM30 , there is no trivi-
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ally synchronizing example at iteration 0, and but about 10% of the synchronizing examples will have become 
phase-concentrated by iteration r = 25.

Now we discuss the results in Fig. 5. As we intended before, for the six datasets in Table 2, classifying only 
with the basic graph statistics achieves an accuracy of 60–70% in comparison to 100% as in the experiments in 
Figs. 2 and 3. This is shown by the gray horizontal lines in Fig. 5, which indicates the classification accuracy of 
FFNN trained only with the same five basic graph statistics used before. This indicates that we may need to use 
more information on the data points in order to obtain improved classification accuracy. One way to proceed 
is to use more graph statistics such as clustering coefficients46, modularity47, assortativity48, eigenvalues of the 
graph Laplacian49, etc.

Instead, aiming at investigating Question Q1, we proceed by additionally using dynamics information, mean-
ing that we include the initial dynamics, (Xt)0≤t≤r , up to a varying number of training iteration r. These results are 
shown in the first and the third columns in Fig. 5. At r = 0 , the input consists of five graph statistics we considered 
before—number of edges, min degree, max degree, diameter, number of nodes—as well the initial configuration 
X0 with its quartiles. In all cases, all four binary classifiers trained with initial dynamics significantly outperform 
the concentration principle baseline. The classifiers RF, GB, and FFNN show similar performance in all cases. 
On the other hand, the GraphLRCN in some cases outperforms the other classifiers, especially so with GHM on 
30 nodes. For instance, when r = 20 , 10 and 4 for KM30 , FCA30 and GHM30 , respectively, GraphLRCN achieves 
a prediction accuracy of 73% (baseline 55% , 1.25% concentrates), 84% (baseline 52% , 1% concentrates) and 96% 
(baseline 50% , 0% concentrates), respectively.

Now that we have seen that initial dynamics can be used along with the basic graph features to gain a signifi-
cant improvement in classification performance, we take a step further and see how accurate we can be by only 
using the initial dynamics, in relation to Question Q2. That is, we drop all graph-related features from the input, 
and train the binary classifiers only with the initial dynamics up to varying iteration r. The results are reported in 
the second and the fourth columns in Fig. 5. Since now the classifiers are not given any kind of graph informa-
tion at all, one might expect a significant drop in the performance. However, surprisingly, except for the dataset 
KM30 , the classification accuracies are almost unchanged after dropping graph features altogether from training.

In addition, note that for FCA15 and FCA30 , training all four classifiers on only training iterations of r = 3 and 
r = 5 , respectively, without any graph features, produces a prediction accuracy of at least 70% . In this case, the 
baseline achieves only 50% , meaning that no synchronizing example is phase-concentrated by a given amount 
of training iterations. Similarly, for KM15 , training all four classifiers on only training iterations of r = 5 , without 
any graph features, produces a prediction accuracy of about 77% . In this case, the baseline achieves only 52% , 

Figure 5.   Synchronization prediction accuracies of four machine learning algorithms for the KM, FCA, 
and GHM coupled oscillators synchronization. For each of the six datasets in Table 2, we used 5-fold cross-
validation with 80/20 split of test/train. Accuracy is measured by the ratio of the number of correctly classified 
examples to the total number of examples. Algorithms for the second and the fourth columns are trained only 
with dynamics up to various iterations r indicated on the horizontal axes, whereas the other two columns also 
use additional graph features. r = 0 in the ”with Features” columns indicates the input consisting of initial phase 
configuration X0 and its quartiles paired with the five graph statistics of number of edges, min degree, max degree, 
diameter, number of nodes. The gray dashed line represents training FFNN only on the five graph statistics. 
Hence its accuracy is constant with respect to the varying number of training iterations.
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so only 10% of all synchronizing examples are phase-concentrated by iteration r (see the formula for baseline 
accuracy in the section on baseline predictor). This indicates that there may be some evidentiary condition for 
synchronization on the initial dynamics, which is different from half-circle concentration. A further investigation 
is due to exactly pin-point what such an evidentiary condition for synchronization might be.

