www.nature.com/scientificreports

scientific reports

W) Check for updates

Practical counting of substitutive
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When there are many non-intersecting paths between two vertices on a network, the connectivity

is fault-tolerant. Because of no common vertices on these paths, they can be emergently used in
avoiding destroyed parts on the usual paths by any disasters or attacks. It gives a tolerance index
whether the combination of non-intersecting paths is many or few. However, to enumerate such paths
is an intractable combinatorial problem, no practical algorithm has been known. On the other hand,
many socio-technological infrastructure networks are embedded on the surface of Earth. Thus, as an
approximate solution, we extendedly apply the counting method based on a path matrix with our
proposed mapping to directed acyclic graphs from a planar network according to each pair of source
and terminal vertices. The tendency of many or few combinations of the paths is clearly investigated
through computer simulations for realistic networks. This approach will be useful for evaluating the
existence of substitutive paths to improve the tolerance in risk management.

The resilience has attracted much attention pointed out as follows'. The state-of-the-art in the study of the resil-
ience of complex systems is to see resilience as the ability to withstand and recover from some specific shock!=.
The ability to withstand shocks is often referred to as robustness*® and is often seen as a structural component of
the resilience of a system. In this case, it could correspond to the connectivity of the network through non-inter-
secting paths. The ability to recover basic function of networking from shocks is instead a dynamical property®”.
It requires time to be accounted for and is not part of the study in this article. For example, in this case, it could
refer to the time it takes the network to switch to an alternative available path or create a new one to re-establish
connectivity. In other words, if substitutive paths between two vertices exist, they can be emergently used just
after unspecified disasters or attacks.

We discuss the robustness of path between two end vertices, whose combination number of substitutive
paths is changeable according to the selection of end vertices. Our problem setting for the changeable number
differs to discuss the percolation or robustness of whole connectivity against random failures in bicomponent® or
component of k-connectivity® as a set of vertices such that every pair of vertices has at least 2 or (a fixed) k node-
disjoint paths. In the previous studies, the importance of edge for disconnecting a network is evaluated by using
the ratio cut partitioning'®!!. Since the minimum ratio cut problem is NP-hard'? with the constraint of integer
values as the selection number of vertices for partitioning, it is relaxed with real values to analyze the Laplacian
of graph. In the approximation, a given graph is divided into two parts by cutting (removing) the most vulnerable
minimum edges whose end-vertices have positive and negative signs of the eigenvector’s elements for the second
smallest eigenvalue of the Laplacian'®. However, in this method, we can not discriminate whether substitutive
paths between two vertices exist or not. Thus, we aim to investigate the number of non-intersecting paths which
give the possibility of passing through undamaged vertices and edges as a measure of bypass effect, when a usu-
ally worked path is disconnected by partial removals after any disasters or attacks. Here, non-intersecting paths
means that there are no common vertices and edges on each other’s path.

On the other hand, to determine the existence of non-intersecting paths is also called disjoint paths problem
in computer science for a given vertex sets of source {s1, sy, ..., s} and terminal {t}, £, .., #} in a graph. This
problem is known as NP-complete' for a fixed integer variable k > 2 even in a planar undirected graph. Although
only the existence of polynomial-time algorithm has been shown, it is unfamiliar and incomprehensible except for
graph theory researchers because of its great length proof (with more than hundred pages in series papers) based
on the difficult theorems in graph minors'. Moreover, no practical algorithm has been known even for k = 3'°.
In a naive method, all combinations of the vertices are checked on k candidates of paths to be non-intersecting,

1Japan Advanced Institute of Science and Technology, Graduate School of Advanced Institute of Science and
Technology, Nomi 923-1292, Japan. ?Yamagata University, Graduate School of Science and Engineering,
Yonezawa 992-8510, Japan. ““email: yhayashi@jaist.ac.jp

Scientific Reports |

(2022) 12:14673 | https://doi.org/10.1038/541598-022-18927-w nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-18927-w&domain=pdf

www.nature.com/scientificreports/

Notation Description

N Number of vertices

M Number of edges

k Fixed number of non-intersecting paths

s Source vertex for a path

t Terminal vertex for a path

ds Set of the neighbors of vertex s

|0s] Size of ds

51,82,...,5 | Some vertices chosen from the nearest or next-nearest neighbors of s
Hotay ootk Some vertices chosen from the nearest or next-nearest neighbors of ¢
SI-IT-FR Path through vertices of countries or other indices SI, IT, and FR in this order
SI~FR Paths between SI and FR

P,Q Path between vertices

Psirty) Set of paths from s; to

wij i-j element of path matrix W

det W Determinant of matrix W

I;L;; Product of the diagonal elements L;; of matrix L

u—v Vector from u to v

Table 1. Symbol table.

