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Practical counting of substitutive 
paths on a planar infrastructure 
network
Yukio Hayashi1* & Atsushi Tanaka2

When there are many non-intersecting paths between two vertices on a network, the connectivity 
is fault-tolerant. Because of no common vertices on these paths, they can be emergently used in 
avoiding destroyed parts on the usual paths by any disasters or attacks. It gives a tolerance index 
whether the combination of non-intersecting paths is many or few. However, to enumerate such paths 
is an intractable combinatorial problem, no practical algorithm has been known. On the other hand, 
many socio-technological infrastructure networks are embedded on the surface of Earth. Thus, as an 
approximate solution, we extendedly apply the counting method based on a path matrix with our 
proposed mapping to directed acyclic graphs from a planar network according to each pair of source 
and terminal vertices. The tendency of many or few combinations of the paths is clearly investigated 
through computer simulations for realistic networks. This approach will be useful for evaluating the 
existence of substitutive paths to improve the tolerance in risk management.

The resilience has attracted much attention pointed out as follows1. The state-of-the-art in the study of the resil-
ience of complex systems is to see resilience as the ability to withstand and recover from some specific shock1–3. 
The ability to withstand shocks is often referred to as robustness4,5 and is often seen as a structural component of 
the resilience of a system. In this case, it could correspond to the connectivity of the network through non-inter-
secting paths. The ability to recover basic function of networking from shocks is instead a dynamical property6,7. 
It requires time to be accounted for and is not part of the study in this article. For example, in this case, it could 
refer to the time it takes the network to switch to an alternative available path or create a new one to re-establish 
connectivity. In other words, if substitutive paths between two vertices exist, they can be emergently used just 
after unspecified disasters or attacks.

We discuss the robustness of path between two end vertices, whose combination number of substitutive 
paths is changeable according to the selection of end vertices. Our problem setting for the changeable number 
differs to discuss the percolation or robustness of whole connectivity against random failures in bicomponent8 or 
component of k-connectivity9 as a set of vertices such that every pair of vertices has at least 2 or (a fixed) k node-
disjoint paths. In the previous studies, the importance of edge for disconnecting a network is evaluated by using 
the ratio cut partitioning10,11. Since the minimum ratio cut problem is NP-hard12 with the constraint of integer 
values as the selection number of vertices for partitioning, it is relaxed with real values to analyze the Laplacian 
of graph. In the approximation, a given graph is divided into two parts by cutting (removing) the most vulnerable 
minimum edges whose end-vertices have positive and negative signs of the eigenvector’s elements for the second 
smallest eigenvalue of the Laplacian13. However, in this method, we can not discriminate whether substitutive 
paths between two vertices exist or not. Thus, we aim to investigate the number of non-intersecting paths which 
give the possibility of passing through undamaged vertices and edges as a measure of bypass effect, when a usu-
ally worked path is disconnected by partial removals after any disasters or attacks. Here, non-intersecting paths 
means that there are no common vertices and edges on each other’s path.

On the other hand, to determine the existence of non-intersecting paths is also called disjoint paths problem 
in computer science for a given vertex sets of source {s1, s2, . . . , sk} and terminal {t1, t2, . . . , tk} in a graph. This 
problem is known as NP-complete14 for a fixed integer variable k ≥ 2 even in a planar undirected graph. Although 
only the existence of polynomial-time algorithm has been shown, it is unfamiliar and incomprehensible except for 
graph theory researchers because of its great length proof (with more than hundred pages in series papers) based 
on the difficult theorems in graph minors15. Moreover, no practical algorithm has been known even for k = 316. 
In a naive method, all combinations of the vertices are checked on k candidates of paths to be non-intersecting, 

