
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14753  | https://doi.org/10.1038/s41598-022-18733-4

www.nature.com/scientificreports

Clinical parameter‑based prediction 
of DNA methylation classification 
generates a prediction model 
of prognosis in patients 
with juvenile myelomonocytic 
leukemia
Takahiro Imaizumi1, Julia Meyer2, Manabu Wakamatsu3, Hironobu Kitazawa3, 
Norihiro Murakami3, Yusuke Okuno4, Taro Yoshida3, Daichi Sajiki3, Asahito Hama5, 
Seiji Kojima3, Yoshiyuki Takahashi3, Mignon Loh2, Elliot Stieglitz2 & Hideki Muramatsu3*

Juvenile myelomonocytic leukemia (JMML) is a rare heterogeneous hematological malignancy of early 
childhood characterized by causative RAS pathway mutations. Classifying patients with JMML using 
global DNA methylation profiles is useful for risk stratification. We implemented machine learning 
algorithms (decision tree, support vector machine, and naïve Bayes) to produce a DNA methylation‑
based classification according to recent international consensus definitions using a well‑characterized 
pooled cohort of patients with JMML (n = 128). DNA methylation was originally categorized into 
three subgroups: high methylation (HM), intermediate methylation (IM), and low methylation (LM), 
which is a trichotomized classification. We also dichotomized the subgroups as HM/IM and LM. The 
decision tree model showed high concordances with 450k‑based methylation [82.3% (106/128) 
for the dichotomized and 83.6% (107/128) for the trichotomized subgroups, respectively]. With 
an independent cohort (n = 72), we confirmed that these models using both the dichotomized and 
trichotomized classifications were highly predictive of survival. Our study demonstrates that machine 
learning algorithms can generate clinical parameter‑based models that predict the survival outcomes 
of patients with JMML and high accuracy. These models enabled us to rapidly and effectively identify 
candidates for augmented treatment following diagnosis.

Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm that occurs 
during infancy and early childhood. It is characterized by excessive myelomonocytic cell proliferation and granu-
locyte–macrophage colony-stimulating factor  hypersensitivity1–5. More than 90% of patients with JMML harbor 
mutually exclusive somatic and/or germline mutations in canonical RAS pathway genes, including PTPN11, 
NF1, NRAS, KRAS, and CBL6.

Three independent studies described DNA methylation subgroups in JMML based on genome-wide DNA 
methylation  data7–9. These studies demonstrated that high methylation subgroups were highly correlated with 
most of the established JMML risk factors, including older  age10,11, higher hemoglobin F (HbF)10,11, lower platelet 
 count10,11, PTPN11/NF1  mutations6,12, the presence of secondary genetic  events13,14, LIN28B  overexpression15, and 
an AML-like expression  profile16, and the high methylation subgroups were also associated with poor  survival17,18. 
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Recently, a joint analysis of the above three groups established an international consensus definition for the DNA 
methylation subgroups of  JMML19.

Methylation subgrouping will be an important parameter for stratifying patients with JMML for treatment in 
upcoming clinical trials. However, the high cost and relatively long turnaround time will likely limit the clinical 
implementation of DNA methylation analysis to a few developed countries. Thus, the development of an inex-
pensive and rapid predictor of DNA methylation profiling is likely to benefit patients with JMML.

Decision trees, support vector machine (SVM), and naïve Bayes models are widely used supervised machine 
learning techniques. A decision tree is an intuitive approach of classification using the standard classification 
and a regression tree algorithm to select a split with the best optimization criterion, which is then recursively 
repeated for the two child  nodes20. SVM classifies data by determining the linear decision boundary, also known 
as the hyperplane, that separates all data points of one class from another. The best hyperplane for SVM is the one 
with the largest margin between the two  classes21. Naïve Bayes is a family of classifiers that implements Bayesian 
techniques to form a simple network based on previously established  probabilities22.

In the present study, we performed a preliminary clinical parameter-based prediction of DNA methylation 
classification using a large cohort of patients with JMML via an international collaboration. We utilized the 
above-mentioned three machine learning algorithms to classify patients into two or three subgroups in accord-
ance with DNA methylation profiles and assessed the clinical utility of these algorithms for predicting prognosis 
in an independent cohort. Implementation of these models will allow providers to stratify patients with JMML 
in accordance with recently published DNA methylation classifications.