this is obviously ineflicient and practically intractable with huge computation. Thus, as another approach, we
focus on the counting method applied to Young tableaux or plain partitions in mathematical physics related to
representation theory or combinatorics. Because we can use a theorem that the combination number of non-
intersecting paths is given by the determinant of a path matrix with total positivity'”. However, since the targets
of this counting based on a path matrix are only directed acyclic graphs, we must develop a mapping in order to
apply it for counting the number of non-intersecting paths on a given network as undirected planar graph. Our
key idea is that the direction of edge is not fixed but temporally assigned for each pair of source and terminal
vertices. In application point of view, a reason of considering planar graphs is that many infrastructure networks,
such as power-grid, gas-pipeline, water-supply, transportation, and communication systems, are constructed on
the surface of Earth, therefore considered as planar graphs conceptually.

Results
At first, we summarize symbols used in this paper as shown in Table 1.

We briefly explain the outline of experiments. The top in Fig. 1 shows combinations of non-intersecting
paths, which we want to count the number. The colored paths by blue or green and red or magenta have no
common vertices. For any pairs of source and terminal vertices denoted by s and ¢, we consider k = 2,3,...
non-intersecting paths between s; € ds and t; € dt. Figure 2a shows that s,...,sgand 1, .., t; are chosen by
the basic process in our method explained later. Non-intersecting paths between them must pass through dif-
ferent vertices from sy, ...,scto f,. .., f; as start and end points, respectively, since no common vertex on the
paths is necessary except s and t. Therefore, the maximum k is smaller number of |ds| or |3¢|. Here, ds denotes a
set of the connecting nearest-neighbors of s,|3s| is the size as its degree (the number of edges emanated from s).
Moreover, to make detour routes as shown in Fig. 2b, the neighbors can be extended from the nearest ones {s;}
or {tj} to the next-nearest ones s} or {#/} (or next-next-nearest, next-next-next-nearest ones if necessary). Thus,
our experiments are to find the combination number of k non-intersecting paths for each of N(N — 1) /2 pairs
as s and ¢ in a given planar network with N vertices. Note that the number of paths from s to ¢ is equal to that
from t to s by symmetry on an (undirected) network.

We investigate non-intersecting paths for the following two test cases of realistic infrastructure networks.
The first test case is a network defined by neighborhood relations of countries in Europe’® (see Supplementary
Fig. S1 online for the visualization). It is supposed to be used for emergent transportation of relief supplies by
land. Although an edge between two countries is simplified as a straight line, it actually consists of complexly
connecting several roads. As a reason to simplify them, we consider that each line between two countries is
corresponded to the minimum required immigration check or agreement to pass for emergent transportation.
We use the two-letter codes! for representing countries in Europe, although some countries are omitted in the
following exceptions.

e Small countries on national border Andora, Republic of Kosovo, San Marino, Status Civitatis Vaticanae,
Monaco, Liechtenstein.

® Only one edge to its connecting neighbor, no substitutive path Spain, Denmark, Portugal.

® Island countries without land continuation Cyprus, Iceland, Ireland, United Kingdom, Malta.

Figure 3 shows the combination numbers of (Top) k = 2 and (Bottom) 3 non-intersecting paths between two
countries by land in Europe. In particular, as colored by dark blue, there are many combinations of k = 2 or 3
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Figure 1. Example of six combinations of two non-intersecting paths from s, to t, and from s, to t;,. (Top-Left)
A planar directed graph with pairs of k = 2 boundary vertices. (Top-Middle) One s,-, path colored by red and
its corresponding three s;-t, paths colored by blue. (Top-Right) Two sp-t; paths colored by blue or green and
their corresponding s,-t, paths colored by red or magenta. Note that any two paths from s, to t; and from s;,

to t, are intersected. (Bottom-Left) From s, to £, or ¢;, (Bottom-Right) from s, to ¢, or t;, the numbers of paths
calculated by token-passing in the “Methods” section. 1, 2, 3, 4, 6 are the numbers of reached tokens at the tips
of arrows. They represent the numbers of paths which go through each edge from s, or sy,

(a) Numbering of suffix (b) Detour routes

Figure 2. Basic process in the mapping to directed acyclic graphs from a planar network. (a) Parts of the
connecting nearest-neighbors of s and ¢. Solid lines are connection edges. Dashed line represents the virtual s-
line segment. (b) Red dotted lines represent detour routes. s} and ¢{ are the next-nearest neighbors of s and ¢.

non-intersecting paths between a few countries in the west and the east of Europe. While as colored by red, no
substitutive path exists between some countries mainly in the west and the south of Europe (see Supplementary
Information online for the detail list). Between these countries, one of the counterplans for the vulnerability of
connection by land may be enhancement of air-routes. In such a table of the combination numbers, each value
at ij element in the upper triangle is smaller than that at ji element in the corresponding lower triangle, because
the paths from s; € dstot; € dt are limitted without long detour paths. Note that the diagonal parts in Fig. 3 are
omitted because of the meaningless case of s = ¢.