OPEN

1Japan Advanced Institute of Science and Technology, Graduate School of Advanced Institute of Science and 
Technology, Nomi  923‑1292, Japan. 2Yamagata University, Graduate School of Science and Engineering, 
Yonezawa 992‑8510, Japan. *email: yhayashi@jaist.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-18927-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14673  | https://doi.org/10.1038/s41598-022-18927-w

www.nature.com/scientificreports/

this is obviously inefficient and practically intractable with huge computation. Thus, as another approach, we 
focus on the counting method applied to Young tableaux or plain partitions in mathematical physics related to 
representation theory or combinatorics. Because we can use a theorem that the combination number of non-
intersecting paths is given by the determinant of a path matrix with total positivity17. However, since the targets 
of this counting based on a path matrix are only directed acyclic graphs, we must develop a mapping in order to 
apply it for counting the number of non-intersecting paths on a given network as undirected planar graph. Our 
key idea is that the direction of edge is not fixed but temporally assigned for each pair of source and terminal 
vertices. In application point of view, a reason of considering planar graphs is that many infrastructure networks, 
such as power-grid, gas-pipeline, water-supply, transportation, and communication systems, are constructed on 
the surface of Earth, therefore considered as planar graphs conceptually.

Results
At first, we summarize symbols used in this paper as shown in Table 1.

We briefly explain the outline of experiments. The top in Fig. 1 shows combinations of non-intersecting 
paths, which we want to count the number. The colored paths by blue or green and red or magenta have no 
common vertices. For any pairs of source and terminal vertices denoted by s and t, we consider k = 2, 3, . . . 
non-intersecting paths between si ∈ ∂s and tj ∈ ∂t . Figure 2a shows that s1, . . . , sk and t1, . . . , tk are chosen by 
the basic process in our method explained later. Non-intersecting paths between them must pass through dif-
ferent vertices from s1, . . . , sk to t1, . . . , tk as start and end points, respectively, since no common vertex on the 
paths is necessary except s and t. Therefore, the maximum k is smaller number of |∂s| or |∂t| . Here, ∂s denotes a 
set of the connecting nearest-neighbors of s, |∂s| is the size as its degree (the number of edges emanated from s). 
Moreover, to make detour routes as shown in Fig. 2b, the neighbors can be extended from the nearest ones {si} 
or {tj} to the next-nearest ones {s′i} or {t′j } (or next-next-nearest, next-next-next-nearest ones if necessary). Thus, 
our experiments are to find the combination number of k non-intersecting paths for each of N(N − 1)/2 pairs 
as s and t in a given planar network with N vertices. Note that the number of paths from s to t is equal to that 
from t to s by symmetry on an (undirected) network.

We investigate non-intersecting paths for the following two test cases of realistic infrastructure networks. 
The first test case is a network defined by neighborhood relations of countries in Europe18 (see Supplementary 
Fig. S1 online for the visualization). It is supposed to be used for emergent transportation of relief supplies by 
land. Although an edge between two countries is simplified as a straight line, it actually consists of complexly 
connecting several roads. As a reason to simplify them, we consider that each line between two countries is 
corresponded to the minimum required immigration check or agreement to pass for emergent transportation. 
We use the two-letter codes19 for representing countries in Europe, although some countries are omitted in the 
following exceptions.

•	 Small countries on national border Andora, Republic of Kosovo, San Marino, Status Civitatis Vaticanae, 
Monaco, Liechtenstein.

•	 Only one edge to its connecting neighbor, no substitutive path Spain, Denmark, Portugal.
•	 Island countries without land continuation Cyprus, Iceland, Ireland, United Kingdom, Malta.

Figure 3 shows the combination numbers of (Top) k = 2 and (Bottom) 3 non-intersecting paths between two 
countries by land in Europe. In particular, as colored by dark blue, there are many combinations of k = 2 or 3 

Table 1.   Symbol table.

Notation Description

N Number of vertices

M Number of edges

k Fixed number of non-intersecting paths

s Source vertex for a path

t Terminal vertex for a path

∂s Set of the neighbors of vertex s

|∂s| Size of ∂s

s1, s2, . . . , sk Some vertices chosen from the nearest or next-nearest neighbors of s

t1, t2, . . . , tk Some vertices chosen from the nearest or next-nearest neighbors of t

SI-IT-FR Path through vertices of countries or other indices SI, IT, and FR in this order

SI ∼ FR Paths between SI and FR

P, Q Path between vertices

P(si , tj) Set of paths from si to tj
wij i-j element of path matrix W

detW Determinant of matrix W

�iLii Product of the diagonal elements Lii of matrix L

u → v Vector from u to v
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non-intersecting paths between a few countries in the west and the east of Europe. While as colored by red, no 
substitutive path exists between some countries mainly in the west and the south of Europe (see Supplementary 
Information online for the detail list). Between these countries, one of the counterplans for the vulnerability of 
connection by land may be enhancement of air-routes. In such a table of the combination numbers, each value 
at ij element in the upper triangle is smaller than that at ji element in the corresponding lower triangle, because 
the paths from si ∈ ∂s to tj ∈ ∂t are limitted without long detour paths. Note that the diagonal parts in Fig. 3 are 
omitted because of the meaningless case of s = t.