Results
Training data. We collected previously published clinical data and 450k array DNA methylation data from 
130 patients with JMML from two of our prior studies (93 from Nagoya University, Japan; 37 from University of 
California, San Francisco, USA)8,9. After excluding two patients with incomplete clinical information, we imple-
mented three supervised machine learning algorithms, i.e., a decision tree, SVM, and a naïve Bayes model, to 
predict the dichotomized methylation profiles for the remaining 128 patients with JMML (Fig. 1A). The baseline 
characteristics of the aggregated cohort are summarized in Table 1. The concordance rate was 82.8% for the deci-
sion tree, 83.6% for the SVM, and 82.8% for the naïve Bayes model (Fig. 1B). The decision tree used age, HbF, and 
PTPN11 mutation status to stratify patients. Based on the classification by the decision tree, we also compared 
the baseline characteristics between patients with clinically predicted LM (c-LM) and clinically predicted HM/
IM (c-HM/IM). Univariable logistic regression models showed associations between clinical parameters and 
the dichotomized outcome (HM/IM vs. LM). The models indicated that the following factors were associated 
with the 450k array-based methylation classification: older age (≥ 24 months of age) (P = 6.7 ×  10−8), age-adjusted 
HbF elevation (P = 8.2 ×  10−8), the presence of CBL mutations (P = 6.8 ×  10−4), PTPN11 mutations (P = 6.0 ×  10−8), 
NF1 mutations (P = 0.017), and NRAS mutations (P = 0.003). Lower platelet count and KRAS mutations were not 
significantly associated factors (P = 0.67 and 0.98, respectively) (Table 2).

We also implemented the three algorithms to mimicking three DNA methylation subgroups. There was a high 
concordance rate between predicted and actual methylation classification profiles in the decision tree (82.8%) and 
the SVM (83.6%), although the naïve Bayes model failed to classify the patients into three subgroups (Fig. 2A). 
The decision tree in this analysis used the following variables: age, HbF, monosomy of chromosome 7 (monosomy 
7), platelet counts, and PTPN11, CBL, and KRAS mutations (Fig. 2B).

Survival analysis. In survival analyses, the incidence rate of death was 10.6 [95% confidence interval (CI) 
7.9–14.2] per 100 patient-years and that of transplantation was 55.2 (95% CI 45.3–67.1) per 100 patient-years 
in the training cohort, while it was 10.0 (95% CI 6.1–16.3) and 111 (95% CI 86.1–143.4) respectively, in the 
validation cohort. The median transplantation-free survival (TFS) was 6.5 and 6.0 months in the training and 
validation cohorts, respectively.

Patients with array-based LM had significantly higher overall survival (OS) and TFS than those with array-
based HM/IM (P = 0.001 and 8.35 ×  10−12, respectively) (Fig. 3A,B). Based on the decision tree algorithm, patients 
with c-LM (n = 73) had higher OS and TFS than those with c-HM/IM (n = 55) (P = 0.015 and 7.54 ×  10−14, respec-
tively) (Fig. 3C,D). The SVM classified patients into a c-LM subgroup with 76 patients and a c-HM/IM subgroup 
with 52 patients; it showed a higher OS and TFS in the c-LM group (P = 0.004 and 7.15 ×  10−14, respectively) 
(Supplementary Fig. S1A,B). The naïve Bayes model classified patients into a c-LM subgroup with 73 patients 
and a c-HM/IM subgroup with 55 patients, and showed a higher OS and TFS in the c-LM group (P = 0.015 and 
7.54 ×  10−14, respectively) (Supplementary Fig. S2A,B).

Next, we implemented these algorithms to analyze the survival of patients in these three methylation sub-
groups. Figure 4A,B show the Kaplan–Meier estimates comparing array-based HM, IM, and LM. Both OS and 
TFS were significantly different across the array-based methylation subgroups (P = 0.002 and 1.25 ×  10−13, respec-
tively). Regarding the preliminary clinically predicted methylation subgroups, both OS and TFS were significantly 
different across the subgroups in the decision tree (P = 0.0026 and 1.74 ×  10−13, respectively) (Fig. 4C,D) and the 
SVM (P = 6.05 ×  10−5 and 1.51 ×  10−13, respectively) (Supplementary Fig. S3A,B). The naïve Bayes model failed 
to classify patients into three subgroups.

Validation using an independent cohort. We applied the clinical parameter-based prediction models 
to an independent cohort (n = 72) (Table 1). Using dichotomized methylation classification, preliminary clini-
cally predicted methylation classification showed a statistically significant difference between c-LM and c-HM/
IM in both OS and TFS based on the decision tree algorithm (P = 0.042 and 0.007, respectively) (Fig. 3E,F), 
the SVM (P = 0.17 and 0.025, respectively) (Supplementary Fig. S1C,D), and the naïve Bayes model (P = 0.020 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14753  | https://doi.org/10.1038/s41598-022-18733-4

www.nature.com/scientificreports/

and 0.001, respectively) (Supplementary Fig. S2C,D). The clinically predicted trichotomized DNA methylation 
subgroup (cLM, c-IM, and c-HM) analyses showed a significant difference in TFS (P = 0.0019) but not in OS 
(P = 0.46) in the decision tree algorithm (Fig. 4E,F), as it did in the SVM (P = 0.0068 for TFS and 0.36 for OS, 
respectively) (Supplementary Fig. S3C,D).

