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Classical theory of universal 
quantum work distribution 
in chaotic and disordered 
non‑interacting Fermi systems
András Grabarits1,2,3*, Márton Kormos1,3, Izabella Lovas4,5,6 & Gergely Zaránd1,2,3

We present a universal theory of quantum work statistics in generic disordered non‑interacting Fermi 
systems, displaying a chaotic single‑particle spectrum captured by random matrix theory. We consider 
quantum quenches both within a driven random matrix formalism and in an experimentally accessible 
microscopic model, describing a two‑dimensional disordered quantum dot. By extending Anderson’s 
orthogonality determinant formula to compute quantum work distribution, we demonstrate that 
work statistics is non‑Gaussian and is characterized by a few dimensionless parameters. At longer 
times, quantum interference effects become irrelevant and the quantum work distribution is well‑
described in terms of a purely classical ladder model with a symmetric exclusion process in energy 
space, while bosonization and mean field methods provide accurate analytical expressions for the 
work statistics. Our results demonstrate the universality of work distribution in generic chaotic 
Fermi systems, captured by the analytical predictions of a mean field theory, and can be verified by 
calorimetric measurements on nanoscale circuits.

One of the fundamental principles of modern physics is emergent universal behavior. In equilibrium, prominent 
examples of universality are phase transitions, with a critical behavior solely determined by the symmetries and 
dimensionality of the system, independent of the microscopic  details1,2. Another striking example of universal 
behavior is the Fermi liquid theory of interacting fermions, capturing the low temperature properties of most 
normal  metals3. In recent years, great effort has been devoted to identify and experimentally observe the universal 
aspects of out-of-equilibrium dynamics as  well4–6. Universality has been demonstrated in the non-equilibrium 
dynamics of near-integrable one-dimensional Bose  gases7,8, as well as in the form of emergent classical hydro-
dynamics in the late time relaxation of generic many-body  systems9,10.

Our main goal in this paper is to extend the powerful paradigm of universality to the rapidly growing field of 
non-equilibrium quantum thermodynamics. We are motivated by the swift experimental developments in recent 
years that allow us to study quantum thermodynamics in various systems ranging from individual  molecules11–13 
through mesoscopic  grains14,15 and nuclear  spins16 to cold  atoms17 and nitrogen vacancy  centers18.

The concepts of heat and work lie at the foundations of thermodynamics; generalizing them to the quan-
tum realm poses new  challenges19–22. The definition and measurement of work in quantum systems becomes 
non-trivial, and requires a two-time measurement protocol: one first determines the energy Ei0 of the initial 
state at time t = 0 , and later, in a second measurement, the energy Eft  of the time evolved system at time t, with 
E
f
t  being an eigenenergy of H(t). The total energy absorption, Eft − Ei0 , can be divided into two contributions. 

The adiabatic part, denoted by Eit − Ei0 , measures the absorbed energy for adiabatically slow processes, where 
the occupations of instantaneous energy levels do not change during the quantum quench. This contribution 
incorporates only an essentially trivial time-dependent shift of the energy levels of Ĥ(t) . The second, ‘entropic’ 
contribution of energy absorption or ‘work’, defined as W ≡ E

f
t − Eit , accounts for the non-adiabatic particle-hole 
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excitations induced by the quench protocol, i.e., the energy absorbed ( W > 0 ) or emitted ( W < 0 ) by the system 
due to non-adiabatic transitions. In this work, we focus on the non-adiabatic contribution W, and investigate 
the corresponding distribution function, P t(W) . For simplicity, we consider quantum quench protocols, i.e., we 
start from the ground state of the initial Hamiltonian Ĥ(0) , but our results can be readily generalized to finite 
temperature mixed  states23. The distribution of quantum work is thus given by

  While the full distribution of work in clean many-body systems has been studied quite  extensively20,24–30 
relating it to the Loschmidt  echo24,31 and to quantum information  scrambling31,32, in the presence of disorder 
it was only investigated in the sudden quench  limit33–36. The effects of disorder were studied for more general 
protocols, including finite frequency drivings, in the pioneering  works37–43, however, these focused exclusively 
on the average energy absorption and did not discuss the full distribution of work.

To fill this gap, and to examine the universal aspects of the work statistics of Fermi liquids, we focus on dis-
ordered, chaotic fermion systems such as 2-dimensional quantum dots, which we perturb by changing external 
gate voltages, fields, and electrodes, as shown in Fig. 1a. We neglect interactions under the assumptions that a 
non-interacting Fermi liquid description is appropriate. We note that these systems are chaotic in the sense that 
their level statistics is well captured by random matrix theory, however, due to the lack of interactions, they are 
not ergodic in the many-body sense. Under these conditions, the system can be described in terms of the time 
dependent Hamiltonian

where the âi ’s stand for fermionic annihilation operators, and the single particle Hamiltonian H(t) incorporates 
disorder effects and also accounts for the impact of time dependent electrodes. The total fermion number is 
conserved by Eq. (2), 

∑
i â

†
i âi = M.