More specifically as an example, for three non-intersecting paths from s:SI to t:FR, the following three cases 
of chosen neighbors are investigated. 
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Figure 1.   Example of six combinations of two non-intersecting paths from sa to ta and from sb to tb . (Top-Left) 
A planar directed graph with pairs of k = 2 boundary vertices. (Top-Middle) One sa-ta path colored by red and 
its corresponding three sb-tb paths colored by blue. (Top-Right) Two sb-tb paths colored by blue or green and 
their corresponding sa-ta paths colored by red or magenta. Note that any two paths from sa to tb and from sb 
to ta are intersected. (Bottom-Left) From sa to ta or tb , (Bottom-Right) from sb to ta or tb , the numbers of paths 
calculated by token-passing in the “Methods” section. 1, 2, 3, 4, 6 are the numbers of reached tokens at the tips 
of arrows. They represent the numbers of paths which go through each edge from sa or sb.

Figure 2.   Basic process in the mapping to directed acyclic graphs from a planar network. (a) Parts of the 
connecting nearest-neighbors of s and t. Solid lines are connection edges. Dashed line represents the virtual s-t 
line segment. (b) Red dotted lines represent detour routes. s′1 and t ′1 are the next-nearest neighbors of s and t.
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1.	 s1:HU, s2:AT, s3:IT, and t1:DE, t2:CH, t3:IT, one combination of paths by detW =

∣

∣

∣

∣

∣

5 7 0

2 3 0

0 1 1

∣

∣

∣

∣

∣

= 1 , SI-HU-SK-

CZ-DE-FR, SI-AT-CH-FR, SI-IT-FR.

2.	 s1:HU, s2:AT, s3:IT, and t1:BE, t2:CH, t3:IT, three combinations of paths by detW =

∣

∣

∣

∣

∣

15 7 0

6 3 0

0 1 1

∣

∣

∣
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∣

= 3 , SI-HU-

SK-CZ-DE-BE-FR, SI-AT-CH-FR, SI-IT-FR. SI-HU-SK-CZ-DE-LU-BE-FR, SI-AT-CH-FR, SI-IT-FR. SI-
HU-SK-CZ-DE-NL-BE-FR, SI-AT-CH-FR, SI-IT-FR.

Figure 3.   Heatmap for the combination number of (Top) k = 2 or (Bottom) 3 non-intersecting paths on a 
planar network defined by neighboring countries in Europe. The right color bar indicates the number of paths 
from zero (white) to the maximum (blue) by gradation. The case of no substitutive path is emphasized by red. 
The upper triangle represents the numbers for choosing the nearest neighbors as start si and end tj points, while 
the lower triangle represents the numbers for choosing the next-nearest neighbors as start si and end tj points.
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3.	 s1:HU, s2:AT, s3:IT, and t1:LU, t2:CH, t3:IT, one combination of paths by detW =

∣

∣
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∣

∣

5 7 0

2 3 0

0 1 1

∣

∣

∣

∣

∣

= 1 , SI-HU-SK-

CZ-DE-LU-FR, SI-AT-CH-FR, SI-IT-FR.

The above sequence of codes with hyphens represents a path of connecting vertices in the order from left to 
right. The total combination number is 1+ 3+ 1 = 5 , whose value is written with white background on the 
bottom at the cross point of row SI and column FR in the upper triangle of Fig. 3(Bottom). Each element wij of 
path matrix W represents the number of paths between si and tj in the directed graph without edges of s-si and 
t-tj , 1 ≤ i, j ≤ 3 . The directed graph is mapped for a given pair of s:SI and t:FR, although the detail is explained 
in the “Methods” section. Other cases are investigated in the same way for choosing different s, t, s1, . . . , sk , 
t1, . . . , tk , and the value of k.