Figure 1.  Clinical prediction model of dichotomized DNA methylation classification. (A) Flow diagram for 
DNA methylation profiles of patients used for the development of machine learning algorithms to predict DNA 
methylation classification. Patients from UCSF and the Japanese cohort who had methylation classification 
results were eligible for this analysis (N = 130). After excluding patients with incomplete clinical information 
(n = 2), 128 patients were included. Then, we implemented three machine learning algorithms. The figure shows 
a decision tree to classify into c-HM/IM and c-LM using widely available clinical information. (B) Three types of 
algorithms were implemented: decision tree, support vector machine, and naïve Bayes model. The concordance 
rates were 82.8%, 83.6%, and 82.8%, respectively. JMML juvenile myelomonocytic leukemia, c-HM/IM clinically 
predicted high/intermediate methylation, c-LM clinically predicted low methylation, HM high methylation, IM 
intermediate methylation, LM low methylation.
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Table 1.  Baseline characteristics of the training and validation cohorts. UCSF University of California, San 
Francisco, HbF hemoglobin F, WT wild type, HM high methylation, IM intermediate methylation, LM low 
methylation, NA not available.

Covariates Training Validation P value

Cohort, n (%)
UCSF 36 (28.1) 19 (26.4)

0.070
Japan 92 (71.9) 53 (73.6)

Age, n (%)

< 24 months 79 (61.7) 46 (63.9)

0.76≥ 24 months 49 (38.3) 26 (36.1)

Missing 0 (0) 0 (0)

Sex

Female 86 (67.2) 33 (45.8)

0.003Male 42 (32.8) 39 (54.2)

Missing 0 (0) 0 (0)

HbF

Normal 59 (46.1) 35 (48.6)

0.66Elevated 69 (53.9) 36 (50)

Missing 0 (0) 1 (1.4)

Platelets

> 33 ×  109/L 66 (51.6) 60 (83.3)

< 0.001≤ 33 ×  109/L 61 (47.7) 12 (16.7)

Missing 1 (0.8) 0 (0)

Monosomy 7

Positive 9 (7) 9 (12.5)

> 0.99Negative 119 (93) 61 (84.7)

Missing 0 (0) 2 (2.8)

CBL

WT 106 (82.8) 63 (87.5)

0.38Mutated 22 (17.2) 9 (12.5)

Missing 0 (0) 0 (0)

PTPN11

WT 82 (64.1) 50 (69.4)

0.44Mutated 46 (35.9) 22 (30.6)

Missing 0 (0) 0 (0)

NF1

WT 114 (89.1) 70 (97.2)

0.041Mutated 14 (10.9) 2 (2.8)

Missing 0 (0) 0 (0)

NRAS

WT 110 (85.9) 59 (81.9)

0.45Mutated 18 (14.1) 13 (18.1)

Missing 0 (0) 0 (0)

KRAS

WT 109 (85.2) 57 (79.2)

0.28Mutated 19 (14.8) 15 (20.8)

Missing 0 (0) 0 (0)

450k-based methylation

HM 48 (37.5) NA

IM 19 (14.8) NA

LM 61 (47.7) NA

Table 2.  Baseline characteristics between 450k-based HM/IM and LM and unadjusted logistic regression 
to predict 450k-based HM/IM as compared with 450k-based LM for each parameter in the training dataset. 
HM/IM high/intermediate methylation, LM low methylation, OR odds ratio, CI confidence interval, HbF 
hemoglobin F, WT wild type. *P < 0.05. † Exact logistic regression was employed.