We study the universal features of the work statistics for zero temperature quench protocols, starting from 
the ground state of the initial Hamiltonian, in two steps. First, relying on the observation that the single particle 

(1)P t(W) ≡
〈
δ
[
W − (Ĥ(t)− EGS(t))

]〉
.

(2)Ĥ(t) =
N∑

i,j=1

â†i Hij(t) âj ,

Figure 1.  Work statistics in a generic disordered quantum dot. (a) Sketch of a quantum dot subject to time 
dependent magnetic field and gate voltages, realizing a quantum quench and leading to energy absorption. (b) 
Deformation-induced motion of energy levels during the quench giving rise to particle-hole excitations. Inset: 
Quantum quench in a generic disordered dot modelled as a trajectory in the manifold of random matrices. 
(c) ‘Ladder’ model for energy absorption: classical diffusion of hard core particles on uniformly spaced energy 
levels. (d) Benchmarking the work statistics of a realistic quantum dot system against the simplified ladder 
model for quenches starting from the ground state. Work distribution evaluated from the full microscopic 
description of the quantum dot, and the results within the classical ladder model collapse onto a universal curve. 
The values of the numerical parameters are the same as in Fig. 3 below.
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spectrum of most chaotic systems is captured by random matrix theory (RMT)44–46, we investigate quenches 
within random matrix ensembles, such that H(t) follows a trajectory within the manifold of Gaussian random 
matrices (see the inset of Fig. 1b). Secondly, after establishing the universal properties of work distribution within 
this random matrix description, we turn to a more realistic microscopic model of a disordered Fermi liquid. 
We ask the natural question whether the universal features predicted by random matrix theory remain valid for 
a more realistic, experimentally accessible disordered tight binding Hamiltonian. We find that the answer to 
this question is affirmative; our results demonstrate the striking universality of the work statistics both within a 
random matrix framework and for a full microscopic description (see Fig. 1d).

To set up the framework of random matrix theory, we follow the strategy of Refs.39,47  and48, and consider 
deformations within the space of Gaussian random matrix ensembles,

 with H1,2 some independent N × N Gaussian matrices from the orthogonal (GOE), unitary (GUE) or sym-
plectic (GSE) ensembles, inducing the motion and collisions of single-particle energy levels, see Fig. 1b. Here 
�̇ = v sets the speed of deformations and generates a motion along an ’arc’ or ’circle’ within the random matrix 
ensemble, as depicted in the inset of Fig. 1b. Our first goal is to understand universal aspects of the structure 
and time evolution of the distribution Pt(W) within this framework, with the initial state chosen as the ground 
state of Ĥ(0) . We follow the quantum evolution of the disordered many-body systems, and use a determinant 
formula presented in Ref.48 to compute Pt(W) . Our first main finding is that the statistics of Pt(W) is almost 
independent of microscopic details as well as the symmetry of the Hamiltonian, once the absorbed energy exceeds 
sufficiently the one-body energy separation δε ≡ 1/N(εF) , characterizing the total density of levels at the Fermi 
energy εF , and the time is long enough, t > �/δε . To capture work in this long time limit, we construct a simpli-
fied classical ‘ladder’ model which only incorporates Pauli exclusion and level repulsion to the lowest order, in 
the form of a completely rigid spectrum. However, the ‘ladder’ model ignores all additional features of the level 
statistics, including its dependence on the random matrix ensemble parameter β , as well as the interference 
effects between consecutive level collisions and Landau–Zener transitions, see Fig. 1c. Our simplified ‘ladder’ 
model gives a surprisingly accurate description of Pt(W) , underlining the high level of universality in the work 
statistics, and allowing us to derive accurate analytical approximations for Pt(W) by means of bosonization and 
a particle number conserving mean field method. These analytical formulas constitute the second main result 
of our work. We then turn to our last main objective, and provide further evidence for universality of the work 
statistics by going beyond the RMT framework. By comparing the ‘ladder’ model to a realistic 2D quantum dot 
system, we confirm the striking universality of the work statistics for the full microscopic description, thereby 
validating our random matrix theory approach (see Fig. 1d).