In addition, the existing cases of more than three non-intersecting paths are mainly in UA ∼ PL, UA ∼ DE, 
UA ∼ AT, PL ∼ DE, and SK ∼ AT. Here, s ∼ t denotes the paths between s and t (see Supplementary Fig. S2 online 
for the cases of k = 4, 5 ). However, k ≥ 6 paths are intersecting in our method for the first test case.

The second test case is a backbone communication network connected with cables in the main island of 
Japan20. Note that the vertices are numbering from 1 to 20 according to the locations, e.g. from north to south in 
omitting some vertices that have only one neighbor as a common gate on paths from each of these vertices. The 
exact locations of vertices and the visualization should be secret for avoiding to be targets of attacks chosen by 
terrorists or other malice. Figure 4 shows the combination numbers of (Left) k = 2 and (Right) 3 non-intersecting 
paths between two vertices in the communication network. However, k ≥ 4 paths are intersecting in our method 
for the second test case. As colored by dark blue, there are many combinations of k = 2 or 3 non-intersecting 
paths between the vertices: for k = 2 , 3−5 , 3−9 , 3−12 , 4−9 , 4−12 , 5 ∼ 12 , 6−9 , 6−12 , 9−10 , 10−12 in the lower 
triangle of Fig. 4(Left), and for k = 3 , 9−10 in the upper triangle, 9−10 , 10−11 , 10−12 in the lower triangle of 
Fig. 4(Right). While as colored by red, no substitutive path exists from each of vertices: 7, 17, 18, 19, 20, for which 
some sort of counterplans should be taken.

Figure 5 illustrates the combinations of three non-intersecting paths from 3 to 5. In this example, the follow-
ing two cases of chosen neighbors are investigated. 

1.	 s1:10, s2:6, s3:4, and t1:8, t2:7, t3:4, five combinations of paths by detW =

∣

∣

∣

∣

∣

5 0 0

1 1 0

1 1 1

∣

∣

∣

∣

∣

= 5,
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Figure 4.   Heatmap for the combination number of (Left) k = 2 or (Right) 3 non-intersecting paths on a 
backbone communication network in Japan. The right color bar indicates the number of paths from zero (white) 
to the maximum (blue) by gradation. The case of no substitutive path is emphasized by red. The upper triangle 
represents the numbers for choosing the nearest neighbors as start si and end tj points, while the lower triangle 
represents the numbers for choosing the next-nearest neighbors as start si and end tj points
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Thus, the total combination number is 5+ 5 = 10 , whose value is written with light blue background on the top 
at the cross point of row 3 and column 5 in the upper triangle of Fig. 4(Right). We remark that blue paths are 
broken in Fig. 5, if a vertex 8, 9 or 10 is attacked and removed. However, red and green paths are remained, the 
connectivity between vertices 3 and 5 is sustained because of non-intersecting at the damaged point. We consider 
the robustness of paths as this meaning.

In this way, we have investigated the combination number of k = 2, 3, 4, 5 non-intersecting paths through 
computer simulations for realistic networks of countries by land in Europe and of backbone communication sys-
tem in Japan. In particular, the tendency of many or few combinations of substitutive paths are found as follows.

•	 Many substitutive paths between some countries in the west and the east of Europe
•	 No such paths between some countries in the west and the south of Europe, when long detour paths are 

limited without the extension to the nearest neighbors of s or t
•	 Similar tendency in some parts colored by blue and red in Fig. 4 for the backbone communication network

The above results exhibit the existing of substitutive paths, as mentioned in the next section, it becomes an issue 
how many non-intersecting paths is usable after what types of damages.