We give multiple additional remarks on the experiments reported in Fig. 5. First, we see that the KM30 dataset 
is adversely affected without the use of the graph features, and beginning at r = 0 , we only achieve 50% accu-
racy initially. This is further discussed in “Discussion” section along with a systematic analysis of the statistical 
significance of the features to the classification accuracy in more detail.

Second, the GraphLRCN binary classifier is offset with respect to the other algorithms as it is fed dynamics 
information encoded into the adjacency matrix of the underlying graph (see Eq. (5) in SI), so it cannot be trained 
only with the initial dynamics information. Oftentimes, GraphLRCN begins below the classical algorithms but 
is able to outperform them in intermediate iterations, but by the final training iteration, there is only a negligible 
difference in the performance over different classifiers.

Third, one may be concerned that the few selected graph features we use for training may not give enough 
information about the given classification tasks, and whether including further graph features may change the 
results significantly. We remark that GraphLRCN uses the entire graph adjacency matrix as part of the input 
(see the SI), so technically it uses every possible graph feature during training. In Fig. 5, it does show somewhat 
improved performance on 30 node graphs with the FCA and the GHM dynamics, but virtually identical results 
for the Kuramoto dynamics. On the other hand, its performance is diminished for 15 node graphs. This may be 
due to the fact that the training data for 15 node graphs is not rich enough to properly train GraphLRCN, which 
is a significantly more complex classification model combining convolutional and recurrent neural networks 
than the other classification models we use.

Fourth, in order to investigate the impact of the actual amount of graphs that were used in the datasets with 
respect to our experiments, we perform an additional experiment on the 30 node case, in which we subsample 
10 K and 40 K balanced datasets from our 80 K sets to see if we get similar performance to Fig. 5, where the full 
datasets of 80 K examples are used. As seen in Fig. S3 in the SI, we can see that most methods show a significantly 
better accuracy than the baseline, with the exception of the GB and FFNN methods for KM30 without graph 
features. We see however that the accuracies between different methods become almost identical as we increase 
the number of training iterations. We note that with only a subsampled portion of the datasets being used, we see 
larger differences in accuracy between the methods themselves, which contrasts with Fig. 5, where all methods 
were rather saturated and displayed very similar accuracy across all iterations.

Synchronization prediction accuracy for 300–600 node graphs.  In this section, we investigate 
Question Q3, which is to predict synchronization only based on local information observed on select subgraphs. 
Note that this is a more difficult task than Q2, since not only may we not have information about the underly-
ing graph but we also may not have observed the entire phase configuration. For example, the dynamics may 
appear to be synchronized at a local scale (e.g., on 30-node connected subgraphs), but there are still large-scale 
waves being propagated and the global dynamics are not synchronized. Nevertheless, we can use the ensemble 
prediction method (Algorithm 1) to combine decisions based on each subgraph to predict the synchronization 
of the full graph.

In Figs. 6 and 7, we report the synchronization prediction accuracy of the ensemble predictor (Algorithm 1) 
on datasets FCA600 , FCA′600 , FCA

′′
600 , and KM600 , KM′600 , KM

′′
600 , respectively, described in Table 3. We used Algo-

rithm 1 with n0 = 30 (amount of nodes in the subgraphs) and k ∈ {1, 2, 4, 8} ( # of subgraphs). The binary clas-
sification algorithm we used is FFNN. We chose FFNN because as seen in Fig. 5, there is no significant difference 
in accuracies between all methods used in the 30 node case. Furthermore, we can not use the GraphLRCN model, 
as this method relies on knowing the dynamics and adjacency matrices of the underlying subgraphs. As the 
baseline, we use a slight modification of the baseline predictor from the 15–30 node classification task. Namely, 
we combine all phase values observed on all k subgraphs and predict synchronization if they satisfy the concen-
tration principle otherwise we flip a fair coin. Note that the concentration of phases observed on subgraphs does 
not imply synchronization of the full system, as the full phase configuration may not be concentrated.