More specifically as an example, for three non-intersecting paths from s:SI to #:FR, the following three cases
of chosen neighbors are investigated.
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Figure 3. Heatmap for the combination number of (Top) k = 2 or (Bottom) 3 non-intersecting paths on a
planar network defined by neighboring countries in Europe. The right color bar indicates the number of paths
from zero (white) to the maximum (blue) by gradation. The case of no substitutive path is emphasized by red.
The upper triangle represents the numbers for choosing the nearest neighbors as start s; and end ¢; points, while
the lower triangle represents the numbers for choosing the next-nearest neighbors as start s; and end ¢; points.
570
1. spHU, s3:AT, s3:IT, and #;:DE, t,:CH, t3:IT, one combination of paths by det W = |2 3 0| = 1, SI-HU-SK-
011
CZ-DE-FR, SI-AT-CH-FR, SI-IT-FR.
1570
2. spHU, s2:AT, s3:IT, and #:BE, t2:CH, t3:IT, three combinations of paths by det W =| 6 3 0| = 3, SI-HU-
011
SK-CZ-DE-BE-FR, SI-AT-CH-FR, SI-IT-FR. SI-HU-SK-CZ-DE-LU-BE-FR, SI-AT-CH-FR, SI-IT-FR. SI-
HU-SK-CZ-DE-NL-BE-FR, SI-AT-CH-FR, SI-IT-FR.
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Figure 4. Heatmap for the combination number of (Left) k = 2 or (Right) 3 non-intersecting paths on a
backbone communication network in Japan. The right color bar indicates the number of paths from zero (white)
to the maximum (blue) by gradation. The case of no substitutive path is emphasized by red. The upper triangle
represents the numbers for choosing the nearest neighbors as start s; and end ¢; points, while the lower triangle
represents the numbers for choosing the next-nearest neighbors as start s; and end ¢; points

570
3. siHU, s2:AT, s3IT, and t;:LU, £,:CH, t3:IT, one combination of paths by det W = |2 3 0 | = 1, SI-HU-SK-
011

CZ-DE-LU-FR, SI-AT-CH-FR, SI-IT-FR.

The above sequence of codes with hyphens represents a path of connecting vertices in the order from left to
right. The total combination number is1 + 3 4+ 1 = 5, whose value is written with white background on the
bottom at the cross point of row SI and column FR in the upper triangle of Fig. 3(Bottom). Each element w;; of
path matrix W represents the number of paths between s; and ¢; in the directed graph without edges of s-s; and
t-tj,1 < i,j < 3. The directed graph is mapped for a given pair of s:ST and £.FR, although the detail is explained
in the “Methods” section. Other cases are investigated in the same way for choosing different s, ¢, s1,. .., s,
t1,. ..t and the value of k.

In addition, the existing cases of more than three non-intersecting paths are mainly in UA ~ PL, UA ~ DE,
UA ~ AT, PL ~ DE, and SK ~ AT. Here, s ~ t denotes the paths between s and ¢ (see Supplementary Fig. S2 online
for the cases of k = 4, 5). However, k > 6 paths are intersecting in our method for the first test case.

The second test case is a backbone communication network connected with cables in the main island of
Japan?. Note that the vertices are numbering from 1 to 20 according to the locations, e.g. from north to south in
omitting some vertices that have only one neighbor as a common gate on paths from each of these vertices. The
exact locations of vertices and the visualization should be secret for avoiding to be targets of attacks chosen by
terrorists or other malice. Figure 4 shows the combination numbers of (Left) k = 2 and (Right) 3 non-intersecting
paths between two vertices in the communication network. However, k > 4 paths are intersecting in our method
for the second test case. As colored by dark blue, there are many combinations of k = 2 or 3 non-intersecting
paths between the vertices: fork = 2,3—5,3—9,3—12,4—9,4—12,5 ~ 12,6—9,6—12,9—10,10—12 in the lower
triangle of Fig. 4(Left), and for k = 3, 9—10 in the upper triangle, 9—10,10—11,10—12 in the lower triangle of
Fig. 4(Right). While as colored by red, no substitutive path exists from each of vertices: 7, 17, 18, 19, 20, for which
some sort of counterplans should be taken.

Figure 5 illustrates the combinations of three non-intersecting paths from 3 to 5. In this example, the follow-
ing two cases of chosen neighbors are investigated.