In summary, in taking into account the construction of infrastructure networks on the surface of Earth, we 
have extendedly applied the counting method21 of non-intersecting paths based on the path matrix for a directed 
acyclic graph. This application provides not exact but approximate solutions for counting substitutive paths 
between two vertices, in adaptive mapping the directions of edges for each pair of s and t on a planar network. 
However, it does not give an approximation guarantee theoretically, while the origin of NP-hardness is related 
to that each edge has two directions possibly. Therefore there are 2M directed graphs in the search space. For 
example in the test cases of countries by land in Europe with N = 36,M = 74 and a backbone communication 
system in Japan with N = 25,M = 40 , the sizes are huge: 1022 and 1012 . It is intractable to get the exact solution 
as the ground truth. Remember that no practical algorithm is known16 for counting the combination numbers 
of k non-intersecting paths. Even as approximation, it becomes possible to count them in a planar network. This 
is an advantage of our method at the current stage. In other words, our approach may give the first step to open 
the door for counting them.

Discussion
For further studies, the following issues are considered, although the limitation of our method is still unknown.

First, to find longer detour paths, the further extension of {si} or {ti} is required from the nearest neighbors. 
However, there is a trade off how effective is the extension and more complex computations involving with the 
next-next, next-next-next, . . . neighbors of s or t. For an improvement, it is a challenge to detect some excluded 
Z-shaped paths (see Supplementary Fig. S1 online for the visualization, e.g. CZ-PL-SK-UA or BY-PL-UA-SK) 
in considering how to assign directions of edges or other technical ideas related to the extension of neighbors 
of s and t.

Second, some directed planar graphs can exist in reality, although we assume undirected ones in this paper. 
If some edges are removed to be a acyclic graph, we may apply our method to such cases in satisfying the fitness 
condition and a homeomorphic boundary to circle22. It will be also a further study to perform some experiments 
in more complex networks, such as power-grid, gas-pipeline, water-supply, supply-chain, wireless communica-
tion system, and so on, in order to emphasize the practical effect of our method.

Third, a method for counting the number of efficient paths has been discussed in a similar but different 
problem setting with link costs23. The efficient paths are considered within a small range beyond the shortest 
ones. This method has a polynomial time-complexity because of having link costs. Therefore, for the quantita-
tive evaluation, it can be not compared to our method. Although the minimizing link costs, such as distances or 
travel times, is one of the selections, the maintaining flows within capacities or other objectives are also possible. 
We wander what criteria is the optimal or sub-optimal, it is not uniquely determined in depending on a purpose 

Figure 5.   Example of k = 3 non-intersecting paths from 3 to 5. Three non-intersecting paths are colored by 
red, green, and blue. (Left) A part of directed graph, (Middle) five combinations of the paths, (Right) other five 
combinations of the paths. Note that only red line is different via vertex 2.
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of application for utilizing paths in transportation or communication. Apart from a general counting method 
on a planar network in this paper, the discussion involves what is desirable on what target system is considered.

Moreover, there are several robustness measures24, average efficiency defined by the shortest path length, 
algebraic connectivity related to the graph spectrum, and so on, instead of our measure of the connectivity 
through paths. Their analyses are different respectively. Since we aim to investigate a local property: which pairs 
of vertices have many or few substitutive paths, the above global measures of whole network seem to be not 
suitable. Even if we concentrate the connectivity through paths as the robustness, the following problems are 
happen. We assume that one of non-intersecting paths is emergently used as the substitutive path instead of a 
disconnected usual path by unspecific disasters or attacks, while as specific ones, many malicious attacks have 
been known: high degree attacks25, localized attacks (by removing a fraction of connected part)26, loop destruc-
tion attacks27, and others28,29 for giving strong damages to a network. It is important to investigate how many 
non-intersecting paths are remained after such attacks. The worst case called critical node detection (CND)30 is 
given by a set of vertices, whose removals minimize the connectivity of paths between vertices on the network. 
However, the CND problem becomes another NP-hard. Thus, the decreasing of the number of non-intersecting 
paths depends on the various types of attacks, further discussions are required through many computer simula-
tions or theoretical analyses if possible.

Methods
Brief review of path matrix.  We review the counting method of non-intersecting paths on a planar graph 
which is directed acyclic17. It has 2k boundary vertices of source and terminal, which are labeled counterclock-
wise as s1, s2, . . . , sk and tk , tk−1, . . . , t1 , respectively, on a homeomorphic boundary to circle. Each edge has 
a direction, e.g. from left to right or from top to down (see Fig. 2a again). Such a graph satisfies the fitness 
condition22:

if P ∈ P(si , tj) , Q ∈ P(sg , th) , i < g , and j > h , then any two paths P and Q are intersect,

where P(si , tj) denotes a set of paths from si to tj on the graph. This condition can be understood intuitively for 
a planar graph as follows. When si , sg , tj , and th are set on a circle’s circumference in the order of counterclock-
wise, the circle is divided into upper and lower parts by a path from si to tj . Then, since sg is on the lower circle’s 
circumference while th is on the upper circle’s circumference, any path from sg to th must be intersect (crossing) 
to the path from si to tj as the border line of division.

