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Ophthalmic viscosurgical device 
interaction with two hydrophobic 
acrylic intraocular lenses 
of different equilibrium water 
content
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Ophthalmic viscosurgical device (OVD) is used during intraocular surgery to protect ocular tissue. It 
requires complete removal from the eye by the end of surgery to avoid postoperative complications. 
This study compares the interaction of a cohesive OVD with two different intraocular lenses (IOLs) 
of different equilibrium water content. In this laboratory study on porcine cadaver eyes, the 
capsular bags and anterior chambers of each eye were filled with fluorescein-stained OVD. Following 
implantation of 10 IOLs each of Clareon CNA0T0 and AcrySof SN60WF (Alcon Laboratory, Fort Worth, 
USA) IOLs, the OVD was removed using the irrigation/aspiration mode. The OVD removal was timed 
and differences between the both IOL groups were compared. OVD removal time ranged from 18 to 
40 s (mean ± SD, 26.4 ± 6.8 s) and from 16 to 39 s (mean ± SD, 23.6 ± 6.6 s) for eyes implanted with a 
CNA0T0 and a SN60WF IOL, respectively, without a statistically significant difference between the 
groups, P > 0.05. Cohesive OVD removal times were similar between the CNA0T0 and SN60WF groups. 
Surgeons should experience no differences regarding the interaction between cohesive OVDs and IOLs 
made from the new Clareon material compared to the established AcrySof material.

Cataract surgery is facilitated by ophthalmic viscosurgical devices (OVDs)1–3. After the intraocular lens (IOL) 
is implanted, the OVD must be removed completely from the eye as any remaining OVD can lead to postop-
erative complications, such as increased intraocular pressure (IOP), endothelial cell loss or refractive  shifts4. 
The material of the IOL implant interacts with the OVD which can affect its removal  behaviour1. Hydrophobic 
IOLs usually incorporate a minimal amount of water. The lowest water content is found in lenses made from 
polymethyl methacrylate (PMMA). A well-established IOL made from a hydrophobic acrylic copolymer is the 
AcrySof (Alcon Laboratories, Inc., Fort Worth, TX, USA) with an equilibrium water content (EWC) of around 
0.5%. Hydrophobic acrylic IOLs have shown to develop an undesired late postoperative material change which 
is the formation of fluid-filled microvacoules within the IOL polymer. For more than 20 years, IOL manufactur-
ers have been trying to eliminate the occurance of theses so called glistenings and subsurface nanoglistenings 
(SSNG) in their IOL materials. With the Clareon (Alcon Laboratories, Inc., Fort Worth, TX, USA) the Alcon 
company created a new material formulation that aims to eliminate the complication of glistening and SSNG 
formation. Clareon is made of a hydrophobic acrylic copolymer with a EWC of 1.5% at 35 °C and a refractive 
index of 1.55. The Clareon CNA0T0 has an overall length of 13.0 mm and a full 6.0 mm functional biconvex 
aspheric optic. The design of the lens was based on the mechanically stable platform of the single-piece AcrySof 
SN60WF IOL (Alcon)18.

The time required to remove an OVD correlates with both, composition of the IOL material and type of OVD, 
which is usually catigorized in either dispersive or  cohesive1. OVD removal times for different lens materials, 
such silicone, PMMA and other acrylic materials have been evaluated in previous  studies1,2. PMMA was found 
to yield a shorter removal time for cohesive and dispersive OVDs compared to the AcrySof material which has 
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a higher EWC. Thus, with the slight increase in the hydrophilicity of the Clareon material, a prolonged removal 
time might be expected.

This study aims to compare the removal times of a cohesive OVD after implantation of the Clareon CNA0T0 
IOL to the ones after implantation of the AcrySof SN60WF IOL, using a laboratory setup with porcine eyes.

Materials and methods
Intraocular lens implantation. Twenty fresh porcine cadaver eyes (FVZ Mannheim GmbH, Mannheim, 
Germany) were prepared for the Miyake-Apple posterior view technique and assessment of OVD removal fol-
lowing IOL  implantation5,6. The natural lens of each eye was removed via standardized phacoemulsification using 
a Megatron S3 (Geuder AG, Heidelberg, Germany) with a flow rate of 25 ml/min and vacuum of + 500 mmHg 
(maximum irrigation/aspiration [I/A])1. Two paracenteses were performed at the 3- and 9-o’clock positions, and 
a 2.5-mm corneal incision was created at the 12-o’clock position. A capsulorhexis of approximately 5 mm was 
made using an Utrata forceps. IOL implantation was only performed in eyes with a round capsulorhexis and an 
intact capsular bag.