500
1. s1:10, 2:6, s3:4, and 11:8, £2:7, t3:4, five combinations of paths bydet W = |1 1 0| =5,
2. 51:10, 52:6, s3:2, and #1:8, t2:7, t3:4, five combinations of paths bydet W = |1 1 0| = 5.
111
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Figure 5. Example of k = 3 non-intersecting paths from 3 to 5. Three non-intersecting paths are colored by
red, green, and blue. (Left) A part of directed graph, (Middle) five combinations of the paths, (Right) other five
combinations of the paths. Note that only red line is different via vertex 2.

Thus, the total combination number is 5 4+ 5 = 10, whose value is written with light blue background on the top
at the cross point of row 3 and column 5 in the upper triangle of Fig. 4(Right). We remark that blue paths are
broken in Fig. 5, if a vertex 8, 9 or 10 is attacked and removed. However, red and green paths are remained, the
connectivity between vertices 3 and 5 is sustained because of non-intersecting at the damaged point. We consider
the robustness of paths as this meaning.

In this way, we have investigated the combination number of k = 2, 3,4, 5 non-intersecting paths through
computer simulations for realistic networks of countries by land in Europe and of backbone communication sys-
tem in Japan. In particular, the tendency of many or few combinations of substitutive paths are found as follows.

® Many substitutive paths between some countries in the west and the east of Europe

® No such paths between some countries in the west and the south of Europe, when long detour paths are
limited without the extension to the nearest neighbors of s or ¢

e Similar tendency in some parts colored by blue and red in Fig. 4 for the backbone communication network

The above results exhibit the existing of substitutive paths, as mentioned in the next section, it becomes an issue
how many non-intersecting paths is usable after what types of damages.

In summary, in taking into account the construction of infrastructure networks on the surface of Earth, we
have extendedly applied the counting method?! of non-intersecting paths based on the path matrix for a directed
acyclic graph. This application provides not exact but approximate solutions for counting substitutive paths
between two vertices, in adaptive mapping the directions of edges for each pair of s and ¢ on a planar network.
However, it does not give an approximation guarantee theoretically, while the origin of NP-hardness is related
to that each edge has two directions possibly. Therefore there are 2M directed graphs in the search space. For
example in the test cases of countries by land in Europe with N = 36, M = 74 and a backbone communication
system in Japan with N = 25, M = 40, the sizes are huge: 1022 and 10'2. It is intractable to get the exact solution
as the ground truth. Remember that no practical algorithm is known'® for counting the combination numbers
of k non-intersecting paths. Even as approximation, it becomes possible to count them in a planar network. This
is an advantage of our method at the current stage. In other words, our approach may give the first step to open
the door for counting them.

Discussion
For further studies, the following issues are considered, although the limitation of our method is still unknown.

First, to find longer detour paths, the further extension of {s;} or {¢;} is required from the nearest neighbors.
However, there is a trade off how effective is the extension and more complex computations involving with the
next-next, next-next-next, - - - neighbors of s or t. For an improvement, it is a challenge to detect some excluded
Z-shaped paths (see Supplementary Fig. S1 online for the visualization, e.g. CZ-PL-SK-UA or BY-PL-UA-SK)
in considering how to assign directions of edges or other technical ideas related to the extension of neighbors
of sand .

Second, some directed planar graphs can exist in reality, although we assume undirected ones in this paper.
If some edges are removed to be a acyclic graph, we may apply our method to such cases in satisfying the fitness
condition and a homeomorphic boundary to circle??. It will be also a further study to perform some experiments
in more complex networks, such as power-grid, gas-pipeline, water-supply, supply-chain, wireless communica-
tion system, and so on, in order to emphasize the practical effect of our method.

Third, a method for counting the number of efficient paths has been discussed in a similar but different
problem setting with link costs?*. The efficient paths are considered within a small range beyond the shortest
ones. This method has a polynomial time-complexity because of having link costs. Therefore, for the quantita-
tive evaluation, it can be not compared to our method. Although the minimizing link costs, such as distances or
travel times, is one of the selections, the maintaining flows within capacities or other objectives are also possible.
‘We wander what criteria is the optimal or sub-optimal, it is not uniquely determined in depending on a purpose
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of application for utilizing paths in transportation or communication. Apart from a general counting method
on a planar network in this paper, the discussion involves what is desirable on what target system is considered.

Moreover, there are several robustness measures®, average efficiency defined by the shortest path length,
algebraic connectivity related to the graph spectrum, and so on, instead of our measure of the connectivity
through paths. Their analyses are different respectively. Since we aim to investigate a local property: which pairs
of vertices have many or few substitutive paths, the above global measures of whole network seem to be not
suitable. Even if we concentrate the connectivity through paths as the robustness, the following problems are
happen. We assume that one of non-intersecting paths is emergently used as the substitutive path instead of a
disconnected usual path by unspecific disasters or attacks, while as specific ones, many malicious attacks have
been known: high degree attacks®, localized attacks (by removing a fraction of connected part)?, loop destruc-
tion attacks?’, and others*? for giving strong damages to a network. It is important to investigate how many
non-intersecting paths are remained after such attacks. The worst case called critical node detection (CND)* is
given by a set of vertices, whose removals minimize the connectivity of paths between vertices on the network.
However, the CND problem becomes another NP-hard. Thus, the decreasing of the number of non-intersecting
paths depends on the various types of attacks, further discussions are required through many computer simula-
tions or theoretical analyses if possible.