So far we have been using the metric of accuracy for our synchronization prediction task, which is defined 
as the ratio of the correctly predicted synchronizing and non-synchronizing examples to the total number of 
examples in the dataset. There are multiple ways that this metric could be low, for example, if an algorithm is 
overly conservative and misses lots of synchronizing examples or in the opposite case it may incorrectly clas-
sify lots of non-synchronizing examples. In order to provide better insights on these aspects, we also report the 
performance of our method (Algorithm 1) and the baseline in terms of precision and recall. Here, precision is 
formally defined as the proportion of positive classifications that are correct, or TP

TP+FP , where TP is “true positive” 
and FP is “false positive”. In our problem, this corresponds to what proportion of predictions in synchroniza-
tion was truly correct. Recall is formally defined as the proportion of accurately identifying true labels in the 
data, or TP

TP+FN  , where FN is “false negative”. Again with respect to our prediction problem, measuring recall 
corresponds to how well a given algorithm, ensemble, or baseline, correctly identifies synchronization behavior 
when presented with synchronizing data.

Our accuracy results for both the ensemble method and baseline are presented in Figs. 6 and 7 for Kura-
moto and FCA models, respectively. In these figures, the first columns represents the results for the datasets 
{KM,FCA}600 with fixed number of nodes (600) and relatively smaller variation of edge counts (std ≈ 20, 38 , 
respectively); the second columns for the datasets {KM,FCA}′600 with fixed number of nodes (600) and relatively 
larger variation of edge counts (std ≈ 80, 2371 , respectively); and the third for the datasets {KM,FCA}′′600 with 
varied number of nodes (std ≈ 86 ) and relatively larger variation of edge counts (std ≈ 1461, 56 , respectively). 
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Figure 6.   Accuracy curves for predicting synchronization of the Kuramoto model on 600-node graphs from 
dynamics observed from k ∈ {1, 2, 4, 8} subgraphs of 30 nodes. All plots observe the performance of both 
the ensemble machine learning (solid) and baseline (dashed) accuracies over increasing amounts of training 
iterations r ∈ {0, 80, 240, 320, 400} . The first row shows results using only dynamics whereas the second row 
includes both the dynamics and graph features. Maximum accuracies for using k subgraphs are given by ‘k-sub: 
Acc. (Baseline Acc.)’

Figure 7.   Accuracy curves for predicting synchronization of 5-color FCA on 600-node graphs from dynamics 
observed from k ∈ {1, 2, 4, 8} subgraphs of 30 nodes. See the caption of Fig. 6 for details.
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The first rows of both figures represent prediction accuracies using exclusively dynamics data, and the second row 
utilizes both dynamics and graph features. In the SI, Figs. S4 and S5 show the recall and precision curves of the 
ensemble and baseline methods with the same row and column orientation as the accuracy figures representing 
different graph datasets and subsets of features. For the Kuramoto data in Fig. 6, we applied the ensemble and 
baseline algorithms cumulatively up to training iterations r = 0, 80, 160, 240, 320 and 400; and for the FCA data in 
Fig. 7, we applied the ensemble and baseline algorithms cumulatively up to training iterations r = 0, 10, 20, 30, 40 
and 50 (Note that using r = 0 means fitting the prediction algorithms at the initial coloring). We additionally 
remark that these curves were averaged over 30 train-test splits with 80% training and 20% testing.

Across all datasets considered, we see that our ensemble method consistently outperforms the baseline 
method in accuracy at training iterations r = 400 for Kuramoto and r = 50 for FCA. For example, across all 
Kuramoto datasets and feature subsets by the last iteration, r = 400 , the ensemble method on a single subgraph 
outperforms the baseline algorithm on eight subgraphs; the best that the baseline algorithm does is 60.42% accu-
racy compared to the 91.96% for the ensemble method’s best accuracy. For FCA, the baseline accuracy is 70.29% 
compared to the best ensemble method score of 85.79%, both on eight subgraphs. Considering the recall and 
the precision plots in Figs. S4 and S5 in the SI gives a more detailed explanation. Namely, the ensemble method 
significantly outperforms the baseline in the recall by at least 35%, whereas it performs relatively worse in preci-
sion than the baseline by at most 10% for both Kuramoto and FCA with k = 8 subgraphs except for the datasets 
KM600 . This means the baseline is ‘too conservative’ in the sense that it misses correctly classifying a large number 
of synchronizing examples. From this, we deduce that a large number of synchronizing examples exhibit phase 
concentration over subgraphs much later in the dynamics—making early detection through phase concentra-
tion difficult. On the contrary, the high recall scores of the ensemble methods indicate that our method can still 
detect most of the synchronizing examples by only using local information observed on the selected subgraphs. 
To elaborate, the baseline only determines phase concentration at a single point in time, whereas the ensemble 
method is able to learn the whole variation of dynamics up to iteration r. Furthermore, between training our 
data on dynamics only, versus dynamics and graph features, across accuracy, recall, and precision curves, the 
inclusion of graph features hardly improves the maximum score of these values.