Results
Quantum mechanical analysis. In this section we briefly summarize the main steps allowing us to 
numerically evaluate the full distribution of work, Pt(W) , for an arbitrary quadratic Hamiltonian, Eq. (2), fol-
lowing Ref.48. For a non-interacting Hamiltonian, all information is contained in the time evolution of the single 
particle wave functions, ϕm(t) , that evolve according to the Schrödinger equation ( � = 1)

with initial conditions ϕm
i (0) = δmi  . We solve Eq. (4) using the adiabatic approach, by expanding ϕm(t) in terms 

of the instantaneous eigenfunctions ηkt  of H satisfying H(t) ηmt = εm(t)η
m
t  as

We then solve the single particle Schrödinger equation for αm
k (t) with initial conditions αm

k (0) = δmk ,

where Akl = −i ηkt · ∂tηlt is the Berry connection. For zero temperature quenches, the characteristic function 
Gt(u) of the work distribution Pt(W) can then be expressed by a simple determinant  formula48,49

Here |�(t)� is the full time-evolved many-body wave function, with |�(0� being the ground state of the initial 
Hamiltonian Ĥ(0), EGS(t) is the ground state energy of the instantaneous Hamiltonian Ĥ(t) , and 〈. . . 〉disord 
denotes the averaging over disorder. The matrix gt(u) contains information on overlaps and the instantaneous 
single particle energies εk(t) at time t,

We compute gt(u) numerically, average over disorder or the random matrix ensemble, 〈. . . 〉disord , and determine 
the final distribution by performing a Fourier transformation.

The average level spacing δε and its inverse provide natural energy and time scales, and allow us to introduce 
the dimensionless work and time, w ≡ W/δε and t̃ ≡ t δε , respectively. As shown in Fig. 1b, deformations of 

(3)H(t) = H1 cos �(t)+H2 sin �(t) ,

(4)i ∂tϕ
m(t) = H(t)ϕm(t)

ϕm(t) =
∑

k

αm
k (t) η

k
t .

(5)i α̇k(t) = εk(t)αk(t)+
∑

l

Akl(t) αl(t) ,

(6)Gt(u) =
〈〈
�(t)| eiu

(
Ĥ(t)−EGS(t)

)

|�(t)
〉〉

disord
=

〈
e−i u

∑M
m=1 εm(t) det gt(u)

〉
disord

.

(7)
[
gt(u)

]mm′
≡

∑

k

[αm
k (t)]∗ ei u εk(t) αm′

k (t) .



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15017  | https://doi.org/10.1038/s41598-022-18796-3

www.nature.com/scientificreports/

the Hamiltonian lead to a continuous motion of single particle levels, and thereby induce collisions and transi-
tions between them. At longer times, these collisions and Landau–Zener  transitions38,40,47,50 give rise to a diffusive 
broadening of the Fermi surface, more precisely, of the Fermi edge in energy space, since momentum is not 
well-defined in the presence of disorder. Namely, the mean occupation of the kth energy level is given by 
fk(t) = (1− tk(t))/2 with tk(t) = erf

(
�k/

√
4D̃t̃

)
 where �k = k −M − 1/2 is measured from the Fermi-level, 

and D̃ is the dimensionless energy diffusion constant.
After a short time perturbative ∼ t2 scaling, the average work is found to increase as �w� = D̃ t̃ (see 

Refs.37,38,40,48 and Methods). Let us note that quantum effects such as dynamical localization yielding time depend-
ent corrections to the diffusion constant studied for periodic driving in the important early  works41–43 become 
only relevant on a time scale much larger than the  period39 and are thus negligible on our time scales. Below 
we turn to the full distribution of the dimensionless work w in different settings, both numerically and through 
various analytical approximations.

Quenches in random matrix ensembles. In this section we analyze the works statistics within the 
framework of random matrix theory for quenches of the form of Eq.  (3). The disorder average appearing in 
Eq. (6) becomes an average over two independent random matrices, H1,2 . The distribution P t̃ (w) can be disen-
tangled into an adiabatic and a regular part,

Random matrix theory implies that - apart from the symmetry of the Hamiltonian - the statistics of the evolu-
tion of the eigenvalues, sketched in Fig. 1b, is completely characterized by the velocity with which levels deform, 
i.e., the frequency of avoided level crossings. Indeed, the average distance of level  crossings47,50,51, 〈��〉 , and the 
time scale 1/δε define a natural ‘velocity’ in parameter space, vc ≡ ����δε , which we can use to introduce the 
dimensionless velocity, ṽ ≡ �̇/(����δε) . For N × N random matrices, δε ∼ 1/N , and ���� ∼ 1/

√
N  , therefore 

vc ∼ 1/N3/2 . The dimensionless velocity characterizes microscopic processes. For ṽ ≪ 1 the motion is almost 
adiabatic, and small probability Landau–Zener transitions dominate. For ṽ ≫ 1 , on the other hand, transitions 
between remote levels generate energy absorption.