To allow enhanced visualization of the OVD’s presence in the porcine eye, 0.05 mg Fluorescein (Fluorescite 
10%, Alcon, Fort Worth, TX, USA) was added to 1 ml of  ProVisc® OVD (sodium hyaluronate 1%, Alcon, Fort 
Worth, TX, USA)1,2. After lens removal, the capsular bag and anterior chamber in each eye were filled with 1 ml 
of fluorescein-stained OVD. Fluorescein-stained OVD was also inserted in the Monarch III D injector cartridge 
(Alcon, Fort Worth, TX, USA) to lubricate IOL delivery. Ten IOLs of each model (20.0 D Clareon CNA0T0 and 
20.0 D AcrySof SN60WF) were implanted in freshly enucleated porcine cadaver eyes with an intact anterior 
segment.

The different material properties and the specifications of intraocular devices used in this study are sum-
marized in Table 1.

In the Clareon material, the phenylethyl methacrylate monomer takes the place of the more hygroscopic 
monomer, hydroxyethyl methacrylate (Fig. 1)7.

Ophthalmic viscoelastic device removal time. The stained OVD was removed immediately following 
IOL implantation as presented in previous studies from our laboratory by means of the “rock and roll” method 
as first described by  Arshinoff19; using a flow rate of 40 ml/min and a vacuum setting of + 500 mmHg maximum, 
the I/A tip was “rocked” back and forth on the anterior side of the IOL to facilitate aspiration of the  OVD1,2. 
Any OVD that remained on the IOL’s posterior side was removed by placing the I/A tip underneath the lens to 
aspirate it. All the procedures were performed by an experienced surgeon (GUA). The Miyake-Apple posterior 
view technique was used for posterior photography and video analysis of the stained OVD  removal5,6,9. The I/A 
procedure was timed on the video counter to measure the total OVD removal time for each lens, and mean 
removal times for each lens type were calculated.

Statistics. A priori sample size calculation was conducted using G*Power v. 3.1 based on the results of a 
previous laboratory study comparing the removal times of cohesive OVD between acrylic IOLs with different 
equilibrium water content: a total number of 16 eyes (8 per group) is required to achieve a 80% chance of detect-
ing a difference at a 5% level of significance (2 tailed)1,10. To account for possible dropouts, two additional eyes 
were included for each group. Nonparametric statistical analyses was conducted using the Mann–Whitney U 
test (Minitab 17, State College, PA, USA).

Results
Surgical procedures including phacoemulsification and IOL implantation of both lens types were performed 
successfully and OVD was removed completely from all eyes without any complication; however, one eye was 
excluded from each group because completion of OVD removal could not be clearly visualized due to insufficient 
clarity of the cornea. The Miyake-Apple posterior view technique was used in one examplary eye of each group 
to vizualise the OVD removal behavior during the course of irrigarion/aspiration (Fig. 2).

For the Clareon CNA0T0 IOL, cohesive OVD removal time ranged from 18 to 40 s with a mean removal time 
of 26.4 ± 6.8 s. For the AcrySof IOL, cohesive OVD removal time ranged from 16 to 39 s with a mean removal 
time of 23.6 ± 6.6 s. There was no statistically significant difference in removal times between the 2 IOL models, 
P = 0.27 in Mann–Whitney test (Fig. 3).

Table 1.  Specifications of intraocular devices used in this study. PEA phenylethyl acrylate, PEMA phenylethyl 
methacrylate, HEMA hydroxyethyl methacrylate, BDDA butanediol diacrylate.

Intraocular device Manufacturer Material name (Specification) Copolymer
Equilibrium water 
content (in percent)

Intraocular lens Alcon AcrySof (SN60WF) PEA and PEMA cross-
linked with BDDA 0.4%

Intraocular lens Alcon Clareon (CNA0T0) PEA and HEMA cross-
linked with BDDA 1.5%

Ophthalmic Viscosurgical 
Device Alcon ProVisc Sodium hyaluronate 1% –
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Figure 1.  Polymer components of the IOL materials used in this study. Whereas the AcrySof material composes 
phenylethyl acrylate (PEA) and phenylethyl methacrylate (PEMA) cross-linked with butanediol diacrylate 
(BDDA), in the Clareon material the PEMA monomer is replaced with the more hygroscopic monomer, 
2-hydroxyethyl methacrylate (HEMA). Figure modified from Ref.8.