Finally, for both the Kuramoto model and FCA, we observe that high variation of the node and edge counts 
boosts all performance metrics of accuracy, recall, and precision. For example, for the recall curves we see that 
for varied edge count, compared to fixed edge count, the recall is considerably higher than fixed edge count by 
iteration r = 400 , comparing a recall rate of 0.8755 and 0.9759 for 8 subgraphs. Furthermore, the performance 
gain in introducing a larger variation of node and/or edge counts is significantly larger for the Kuramoto model 
than for FCA. We speculate that having a larger variation of node and edge counts within the dataset presum-
ably implies a better separation between the synchronizing and the non-synchronizing examples in the space of 
initial dynamics. We remark that the performance gain here is not due to a better separation between the classes 
in terms of the graph features, as we can see by comparing the first and the second rows of all figures (Figs. 6, 7 
and also Figs. S4 and S5 in the SI).

Discussion
In Fig. 5, observe that not using the additional graph features as input (column 4) decreases the prediction 
accuracy from 70 to 50% for the case of KM30 at initial training iteration r = 0 , but there is no such significant 
difference for the discrete models FCA30 and GHM30 . In fact, in all experiments we perform in this work (those 
reported in Figs. 5, 6, 7 and Figs. S4 and S5 in the SI), this is only instance that we see that including the graph 
features during training affects the prediction accuracy.

In order to explain why this is the case, we compare the statistical significance of the all features (including 
the initial coloring) we use for the prediction task. We do so by computing the Gini indexes of all features by 
repeating the prediction experiment over 300 train/test splits of the datasets KM30 , FCA30 , GHM30 using GB for 
the choice of binary classifier. The analysis using GB will be representative of all other binary classifiers since 
there are negligible differences in their performance in Fig. 5.

As mentioned before, the procedure works by fitting random subsets of features and iteratively growing 
decision trees; it also records what is known as the Gini index50 over each consecutive partition through mul-
tiple training iterations. As decision trees split the feature space, the Gini index measures total variance across 
class labels—in our case, synchronizing v.s. non-synchronizing—over each partition. Allowing the supposition 
that synchronization can be modeled through our graph features data using the gradient boosting method, 
observing the mean decrease in the Gini index across decision trees allows us to infer feature importance for 
synchronization over different models and graphs (see Fig. 8). See, Hartman et al.50 for more discussions on GB 
and computing the Gini index.

Interestingly, the discrete models of FCA and GHM place significantly greater importance on color statistics 
such as the initial quartile colorings, and less importance on graph features such as diameter and minimum and 
maximum degree. Note that the initial color statistics can be directly computed from the initial dynamics even 
at training iteration r = 0 , so this explains that there is no significant performance difference in prediction accu-
racy for the discrete models in Fig. 5. On the contrary, the Kuramoto model puts greater importance on graph 
features such as diameter and number of edges rather than the initial color statistics, and such graph features 
are not available from the information given by the initial dynamics at training iteration r = 0 . From this, we 
can see why our algorithms show low prediction accuracy in the case of KM30 . In addition, we note that there is 
only a negligible difference in prediction accuracy for KM15 in Fig. 5. We speculate that this is because for KM15 , 
as we see in Table 2, having only 15 nodes does not allow to have a significant variation in the diameter and the 
edge counts of the graphs in the dataset.
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Lastly, we remark that the synchronization behavior of the Kuramoto model on complete graphs is well-
understood in the literature on dynamical systems1,2,6. In our experiments, we observed that graphs with small 
diameters tend to be synchronized, and this aligns with the literature since graphs with the same number of 
nodes but with smaller diameters are closer to complete graphs.