From our random matrix considerations it follows that the distribution P t̃(w) can only depend on t̃ , ṽ , and, 
in case of finite temperature initial states, on the dimensionless initial temperature, T̃ ≡ T/δε . Similarly, the dif-
fusion constant D̃ is a universal function of ṽ , which scales as D̃ ∼ ṽ2 for large velocities, while for ṽ < 1 nearest 
neighbor transitions dominate and yield D̃ ∼ ṽ(β/2+1) , with β = 1, 2 and 4 characterizing the orthogonal, unitary, 
and symplectic ensembles, respectively (see the Methods for more details).

We show our random matrix simulation results in Fig. 2. We checked that the work distribution is not sensitive 
to changes in the number of energy levels N and the number of particles M, as long as the particle-hole excitations 
contributing to the work are created far from the edges of the band (see also Ref.48.) For small work, 〈w〉 � 10 , 

(8)P t̃ (w) = Pad( t̃ ) δ(w)+ Preg(w; t̃ ) .

0

0.01

0.02

0.03

0.04
b)

0

20

0.05

0.1
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Figure 2.  Work statistics for GSE, GOE, GUE, for dimensionless average work �w� = 5 (a), and �w� = 20 (b). 
For smaller 〈w〉 , Preg(w; t̃ ) displays features associated with level repulsion and specific to the symmetry of the 
underlying Hamiltonian, while for large 〈w〉 , the distributions Preg(w; t̃ ) fall onto a single universal curve for 
all RMT universality classes and velocities, captured by a classical ladder model. Mean field (dashed line) and 
bosonization (continuous line) approaches give accurate description in the diffusive regime. In panel a), the 
number of energy levels was N = 28 for the GSE, N = 20 for the GOE and GUE, and N = 80 for the ladder 
model simulations. In panel b), these numbers are N = 96 (GSE), N = 50 (GUE), N = 52 (GOE), and N = 70 
(ladder model). The number of particles was set to half filling, M = N/2.
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the statistics depends on β as well as on ṽ, and Preg(w; t̃ ) displays peaks and minima associated with level repul-
sion, clearly reflecting the symmetry of the underlying Hamiltonian (see Fig. 2a). These features become more 
pronounced for larger β due to the stronger level repulsion. For larger works, �w� � max {ṽ2, 1} , however, one 
enters a diffusion dominated regime, where symmetry related and microscopic features become less important, 
and a universal distribution displayed in Fig. 2b emerges. The observed distribution is clearly non-Gaussian, and 
characterizes work statistics in generic non-interacting fermion systems.

Ladder model. The agreement between the three universality classes is suggestive that quantum interfer-
ence effects do not play an important role in this diffusion-dominated regime. We can therefore attempt and 
construct a classical ‘ladder’ model, consisting of uniformly placed classical energy levels at a distance δε from 
each other (see Fig. 1c),

occupied by hard-core particles in line with Fermi statistics. The energy of a many-body state is then given by 
E =

∑
k nk εk with nk ∈ {0, 1} the occupation numbers, and 

∑
k nk = M the total number of particles. The evenly 

placed levels (9) mimic level repulsion and level rigidity in chaotic systems. As a final component, perturbation-
induced random Landau–Zener transitions are modeled by nearest neighbor hopping transitions and a sym-
metrical exclusion process (SEP) in energy space. The SEP is a classical Markovian stochastic system of hard-core 
particles trying to jump at a constant rate to the left or to the right with probability 1/2 along a 1D lattice with 
the constraint that no site can be occupied by more than one particle (exclusion property). This simple model 
captures the diffusive broadening of the Fermi surface (see Methods) and, in addition to level repulsion, it also 
incorporates Fermi statistics and particle number conservation. In our SEP simulations, the jump rate was set 
by the diffusion constant D̃ such that for a given quench time the same final occupation profile and average work 
is obtained as in the quantum simulation. As can be seen in Figs. 2 and 3, this classical stochastic model gives 
a surprisingly accurate description of the work statistics for large enough average work, independently of the 
velocity. Moreover, with certain assumptions, the ‘ladder’ model can be used to compute P ad( t̃ ) and Preg(w; t̃ ) 
analytically for a T = 0 temperature initial state, without performing the actual Monte Carlo simulations, using 
either bosonization or a more accurate mean field approach. It is, however, crucial to treat particle number 
conservation with care.