A k × k path matrix W is defined for a directed acyclic graph with 2k boundary vertices. Each element wij of 
W represents the number of paths from si to tj , which may be intersecting. For example in Fig. 1, it is given by

Thus, the combination number is six for two non-intersecting paths from sa to ta and from sb to tb at the top 
in Fig.  1. Each element wij are calculated by token-passing, such as w11 = 3+ 3 = 6 , w12 = 6+ 4 = 10 , 
w21 = 1+ 2 = 3 and w22 = 3+ 3 = 6 shown at the bottom in Fig. 1. The above matrix W has a property of 
totally positivity. In general, a matrix W is called totally nonnegative (or positive) if each of its minor determi-
nants is nonnegative (or positive)17,21. For example, this condition is unsatisfied when wkk = 0 , then sk has to be 
connected to a path to one of t1 . . . or tk−1 ; even if there exist one path from sk to t1 . . . or tk−1 and another path 
from s1 . . . or sk−1 to tk , these paths are intersect. A totally nonnegative matrix and its corresponding planar 
graphs are theoretically associated to the analysis of symmetric functions such as Schur polynomials17, however 
the related discussion is beyond our current scope of practice. For a planar graph, its corresponding nonnegative 
matrix is determined uniquely, while the existing of some planar graphs is possible for a nonnegative matrix in 
the one-to-many relations.

Returning to the remaining subject in our proposed method as mentioned later, we consider {si} and {ti} as sets 
of connecting neighbors of two vertices s and t at different locations. In this case, the number |∂s| or |∂t| of bound-
ary vertices is corresponded to a degree of vertex. Since the average degree is less than six in a planar graph31, it is 
expected that k, |∂s| , or |∂t| is a small constant. Note that the direct computation of determinant is O(k!) for any 
k × k matrix. However, even if k is large, a totally positive matrix can be factorized into a LU decomposition17

where L and U denote lower triangle and upper triangle matrices, Lii and Uii are their diagonal i-th elements. 
Then, the determinant is quickly computed with O(k). As the preprocessing, the additional computation of LU 
decomposition is O(k3) . We should remark that k is a given fixed integer, therefore the above evaluation becomes 
a constant multiplier for the time-complexity with respect to the size N or M.

How to count the combination number of non‑intersecting paths.  We propose a mapping to 
directed acyclic graphs from a given planar network. The directions of edges are changeable for chosen each pair 
of s and t. In the mapping, we must solve (1) how to assign a direction of edge, (2) how to define a k × k path 
matrix W, and (3) how to calculate the element wij . We assume that {si} ∩ {tj} = φ , si  = tj , s and t are not directly 
connected, otherwise the combination numbers of exceptional paths are counted in advance. For example, if 
there exist a direct path between s and t ( ∃ edge (s, t)) and another path of s-si-t via a common node si = tj , then 
instead of these exceptional two paths, the remaining k − 2 paths from ∂s to ∂t are investigated after removing 
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s, t, and si = tj to avoid passing through them on the other paths. In the following for the remaining paths, the 
connected part from ∂s to ∂t is mapped to a directed acyclic graph.