Methods
Brief review of path matrix. We review the counting method of non-intersecting paths on a planar graph
which is directed acyclic'’. It has 2k boundary vertices of source and terminal, which are labeled counterclock-
wise as $1,52,...,5 and tg, tx_1,. . ., t1, respectively, on a homeomorphic boundary to circle. Each edge has
a direction, e.g. from left to right or from top to down (see Fig. 2a again). Such a graph satisfies the fitness
condition®*:

if P € P(sitj), Q € P(sg, t),i < g,and j > h, then any two paths P and Q are intersect,

where P(s;, tj) denotes a set of paths from s; to ¢; on the graph. This condition can be understood intuitively for
a planar graph as follows. When s;, Sg Ljs and t, are set on a circle’s circumference in the order of counterclock-
wise, the circle is divided into upper and lower parts by a path from s; to t;. Then, since s is on the lower circle’s
circumference while #, is on the upper circle’s circumference, any path from s, to t;, must be intersect (crossing)
to the path from s; to ¢; as the border line of division.

Ak x k path matrix W is defined for a directed acyclic graph with 2k boundary vertices. Each element w;; of
W represents the number of paths from s; to ¢;, which may be intersecting. For example in Fig. 1, it is given by

6 10 6 10
w=(5%) aaw= |5 =s

Thus, the combination number is six for two non-intersecting paths from s, to ¢, and from sy, to t, at the top
in Fig. 1. Each element wj; are calculated by token-passing, such as w;; =3 +3 =6, w;, =6+4 =10,
wy1 = 1+ 2 =3and wy; = 3+ 3 = 6 shown at the bottom in Fig. 1. The above matrix W has a property of
totally positivity. In general, a matrix W is called totally nonnegative (or positive) if each of its minor determi-
nants is nonnegative (or positive)!”?!. For example, this condition is unsatisfied when wy = 0, then s has to be
connected to a path to one of t; . . . or tx_; even if there exist one path from s tot; . . . or tx_; and another path
from sy ... or si_j to t, these paths are intersect. A totally nonnegative matrix and its corresponding planar
graphs are theoretically associated to the analysis of symmetric functions such as Schur polynomials'’, however
the related discussion is beyond our current scope of practice. For a planar graph, its corresponding nonnegative
matrix is determined uniquely, while the existing of some planar graphs is possible for a nonnegative matrix in
the one-to-many relations.

Returning to the remaining subject in our proposed method as mentioned later, we consider {s;} and {¢;} as sets
of connecting neighbors of two vertices s and t at different locations. In this case, the number|ds| or|3¢| of bound-
ary vertices is corresponded to a degree of vertex. Since the average degree is less than six in a planar graph®, it is
expected that k,|9s|, or |0¢|is a small constant. Note that the direct computation of determinant is O(k!) for any
k x k matrix. However, even if k is large, a totally positive matrix can be factorized into a LU decomposition'”

det W = det(LU) = (det L) x (det U) = (I1;L;;) x (I1;Uy),

where L and U denote lower triangle and upper triangle matrices, L;; and Uj; are their diagonal i-th elements.
Then, the determinant is quickly computed with O(k). As the preprocessing, the additional computation of LU
decomposition is O(k>). We should remark that k is a given fixed integer, therefore the above evaluation becomes
a constant multiplier for the time-complexity with respect to the size N or M.

How to count the combination number of non-intersecting paths. We propose a mapping to
directed acyclic graphs from a given planar network. The directions of edges are changeable for chosen each pair
of s and t. In the mapping, we must solve (1) how to assign a direction of edge, (2) how to define a k x k path
matrix W, and (3) how to calculate the element w;;. We assume that {s;} N {t;} = ¢,s; # ¢, sand t are not directly
connected, otherwise the combination numbers of exceptional paths are counted in advance. For example, if
there exist a direct path between s and ¢ (3 edge (s, t)) and another path of s-s;-¢ via a common node s; = ¢;, then
instead of these exceptional two paths, the remaining k — 2 paths from 9s to 0t are investigated after removing
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Figure 6. Example of an exceptional case. Solid lines are paths. Dashed virtual lines form a boundary.

s, t, and s; = t; to avoid passing through them on the other paths. In the following for the remaining paths, the
connected part from ds to d¢ is mapped to a directed acyclic graph.