Bosonization. Bosonization offers a simple method to treat particle number conservation in the ‘ladder’ 
model. Introducing fermion operators for each level, we can express the total energy as H =

∑
k(εk − εF) : c†kck :

  with εF = δε (M + 1/2) the Fermi energy and  : ... :  referring to normal ordering with respect to the Fermi 
sea. Following Ref.52, we introduce bosonic operators, b†q>0 ≡ (1/

√
q)

∑
k c

†
k+qck , which satisfy the usual com-

mutation relations, [bq, b†q′ ] = δq,q′ , and rewrite the Hamiltonian in terms of these as

 with N̂ =
∑

k c
†
kck −M the normal ordered fermion number. Clearly, the fermion number does not change for 

the closed system studied here so the second term in Eq. (10) does not give a contribution. We can obtain an 
approximate expression for P t̃(w) by assuming that the final state is thermal with an effective boson temperature 
T̃eff =

√
6�w�/π , chosen to yield the appropriate average energy, �

∑
q>0 q b†qbq� ≡ �w� . In the large 〈w〉 limit, we 

then obtain (for details see Methods),

(9)εk = k δε , k = 1, 2, . . . ,

(10)H =
∑

q∈Z+
δε q b†qbq +

δε

2
N̂2

0

0.04

0.02

0.06

Figure 3.  Work statistics for dimensionless average work �w� = 10 . Microscopic quantum dot model (inset) 
simulations (green circles), random matrix (GOE) results (orange diamonds), and the ‘ladder’ model statistics 
(black crosses) fall on top of each other with good accuracy. Quantum dot calculations were performed for 
M = 427 electrons for a lattice of size 38× 38 , disorder variance σ = 1.75J , potential strength α = 75J , 
deformation amplitude �f = 0.1, and dimensionless velocity ṽ = 0.4 . For the GOE computations we used 
N = 40 with M = 20 electrons, and velocity ṽ = 4 . For the ‘ladder’ model simulations we used ṽ = 0.5, and 
N = 120 levels with M = 60 electrons. Quantum work distribution depends only on the average work 〈w〉 and is 
well captured by the classical ‘ladder’ model.
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where I1 is the modified Bessel function of the first kind. Since Teff ∼
√

D̃t̃ , the prefactor decays as ∼ e−C
√

D̃t̃ , 
corresponding to a stretched exponential decay of adiabatic processes, as confirmed by our quantum mechani-
cal  simulations48.

Mean field theory. The bosonization approach yields a good account of the overall structure of Pt̃(w) , but 
with certain limitations (see Fig. 2b). In particular, the assumption of a thermal final state is not quite correct. 
The occupation of the single particle levels after the time evolution is not described by the Fermi function but 
has a diffusive structure, as stated earlier. A more accurate expression can be obtained for P t̃(w) in a simple, 
particle number conserving mean field approach, where instead of assuming thermalization, we rely on the dif-
fusive nature of energy absorption, and assume that each fermion level k is occupied with probability 
fk = (1− erf

(
�k/

√
4D̃t̃

)
)/2 with �k = k −M − 1/2 measured from the Fermi-level, corresponding to a dif-

fusive broadening of the Fermi surface. To enforce the constraint, 
∑

k nk = M , we use an integral representation 
over an auxiliary variable. A saddle point procedure in this latter then yields accurate expressions for P ad( t̃ ) as 
well as for Preg(w; t̃ ).

The mean field probability distribution, PMF
t̃

(w) , is similar in structure to Eq. (11), but contains additional 
correction terms (see Methods for details),

with cw ≈ 1.35 and

As shown in Fig. 2b, the mean field expressions above yield an accurate description of work in the diffusive 
regime. Similar to the bosonization result, Eq. (11), PMF

t̃
(w) is non-Gaussian and, by construction, depends 

parametrically only on 〈w〉 . The probability of adiabatic processes also falls off as a stretched exponential, but 
the prefactor cw is more accurate than the one obtained by the simple bosonization theory ( π/

√
6 ≈ 1.28 ) (see 

Ref.48 and Methods).

Validation by microscopic models and experimental setup. The universal features of the work sta-
tistics discussed so far have been established within the framework of random matrix theory. It is a natural ques-
tion to that extent do these result remain valid outside this framework, in realistic disordered systems. To answer 
this question and to confirm our predictions as well as to validate the results of our random matrix approach, we 
propose to study a 2-dimensional quantum dot, and squeeze the electron gas confined there by applying time 
dependent external gate voltages (see Fig. 1a). This system can be realized  experimentally53,54.