Let us consider si ∈ ∂s and tj ∈ ∂t for a pair of s and t on the network. Since a path matrix W is a k × k 
square, we set kdef= min{|∂s|, |∂t|} as the smaller degree of vertex. As shown in Fig. 2a, the default suffix number 
from 1 to |∂s| or |∂t| is assigned according to the location of vertex in the orthogonal direction to the s-t line 
segment in order to satisfy the fitness condition. When two subsets of k vertices are chosen from ∂s and ∂t , they 
are renumbered from 1 to k by filling missing numbers of unchosen vertices. The total combination number of 
non-intersecting paths is given by the sum of countings for all of the combinations |∂s|Ck × |∂t|Ck in choosing 
pairs of k vertices. In the case of choosing the next-nearest neighbors, a vertex in {s′i} (or {t′j } ) is chosen in cor-
responding to its connecting with the nearest neighbor si (or tj ) of s (or t). Usually, s′1, . . . , s

′
k and t ′1, . . . , t

′
k consist 

of different vertices. Here, the edges between s and si or t and tj are ignored (removed) and not used in calculating 
wij to avoid that they become common vertices in the non-intersecting paths.

Moreover, we consider the following greedy method without making cycles, which is slightly analogous to 
compass routing32 in computer science. In principle, there are 2M combinations of directions for the total M 
edges. However, in order to reduce the combinations, for an edge euv , one of two directions between its ends 
u and v is temporally assigned in ±90◦ to the s-t line segment. It can be checked by the inner-product of these 
vectors s → t and u → v (or v → u ) based on which direction is suitable. Because the angle is in ±90◦ , when 
the inner-product is positive. As exceptions, the directions from s to si and from tj to t are implicitly assumed 
to shape detour routes. Figure 2b illustrates detour routes. However this method excludes Z-shaped paths with 
mixing of forward and backward directional edges to the s-t line segment, therefore is not exact for counting 
paths. It gives just an approximate solution for practical use.

In the scope for the definition of W, the related vertices to the paths should be included in an area whose 
boundary encloses the chosen pair of k vertices. Remember that the boundary can take any form which is 
homeomorphic to circle. After assigning the directions of edges according to a chosen pair of s and t, if a path 
from s1 to t2 is passing through the outside of both virtual lines s1-t1 and t1-t2 (or more than two lines) on the 
quadrilateral s1-t1-t2-s2 (or polygon s1-t1-. . .-tk-sk-. . .-s2 ) as shown in Fig. 6, then the path-matrix is not able to be 
applied because of the unsatisfied fitness condition. When such an outer path is found in the above pre-checking, 
it is treated individually and the remaining paths that are non-intersecting with the outer one are counted, e.g. 
in the case of k = 2 (or k ≥ 3 ) after finding an outer path from s1 to t2 , the remaining non-intersecting path from 
s2 to t1 is explored (or in addition other k − 2 non-intersecting paths from s3 to t3 . . . from sk to tk are counted by 
using a path matrix).

On the above preparing, we calculate each element wij defined as the number of paths from si to tj which may 
be intersecting. It is easily obtained by using token-passing as shown in Fig. 7 according to the directions of edges 
assigned for each pair of s and t, since the sum of received tokens at each vertex is equal to the number of paths 
from the source to that vertex. Here, the received tokens are broadcasted to the vertices which are connected by 
its outgoing edges. The computation of a set {wij} of elements is evaluated as follows. From si to layered vertices 
by hops as shown in Fig. 7(Top), the primary tokens move on M edges at most. In addition, the number of some 
edges in a same layer is O(M) at most as shown in Fig. 7(Bottom), although they are few as expected. Each of 
these edges makes delayed flows on O(M) edges at most by the secondary, thirdly, . . . tokens. Thus, the total 
time-complexity is O(N2M2) estimated from O(N2) pairs of s and t times O(M2) by token-passing. Moreover, the 
token-passing is verified from the equivalence to a polynomial-time algorithm33. The graph is acyclic, therefore 
the passing process from si to tj is terminated eventually without keeping turn-round of tokens forever. This halt-
ing property is important to be a practically solvable problem for counting non-intersecting paths.

Finally, we summarize these processes as the outline. For each setting of k = 2, 3, . . . , the combination num-
ber of k non-intersecting paths is given by detW  in choosing subsets of k vertices from ∂s and ∂t , and it is 

Figure 6.   Example of an exceptional case. Solid lines are paths. Dashed virtual lines form a boundary.
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accumulated for all of the combinations of k vertices chosen as the subsets. We remark that the path matrix W 
and its elements wij are dynamically defined according to changeable directions of edges and chosen subsets of 
k vertices for each pair of s and t.

Data availibility
The data analyzed in this study are available from the corresponding author on reasonable request.
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