Let us consiéiee{‘r s; € ds and t; € 9t for a pair of s and ¢ on the network. Since a path matrix Wisak x k
square, we set k= min{|ds|, |d¢|} as the smaller degree of vertex. As shown in Fig. 2a, the default suffix number
from 1 to |ds| or |0¢] is assigned according to the location of vertex in the orthogonal direction to the s-¢ line
segment in order to satisfy the fitness condition. When two subsets of k vertices are chosen from ds and 3¢, they
are renumbered from 1 to k by filling missing numbers of unchosen vertices. The total combination number of
non-intersecting paths is given by the sum of countings for all of the combinations |35;Cx X |37/ Ck in choosing
pairs of k vertices. In the case of choosing the next-nearest neighbors, a vertex in {s;} (or {¢/}) is chosen in cor-
responding to its connecting with the nearest neighbor s; (or tj) of s (or t). Usually, 5’1, . ,s;( and ti, AU t}’( consist
of different vertices. Here, the edges between s and s; or ¢ and ¢; are ignored (removed) and not used in calculating
wij to avoid that they become common vertices in the non-intersecting paths.

Moreover, we consider the following greedy method without making cycles, which is slightly analogous to
compass routing®® in computer science. In principle, there are 2/ combinations of directions for the total M
edges. However, in order to reduce the combinations, for an edge e, one of two directions between its ends
u and v is temporally assigned in +90° to the s-f line segment. It can be checked by the inner-product of these
vectors s — t and u — v (or v — u) based on which direction is suitable. Because the angle is in £90°, when
the inner-product is positive. As exceptions, the directions from s to s; and from ¢; to ¢ are implicitly assumed
to shape detour routes. Figure 2b illustrates detour routes. However this method excludes Z-shaped paths with
mixing of forward and backward directional edges to the s-t line segment, therefore is not exact for counting
paths. It gives just an approximate solution for practical use.

In the scope for the definition of W, the related vertices to the paths should be included in an area whose
boundary encloses the chosen pair of k vertices. Remember that the boundary can take any form which is
homeomorphic to circle. After assigning the directions of edges according to a chosen pair of s and ¢, if a path
from s; to t is passing through the outside of both virtual lines si-t; and #;-t; (or more than two lines) on the
quadrilateral s1-t1-t2-s2 (or polygon si-t1-- - ~tx-sk- - --s2 ) as shown in Fig. 6, then the path-matrix is not able to be
applied because of the unsatisfied fitness condition. When such an outer path is found in the above pre-checking,
it is treated individually and the remaining paths that are non-intersecting with the outer one are counted, e.g.
in the case of k = 2 (or k > 3) after finding an outer path from s, to t,, the remaining non-intersecting path from
sy to t1 is explored (or in addition other k — 2 non-intersecting paths from s3 to ¢3. - - from s, to tx are counted by
using a path matrix).

On the above preparing, we calculate each element w;; defined as the number of paths from s; to ¢; which may
be intersecting. It is easily obtained by using token-passing as shown in Fig. 7 according to the directions of edges
assigned for each pair of s and ¢, since the sum of received tokens at each vertex is equal to the number of paths
from the source to that vertex. Here, the received tokens are broadcasted to the vertices which are connected by
its outgoing edges. The computation of a set {w;;} of elements is evaluated as follows. From s; to layered vertices
by hops as shown in Fig. 7(Top), the primary tokens move on M edges at most. In addition, the number of some
edges in a same layer is O(M) at most as shown in Fig. 7(Bottom), although they are few as expected. Each of
these edges makes delayed flows on O(M) edges at most by the secondary, thirdly, - - - tokens. Thus, the total
time-complexity is O(N?M?) estimated from O(N?) pairs of s and ¢ times O(M?) by token-passing. Moreover, the
token-passing is verified from the equivalence to a polynomial-time algorithm?. The graph is acyclic, therefore
the passing process from s; to ¢; is terminated eventually without keeping turn-round of tokens forever. This halt-
ing property is important to be a practically solvable problem for counting non-intersecting paths.

Finally, we summarize these processes as the outline. For each setting of k = 2,3, .. . ., the combination num-
ber of k non-intersecting paths is given by det W in choosing subsets of k vertices from s and 9¢, and it is
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Figure 7. Token-passing from s;. (Top) Primary tokens which reach at first the layered vertices by hops.
(Bottom-Left) Secondary tokens with a delay of one time-step delivered from the middle vertex on 1-hop layer.
(Bottom-Right) Thirdly tokens with a delay of two time-steps delivered from the top vertex on 2-hop layer. The
thickness of arrow is corresponding to the number of tokens: 1, 2, or 5. Each element w;; is defined by the sum of
primary, secondary, and thirdly tokens reached at the terminal vertices, in this case ofi = sjand j = t1,12,. . .,
or fy.

accumulated for all of the combinations of k vertices chosen as the subsets. We remark that the path matrix W
and its elements w;; are dynamically defined according to changeable directions of edges and chosen subsets of
k vertices for each pair of s and ¢.
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The data analyzed in this study are available from the corresponding author on reasonable request.