We model the quantum dot by a disordered tight binding Hamiltonian on a square lattice,

where the sum over δ runs over the two orthogonal lattice vectors. The first term accounts for the kinetic energy 
of the electrons, while εr are random onsite energies drawn from a Gaussian distribution of variance σ , and are 
responsible for electron scattering and disorder. We emphasize that we focus on the delocalized regime of the 
model, where the Anderson localization length is much larger than the system size. The potential

describes the parabolic confinement, generated by external gate electrodes. The second term in V(r, t) describes 
a compression (decompression) of the electron gas in the x direction with a simultaneous decompression (com-
pression) along the y direction. We vary � linearly in time between −�f  and �f  to induce deformations and 
generate dissipation.

A numerical investigation of the single particle spectrum of Eq. (14) reveals that, although some deviations 
are clearly present, the spectrum of Eq. (14) is reasonably described in terms of GOE for each value of � (see 
Methods).

Similarly to the RMT simulations, we generate work by varying lambda at a constant pace, �̇ = v, correspond-
ing to the velocity of potential deformations, and compute work statistics Pt̃(w) according to the formula used for 
the random matrix models, Eq. (6). In order to get universal work distribution, we introduce the same velocity 
and time units, however, their dependence on the number of lattice sites, on-site disorder strength, and potential 
strength is quite different from that in the RMT model. In particular, both δε and the typical distance between 
avoided crossings strongly depend both on the potential strength, system size, on-site disorder strength, and the 
position in the energy spectrum which we, therefore, computed numerically, averaging over ∼ 5× 103 disorder 
realizations. Then setting the average work in these units to �w� = 10, we computed the regular part of the work 
statistics, Preg(w; t̃) , for velocity ṽ = 0.4 , presented in Fig. 3.

(11)P Bose
t̃

(w) ≈ e−
π2 T̃eff

6

[ π√
6w

e−w/T̃eff I1
(
π

√
2
3w

)
+ δ(w)

]
,

(12)PMF
t̃

(w) ≈ PMF
ad δ(w) + cw√

w
e
−cw

w+�w�√
�w�

[
I1(2cw

√
w)−

√
2 I1

(
2cw

√
w/2

)]

(13)PMF
ad = (8π�w�)1/4 e−cw

√
�w� .

(14)Ĥ = −J
∑

r,δ

ĉ†
r+δ ĉr +

∑

r

(V(r, t)+ εr)ĉ
†
r
ĉr ,

(15)V(r, t) = 1

2
(αr2 + �(t)(x2 − y2))
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The results show striking agreement with random matrix theory as well as with the ‘ladder’ model, and thereby 
provide further evidence for universality.

An alternative experimental platform to study quantum work statistics is offered by ultracold  atoms17. For 
a forward-backward protocol Pad is essentially the ground state fidelity, which has been measured in Ref.55 by 
preparing two identical copies of a quantum system, and measuring their overlap. This method could be used to 
verify the predicted stretched exponential behavior of Pad in disordered fermion systems.

Discussion
We demonstrated universal behavior in the quantum thermodynamics of a chaotic Fermi liquid, displaying a level 
statistics captured by random matrix theory, by studying the work statistics for quantum quenches in disordered 
non-interacting fermionic systems. We note that according to Fermi liquid theory, interaction effects are expected 
to remain irrelevant at single-particle energies ε such that (ε − εF)

2/εF is smaller than the typical level spacing.
First we focused on quenches formulated within the framework of random matrix theory. Strikingly, we 

found that for large enough average work, the distribution is independent of the random matrix ensemble and 
is very well captured by a universal classical stochastic model describing diffusion in energy space. This simpli-
fied ‘ladder’ model only relies on Pauli exclusion principle and on the rigidity of the random matrix spectrum, 
but neglects all further microscopic details, including the symmetry class of the Hamiltonian. This high level 
of simplification allowed us to derive approximate analytical expressions both via bosonization and mean field 
theory. Interestingly, the bosonization result in Eq. (11) also emerged in the context of work statistics in Luttinger 
liquids after an interaction  quench26. While the bosonization approach performs more poorly in comparison with 
the mean field treatment (cf. Fig. 2b), it relies on the additional approximation that the final state is thermal. In 
contrast, the mean field approach incorporates the more accurate diffusive occupation profile of the final state, 
and yields a striking agreement with the results of full quantum simulations, thereby providing an excellent 
analytical approximation for the universal work statistics. Finally, we turned to a more realistic, experimentally 
accessible microscopic model, and studied the work distribution of a 2D disordered quantum dot subject to time-
dependent gate voltages. We demonstrated the striking agreement between the work statistics of this microscopic 
model and our random matrix theory predictions. These results show that our universal description holds beyond 
the framework of random matrix theory, and accurately captures the energy absorption in realistic models. Our 
results could be tested experimentally by studying squeezed disordered quantum dots.