Conclusion
Predicting whether a given system of coupled oscillators with an underlying arbitrary graph structure will 
synchronize is a relevant yet analytically intractable problem in a variety of fields. In this work, we offered an 
alternative approach to this problem by viewing this problem as a binary classification task, where each data 
point consisting of initial dynamics and/or statistics of underlying graphs needs to be classified into two classes 
of ‘synchronizing’ and ‘non-synchronizing’ dynamics, depending on whether a given system eventually syn-
chronizes or converges to a non-synchronizing limit cycle. We generated large datasets with non-isomorphic 
underlying graphs, where classification only using basic graph statistics is challenging. In this setting, we found 
that pairing a few iterations of the initial dynamics along with the graph statistics as the input to the classifica-
tion algorithms can lead to significant improvement in accuracy; far exceeding what is known by the half-circle 
concentration principle in classical oscillator theory. More surprisingly, we found that in almost all such settings, 
dropping out the basic graph statistics and training our algorithms with only initial dynamics achieves nearly the 
same accuracy. Finally, we have also shown that our methods are scale well to large underlying graphs by using 
incomplete initial dynamics only observed on a few small subgraphs .

Drawing conclusions from our machine learning approaches to the synchronization prediction problem, we 
pose the following hypotheses:

•	 The entropy of the dynamics of coupled oscillators may decay rapidly in the initial period to the point that 
the uncertainty of the future behavior from an unknown graph structure becomes not significant.

•	 The concentration principle applied at any given time is too conservative in predicting synchronization, and 
there might be a generalized concentration principle that uses the whole initial dynamics, which our machine 
learning methods seem to learn implicitly.

Given that our machine learning approach is able to achieve high prediction accuracy, we suspect that there may 
be some analytically tractable characterizations on graphs paired with corresponding initial dynamics signaling 
eventual synchronization or not, which we are yet to establish rigorously. As mentioned at the end of “Related 
works” section, previously known characterizing conditions include the initial vector field on the edges induced 
by the initial color differential for the 3-color GHM and CCA​26, as well as the number of available states being 
strictly less than the maximum degree of underlying trees for FCA10,27. Designing similar target features into 
datasets and training binary classification algorithms could guide the further analytic discovery of such condi-
tions for the coupled oscillator models considered in this work.

Furthermore, even though we have focused on predicting only two classes of the long-term behavior of 
complex dynamical systems as only synchronizing and non-synchronizing dynamics, our method can readily be 
extended to predicting an arbitrary number of classes of long-term behaviors. For instance, one can consider the 
κ-state voter model on graphs, where the interest would be the final dominating color. In such circumstances, one 
can train κ-state classification machine learning algorithms on datasets of non-isomorphic graphs. We can also 
consider extending our method to be able to predict synchronization on a network based on parameter control. 
For instance, we can train many different trajectories on a singular graph using different intrinsic frequencies in 
the Kuramoto model, and learn to predict what range of values of intrinsic frequencies promote synchronization.

Figure 8.   Boxplots of Gini index values sampled from gradient boosting procedure. Color information appears 
to be very important according to the distribution of Gini index values in both the FCA and GH models, 
discrete cellular automata models, and diameter overwhelmingly appears to have the greatest importance for 
Kuramoto.
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Finally, a more ambitious task beyond long-term dynamic behavior quantified by a single metric is the 
potential extension of our methods to full time-series and graph state regression. In other words, if each node in 
the graph represents an individual in an arbitrary social network, can we predict the sentiment level for a given 
topic at any given time t for every single individual in that particular social network? One can again generate 
large overarching social networks and run many simulations of sentiment dynamics with many possible edge 
configurations between individuals (for example, measured by the number of mutual friends or likes/shares of 
posts on social media). The ultimate goal would be a framework for learning to predict, with precision, entire 
trajectories of complex dynamical systems.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Code availability
The codes for the main algorithm used during the current study are available in the repository https://​github.​
com/​richp​aulyim/​L2PSy​nc.
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