Figure 2.  Course of the cohesive ophthalmic viscoelastic device (OVD) removal (Miyake-Apple posterior view) 
with a Clareon CNA0T0 IOL (A–C) and an AcrySof SN60WF IOL (D–F). Beginning of the irrigation/aspiration 
procedure (A/D), course of removal with some remaining OVD (B/E) and complete OVD removal (C/F).
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Discussion
The Clareon IOL is composed of an advanced hydrophobic acrylic polymer material that maintains the bio-
mechanical attributes of the AcrySof (Table 1)18,20. A key property of any new lens material is its interaction 
with OVDs, which are essential surgical tools for cataract  replacement1,2. During phacoemulsification, OVDs 
play an important role in preserving the shape of the eye by stabilizing the anterior chamber and protecting 
the corneal  endothelium4,11–13. OVDs also facilitate IOL implantation by aiding lens advancement in the IOL 
delivery system; this helps ensure that the lens is injected into the eye without causing damage to the IOL or the 
surrounding  tissue12.

Despite the protective role OVDs play during lens removal and IOL implantation, they may contribute to 
increased postoperative IOP in the anterior chamber if they are not entirely removed after the implantation 
 procedure1,2,4,14. Increased IOP can damage the corneal endothelial cells, and in some cases may damage the 
optic  nerve15. The time required for complete OVD removal may be correlated to endothelial cell  loss4. Therefore, 
OVD selection and removal characteristics are important surgical considerations.

Dispersive OVDs are composed of short molecular chains that adhere to the corneal  endothelium4,16. 
Although this provides protection against damage during  surgery1,16, adherence to the endothelium makes 
OVD removal difficult and may require extra time. Cohesive OVDs, including ProVisc, are made up of long 
molecular chains and help maintain the shape of the eye during surgery. Generally, these are easier to remove 
after IOL  implantation1,4. Viscoadaptive OVDs, which act either cohesively or dispersively, were developed to 
provide the benefits of both OVD types: protection of the eye and efficient  removal13. However, high-viscosity 
viscoadaptives adhere more to hydrophobic acrylic IOLs, thus prolonging removal time. The IOL type chosen 
for a particular surgical case helps determine the appropriate class of OVD to use with that IOL, and both of 
these devices (the IOL and the OVD) will influence the removal  technique2,15.

The physical design of the lens (such as optic size, geometry, and haptic angle) can affect OVD removal time, 
and so can the IOL’s material  composition1,2. In a comparative study of lenses made from acrylic, silicone, or 
PMMA, lenses were implanted using cohesive or dispersive  OVDs1. The average removal times were longer for 
all lens types when the dispersive OVD was used (Viscoat, 35.5 ± 10.0 s) versus the cohesive OVD (ProVisc, 
25.6 ± 4.7 s)1. In an additional study, removal times were long for a high-viscosity cohesive OVD,  Healon5®, 
(34.1 ± 1.2 s) when used with the acrylic  IOL2.

Foldable acrylic lenses require only a small surgical  incision2; however, OVD might be left trapped behind 
the IOL, between it an the posterior  capsule15. This can make OVD removal  challenging2, and additional time is 
needed to remove any OVD on the posterior side by placing the I/A tip underneath the lens as described  above2,15.

As we used a cohesive OVD for this study, results are only pertaining to cohesive OVDs and cannot be applied 
to OVDs in general. In previous studies to evaluate OVD removal times, enucleated cadaver eyes were used for 
the assessments; however the cornea and iris were removed, making them void of an anterior chamber. As a 
result, OVD was only removed from the IOL and capsular bag and did not include the anterior chamber. In the 
current study, porcine eyes were used with an intact anterior segment, necessitating OVD removal from both 
the capsular bag and the anterior chamber. Furthermore, a larger volume of viscoelastic was used in this study 
due to the anatomical dimensions of the anterior chamber of the porcine eye. These results show that following 
Clareon IOL implantation, cohesive OVD removal times for ProVisc are similar to the results for AcrySof IOL 
implantation and also similar to the ones obtained in previous  studies17.

Figure 3.  Boxplot of the comparison of removal times of the stained OVD for the Clareon CNA0T0 (n = 9) and 
AcrySof SN60WF (n = 9) IOLs; there was no significant difference (P = 0.27, Mann–Whitney).
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Conclusion
Both IOLs used in this study were hydrophobic acrylic lenses; the Clareon with a slightly higher water content 
(1.5%) compared to the AcrySof (0.4%) (Table 1). However, based on the results of this study both IOL models 
have similar cohesive OVD interactions and ease of removal.

There were no unexpected complications during OVD removal for either lens model. Cohesive OVD removal 
times of approximately 25 s for the Clareon and AcrySof IOLs demonstrated that both IOL materials allowed 
for similar ease of cohesive OVD removal. The Clareon CNA0T0 IOL showed no significantly different cohesive 
OVD removal time with ProVisc compared with the AcrySof IOL. Future work may assess the interaction of the 
Clareon CNA0T0 IOL with OVD in a clinical setting.

Data availability
All data generated or analysed during this study are included in this published article.
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