Methods
Bosonization approach
In this approach,

we consider an equilibrium fermionic system with uniformly spaced one-particle energy levels. In the frame-
work of bosonization, the fermionic particle-hole excitations with respect to the ground state are represented as 
bosonic states. We assign thermal Boltzmann weights e−βeff qδε to these states, where βeff  is an effective inverse 
temperature while q δε with q = 1, 2, . . . measures the energy of the particle-hole excitation.

Since these excitations are bosonic, for each q we can have nq = 0, 1, 2, . . . arbitrarily many bosonic excita-
tions with energy qnqδε . In the characteristic function each of them carries a contribution of eiũqnq , so we have

where N =
∏

q>0

[
1− e−q(βeff δε)

]−1 so that Geff (0,Teff ) = 1 . Exponentiating Eq. (16) and taking the continuum 
limit 

∑
q>0 →

∫∞
0 dx we get:

The Fourier transform can be performed exactly,

which together with the normalisation factor leads to the analytical result expressed in terms of the dimension-
less effective temperature

Mean field approach. In this section we provide some details about the mean field theory calculations and 
the resulting analytic expressions.

(16)

GBose
t̃

(u) = N
−1

∑

n1,n2,...

e−(βeff δε−iũ)n1e−(βeff δε−iũ)2n2e−(βeff δε−iũ)3n3 · · · = N
−1

∞∏

q=1

∞∑

nq=0

e−qnq(βeff δε−iũ)

= N
−1

∏

q>0

1

1− e−q(βeff δε−iũ)
,

(17)GBose
t̃

(u) ≈ N
−1e

−
∫∞
0 dx ln

[
1−e−(βeff−iu)x

]

= e
π2/6

βeff−iũ−
π2/6
βeff .

(18)

∫ ∞

−∞

du

2π
e−iuwe

π2/6
βeff−iu =

∞∑

n=0

(
π2/6

)n

n!

∫ ∞

−∞

du

2π

e−iuw

(βeff − iu)n
= e−βeffw

∞∑

n=1

(
π2/6

)n
wn−1

n!(n− 1)! + δ(w)

= π√
6w

e−βeffwI1
(
π

√
2
3w

)
+ δ(w),

(19)P Bose
t̃

(w) ≈ e−
π2 T̃eff

6

[ π√
6w

e−w/T̃eff I1
(
π

√
2
3w

)
+ δ(w)

]
.
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Probability of adiabaticity. Within the mean field approach, the probability of each many-body configuration 
takes the form of the product of independent Bernoulli weights of M occupied and N −M empty sites. In order 
to simplify calculations and without any loss of generality we consider the case of M = N/2:

where the particle number conservation is taken into account by the Kronecker-delta for which we used a stand-
ard integral representation. The Bernoulli weights are

where fk(t) = (1− tk(t))/2 with tk(t) = erf
(
�k/

√
4D̃t̃

)
 and �k = k −M − 1/2 is measured from the Fermi-

level. Finally, the time-dependent normalization factor is the sum of all possible many-body probabilities:

Writing the above expression as the exponential of its logarithm, approximating the resulting sum by an integral 
and performing a saddle point approximation around � = 0, we obtain for large enough values of �w� = D̃t̃ ≫ 1:

The probability of adiabaticity then reads

with C ≈ 1.35.

Variance of work. For �w� ≫ 1 , we approximate the variance of the work by neglecting the fluctuations of the 
energy  levels56 but incorporating the fluctuations of the occupation numbers. We thus measure the energies 
from the Fermi-level as εk(t) → �k δε with �k = k −M − 1/2. For a given realization of H(t) , this leads to 
the estimate

where 〈. . . 〉 denotes quantum average. Separating the diagonal terms, the RM average 〈δw2(t)〉RM can be writ-
ten as

where δn̂k,t ≡ n̂k,t − �n̂k,t� is the deviation of the occupation number from the mean value. As the n̂k,t behave as 
binary random variables, the averages in the first term are given by ��δn̂2k,t��RM = fk(t)

(
1− fk(t)

)
 . The correlators 

in this equation can be expressed in terms of the amplitudes αm
k (t) as �δn̂k,tδn̂k′ ,t� = −

∣∣∑N/2
m=1 α

m
k (t)

∗αm
k′ (t)

∣∣2 . 
The negativity of this correction implies that the level occupations are anticorrelated, as follows from particle 
number conservation.

Neglecting this correction for the moment and replacing sums by integrals, we arrive at the estimate

yielding �δw2(t)� ∼ �w�3/2 . We thus recovered the observed behavior, however, the prefactor turns out to be 
incorrect. The correct  prefactor57 can be obtained by a more careful mean field calculation that takes into account 
the occupation number correlations as well which obey that same scaling ∼ t̃3/2.