Received: 30 March 2022; Accepted: 22 August 2022
Published online: 29 August 2022

References

1. Schweitzer, E, Casiraghi, G., Tomasello, M. V. & Garcia, D. Fragile, yet resilient: Adaptive decline in a collaboration network of
firms. Front. Appl. Math. Stat. 7, 6. https://doi.org/10.3389/fams.2021.634006 (2021).

2. Sterbenz, J. P. G. et al. Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines.
Comput. Netw. 54, 1245-1265. https://doi.org/10.1016/j.comnet.2010.03.005 (2010).

3. Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems.
Ecol. Soc. 9(2), 5. https://doi.org/10.5751/ES-00650-090205 (2004).

4. Hollnagel, E., Woods, D.-D. & Leveson, N. Resilience Engineering-Concepts and Precepts (ASHGATE Publishing, 2006).

5. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826-837. https://doi.org/10.1038/nrg1471 (2004).

6. Casiraghi, G., Zingg, C. & Schweitzer, F. The downside of heterogeneity: How established relations counteract systemic adaptivity
in tasks assignments. Entropy 23(12), 1677. https://doi.org/10.3390/€23121677 (2021).

7. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344-348. https://doi.org/10.1126/science.1225244 (2012).

8. Newman, M. E. J. & Ghoshal, G. Bicomponents and the robustness of networks to failure. Phys. Rev. Lett. 100, 138701-1-4. https://
doi.org/10.1103/PhysRevLett.100.138701 (2008).

(2022) 12:14673 | https://doi.org/10.1038/s41598-022-18927-w nature portfolio

Scientific Reports |


https://doi.org/10.3389/fams.2021.634006
https://doi.org/10.1016/j.comnet.2010.03.005
https://doi.org/10.5751/ES-00650-090205
https://doi.org/10.1038/nrg1471
https://doi.org/10.3390/e23121677
https://doi.org/10.1126/science.1225244
https://doi.org/10.1103/PhysRevLett.100.138701
https://doi.org/10.1103/PhysRevLett.100.138701

www.nature.com/scientificreports/

9. Mohseni-Kabir, A., Pant, M., Towsley, D. & Guha, S. Percolation thresholds for robust network connectivity. J. Stat. Mech. Theory

Exp. 2021, 013212. https://doi.org/10.1088/1742-5468/abd312 (2020).

10. Hagen, L. & Kahng, A. B. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided Des. 11(9),
1074-1085. https://doi.org/10.1109/43.159993 (1992).

11. Von Luxburg, U. A tutorial on spectral clustering. Stat. Compt. 17, 395-416. https://doi.org/10.1007/s11222-007-9033-z (2007).

12. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Communications (eds Miller, E. et al.) 85-103
(Plenum Press, 1972). https://doi.org/10.1007/978-1-4684-2001-2_9.

13. Nakaminami, T., Nakayama, S., Kobayashi, S. & Yamaguchi, H. Vulnerability assessment of emergency transportation road net-
works based on eigenvalue analysis. J. Jpn. Soc. Civil Eng. 74(5), 1141-1148 (2018) (in Japanese).

14. Lynch, J. . The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newslett. 5(3), 31-65. https://doi.
0rg/10.1145/1061425.1061430 (1975).

15. Robertson, N. Graph minors. XIII. The disjoint paths problem. J. Combinatorial Theory Ser. B 63, 65-110. https://doi.org/10.1006/
jctb.1995.1006 (1995).

16. Robertson, N. & Seymour, P. D. An outline of a disjoint paths algorithm. In Paths, Flows, and VLSI-Layout (eds Korte, B. et al.)
267-292 (Springer, 1980).

17. Skandera, M. Introductory Notes on Total Positivity (2003). http://people.brandeis.edu/~aminul/Docs/ira/ISING/intp+ve.pdf.

18. Capital Cities of Europe, https://www.nationsonline.org/oneworld/capitals_europe.htm.

19. HANDBOOK ON INDUSTRIAL PROPERTY INFORMATION AND DOCUMENTATION, Ref.: Standards - ST.3. (2019) https://
www.wipo.int/export/sites/www/standards/en/pdf/03-03-01.pdf.

20. Tsushin-Hakusho (White Paper Communication in Japan) H11. Soumu-Shou, in Japanese (1999).

21. Formin, S. & Zelevinsky, A. Total positivity: Tests and parametrizations. Math. Intell. 22, 23-33. https://doi.org/10.1007/BF030
24444 (2000).