Distribution of work. The characteristic function of the distribution of work can be expressed as

(20)P({nk}) =
1

Nt

N∏

k=1

pk,t(nk) δN/2=
∑

k nk
= 1

Nt

∫ π

−π

d�

2π
ei�

∑N
k=1 (nk−1/2)

N∏

k=1

pk,t(nk) ,

(21)pk,t(nk) = nkfk(t)+ (1− nk)(1− fk(t)) ,

(22)

Nt ≡
∑

{nk}
P({nk}) =

∫ π

−π

d�

2π

N∏

k=1

[
ei�/2fk(t)+ e−i�/2(1− fk(t))

]
=

∫ π

−π

d�

2π

N∏

k=1

[cos(�/2)− i sin(�/2)tk(t)]

=
∫ π

−π

d�

2π

∏

�k>0

[
cos2(�/2)+ sin2(�/2)tk(t)

]
.

(23)

Nt ≈
∫ π

−π

d�

2π
exp

[∫ ∞

0
dx log

(
cos2 �/2+ tx(t) sin

2
�/2

)]
≈

∫ π

−π

d�

2π
exp

[
−
∫ ∞

0
dx�2/4(1− tx(t))

]
= (8π�w�)−1/4 .

Pad(t̃) =
1

Nt

∏
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fk(t)
∏
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(
1− fk(t)

)

≈ 1

Nt
e2

√
4�w�
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0 dx log[(1+erf (x))/2] = (8πD̃t̃)1/4 e−C

√
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√
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〈( N∑
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�k n̂k,t
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〈 N∑

k=1
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〉2
,

(24)�δw2(t)�RM ≈
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k

�k2
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δn̂2k,t
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RM

+
∑

k �=k′
�k�k′
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,

�δw2(t)�RM ≈
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dx x2
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4
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where we introduced the scaled variable ũ = u δε and the notation hk(u, t) = fk(t)
f−k(t)

eiũ�k . Here 〈. . . 〉MF denotes 
averaging over the mean field many-body probabilities and Ñt a modified normalization constant. As numerics 
revealed, for large enough injected works �w� ≫ 1 neglecting particle number conservation does not introduce 
big errors provided we subtract the pure particle and pure hole excitations with respect to the ground state:

where the first term is the � = 0 saddle-point solution of the integral expression, while the second part substracts 
the contributions coming from the pure particle-hole excitations. Here the integrals can be approximated as

yielding

with cw = 3
√
2π
5  chosen such that the characteristic function correctly reproduces the first two cumulants of 

work in the saddle point solution. Now, analogously to the Bosonization approach, both terms can be Fourier 
transformed exactly leading to the approximate analytic expression

Energy space diffusion. In this section we demonstrate that the energy level occupations exhibit a diffu-
sive profile, meaning that particle-hole excitations happen dominantly in a window growing as ∼ �w�1/2 , for all 
the random matrix ensembles as well as for the “ladder model” and the disordered quantum dot. The left panel 
of Fig. 4 shows that for large enough average work the mean level occupation for of all three RMT ensembles 
(GOE, GUE, GSE) follows a single universal curve identical to those of the quantum dot model up to high pre-
cision and it is also perfectly described by the ladder model. Numerical calculations were made for ∼ 5× 103 
disorder realizations both for random matrix theory and the disordered quantum dot, for N = 40, 28, 40 for the 
three ensembles, respectively and for parameters L = 38, σ = 1.75J ,α = 75J and with 427 particles in the case 
of the quantum dot.

The right panel of Fig. 4 shows the velocity dependence of the diffusion constant, D̃β(ṽ) for the three ensem-
bles and the quantum dot model. We averaged over ∼ 5× 103 simulations, yielding smooth enough time-
evolutions of average work to extract the diffusion constants. Parameters were chosen such that we avoid finite 
size effects and be in the diffusion regime. The rate of energy absorbed by the system exhibits an anomalous 
frequency dependence for slow quenches, D̃β(ṽ � 1) ∼ ṽβ/2+1 , while for fast processes becomes independent 
of the underlying symmetry class and grows quadratically, as it should in the case of a metal, D̃β(ṽ ≫ 1) ∼ ṽ2 . 
The diffusion constant for the quantum dot shows the same power-law behavior as the GOE ensemble, albeit 
with a slightly smaller prefactor.

Finally, we compare the level spacing distribution of the GOE ensemble and the disordered quantum dot. 
As shown in Fig. 5, the distribution of the distance of neighboring levels are well described by the analytical 
RMT result given by the Wigner surmise. Similar observations hold for the statistics of the the Landau–Zener 
parameters at the avoided level crossings in comparison with the RMT results of Ref.37.

(25)
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