22. Stembridge, J. R. Nonintersecting paths, pfaffians, and plane partitions. Adv. Math. 83, 96-131. https://doi.org/10.1016/0001-
8708(90)90070-4 (1990).

23. Zhao, R., Xu, X. & Chen, A. Alternative method of counting the number of efficient paths in a transportation network. Transport-
metrica A Transp. Sci.https://doi.org/10.1080/23249935.2021.1933255 (2021).

24. Wang, X. et al. Multi-criteria robustness analysis of metro networks. Phys. A 474, 19-31 (2017).

25. Albert, R., Jeong, H. & Barabasi, A.-L. Error and attack tolerance of complex networks. Nature 406, 378-382. https://doi.org/10.
1038/35019019 (2000).

26. Shao, S., Huang, X., Stanley, H. E. & Havlin, S. Percolation of localized attack on complex networks. New J. Phys. 17, 023049. https://
doi.org/10.1088/1367-2630/17/2/023049 (2015).

27. Mugisha, S. & Zhou, H.-]. Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305. https://doi.
0rg/10.1103/PhysRevE.94.012305 (2016).

28. Morone, E. & Makse, H. A. Influence maximization in complex networks through optimal percolation. Nature 524, 65-68. https://
doi.org/10.1038/nature14604 (2015).

29. Zdeborova, L., Zhang, P. & Zhou, H.-J. Fast and simple decycling and dismantling of networks. Sci. Rep. 6, 37954. https://doi.org/
10.1038/srep37954 (2016).

30. Santos, D., De Sousa, A. & Monterio, P. Compact methods for critical node detection in telecommunication networks. Electron.
Notes Discrete Math. 64, 325-334. https://doi.org/10.1016/j.endm.2018.02.007 (2018).

31. Gross, J. & Yellen, J. Graph Therapy and Its Applications 295-296 (CRC Press, 1998).

32. Kranakis, E., Singh, H. & Urrutia, J. Compass Routing on Geometric Networks. In Proc. of the 11th Canadian Conf. on Comp. Geo.
(1999). http://people.scs.carleton.ca/~kranakis/Papers/comprout.pdf.

33. Meng, Q., Lee, D.-H. & Cheu, R. L. Counting the different efficient paths for transportation networks and its applications. J. Adv.
Transp. 39(2), 193-220. https://doi.org/10.1002/atr.5670390205 (2005).

Acknowledgements

This research was supported in part by JSPS KAKENHI Grant Number JP.21H03425. The authors thank anony-
mous reviewers for improving the readability of manuscript with their valuable comments, Takehisa Hasegawa
for his suggestion with discussions, Hiroya Kitagawa for preprocessing data of the networks, and Masaki Chujyo
for his assistance in making heatmaps.

Author contributions
Y.H. conceived and designed the research, analyzed data and discuss results, and wrote the manuscript. A.T.
implemented and performed numerical experiments.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-022-18927-w.

Correspondence and requests for materials should be addressed to Y.H.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports |

(2022) 12:14673 | https://doi.org/10.1038/s41598-022-18927-w nature portfolio


https://doi.org/10.1088/1742-5468/abd312
https://doi.org/10.1109/43.159993
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
http://people.brandeis.edu/%7eaminul/Docs/ira/ISING/intp+ve.pdf
https://www.nationsonline.org/oneworld/capitals_europe.htm
https://www.wipo.int/export/sites/www/standards/en/pdf/03-03-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-03-01.pdf
https://doi.org/10.1007/BF03024444
https://doi.org/10.1007/BF03024444
https://doi.org/10.1016/0001-8708(90)90070-4
https://doi.org/10.1016/0001-8708(90)90070-4
https://doi.org/10.1080/23249935.2021.1933255
https://doi.org/10.1038/35019019
https://doi.org/10.1038/35019019
https://doi.org/10.1088/1367-2630/17/2/023049
https://doi.org/10.1088/1367-2630/17/2/023049
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1038/nature14604
https://doi.org/10.1038/nature14604
https://doi.org/10.1038/srep37954
https://doi.org/10.1038/srep37954
https://doi.org/10.1016/j.endm.2018.02.007
http://people.scs.carleton.ca/%7ekranakis/Papers/comprout.pdf
https://doi.org/10.1002/atr.5670390205
https://doi.org/10.1038/s41598-022-18927-w
https://doi.org/10.1038/s41598-022-18927-w
www.nature.com/reprints

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Scientific Reports |  (2022) 12:14673 | https://doi.org/10.1038/s41598-022-18927-w nature portfolio


http://creativecommons.org/licenses/by/4.0/

	Practical counting of substitutive paths on a planar infrastructure network
	Results
	Discussion
	Methods
	Brief review of path matrix. 
	How to count the combination number of non-intersecting paths. 

	References
	Acknowledgements