Covariates HM/IM (n = 67) LM (n = 61) OR (95% CI) P value

Age ≥ 24 months, n (%) 42 (62.7) 7 (11.5) 13.0 (5.11–32.9) 6.7 ×  10−8*

HbF Elevated, n (%) 52 (77.6) 17 (27.9) 8.97 (4.02–20.0) 8.2 ×  10−8*

Platelets ≤ 33 ×  109/L, n (%) 31 (46.3) 30 (50.0) 0.86 (0.43–1.73) 0.67

Monosomy 7 Positive, n (%) 9 (13.4) 0 (0) 12.8 (1.95–+ ∞)† 0.005*

CBL Mutated, n (%) 1 (1.5) 21 (34.4) 0.029 (0.004–0.22) 6.8 ×  10−4*

PTPN11 Mutated, n (%) 41 (61.2) 5 (8.2) 17.7 (6.25–49.9) 6.0 ×  10−8*

NF1 Mutated, n (%) 12 (17.9) 2 (3.3) 6.44 (1.38–30.1) 0.017*

NRAS Mutated, n (%) 3 (4.5) 15 (24.6) 0.14 (0.039–0.53) 0.003*

KRAS Mutated, n (%) 10 (14.9) 9 (14.8) 1.01 (0.38–2.69) 0.98
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Comparison of prognostic performance by the models. The prognostic performance of each model 
was compared using Harrel’s C statistic (Table 3). Compared to array-based methylation classification, the C-sta-
tistics for the models derived from machine learning algorithms were comparable for both OS and TFS in the 
training cohort. In the validation cohort, the decision tree-based reclassification model was comparable to the 
other models for both OS and TFS.

Discussion
In the present study, we implemented machine learning algorithms to develop preliminary clinical parameter-
based prediction models of methylation profiles using an international cohort of patients with JMML and dem-
onstrated a high concordance between DNA methylation and clinically predicted DNA methylation subgroups. 
We also assessed the validity of the models for assessing survival in an independent cohort. To our knowledge, 
this was the first study to develop clinical parameter-based models to predict an international consensus defini-
tion of DNA methylation subgroups in  JMML19.

Figure 2.  Clinical prediction model of trichotomized DNA methylation classification. (A) To predict DNA 
methylation classification, we attempted to implement three types of algorithms (decision tree, support vector 
machine, and naïve Bayes model). However, the naïve Bayes model failed in this analysis. The concordance rates 
were 83.6% for the decision tree and 82.0% for the support vector machine. (B) Decision tree to classify into 
c-HM, c-IM, and c-LM using the following clinical information: age, HbF, platelet counts, PTPN11, and KRAS 
mutation. c-HM clinically predicted high methylation, c-IM clinically predicted intermediate methylation, c-LM 
clinically predicted low methylation, HM high methylation, IM intermediate methylation, LM low methylation.
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Figure 3.  Overall survival and transplantation-free survival based on dichotomized DNA methylation 
classification. (A) Overall survival (OS) by array-based DNA methylation classification in the training cohort. 
(B) Transplantation-free survival (TFS) by array-based DNA methylation classification in the training cohort. 
(C) OS by clinically predicted methylation classification in the training cohort. (D) TFS by clinically predicted 
methylation classification in the training cohort. (E) OS in the validation cohort. (F) TFS in the validation 
cohort. Survival curves were estimated using the Kaplan–Meier method, and statistical tests were performed 
using the log-rank test. Array-based HM/IM or LM was significantly associated with both OS and TFS in the 
training cohort (P = 0.001 and 8.35 ×  10−12). Clinically predicted HM/IM or LM was significantly associated with 
both OS and TFS in the training cohort (P = 0.015 and 7.54 ×  10−14, respectively) and associated with both OS 
and TFS in the validation cohort (P = 0.042 and 0.007, respectively). OS overall survival, TFS transplantation-
free survival.
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Figure 4.  Overall survival and transplantation-free survival based on trichotomized DNA methylation 
subgroups (HM, IM, and LM). (A) Overall survival (OS) by array-based DNA methylation classification in 
the training cohort. (B) Transplantation-free survival (TFS) by array-based DNA methylation classification in 
the training cohort. (C) OS by clinically predicted methylation classification in the training cohort. (D) TFS by 
clinically predicted methylation classification in the training cohort. (E) OS in the validation cohort. (F) TFS in 
the validation cohort. Survival curves were estimated using the Kaplan–Meier method, and statistical tests were 
performed using the log-rank test. Array-based subgroups were significantly different in both OS and TFS in the 
training cohort (P = 0.002 and 1.25 ×  10−13). Clinically predicted HM/IM or LM was significantly associated with 
both OS and TFS in the training cohort (P = 0.0026 and 1.74 ×  10−13, respectively) and with TFS in the validation 
cohort (P = 0.0019). OS overall survival, TFS transplantation-free survival.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14753  | https://doi.org/10.1038/s41598-022-18733-4

www.nature.com/scientificreports/

Notably, we developed prognostic models based on methylation classification, which may have the advantage 
of being able to predict high-risk JMML regardless of future changes in treatment, while the prognosis-based 
approach may not be applicable in future patients due to medical advances. In this regard, we believe methylation-
based prediction would be a better approach to predict patients’ prognosis.

The models consisted of well-known clinical predictors, and the mechanisms for each parameter can be 
accounted for by prior  knowledge4,11. In our clinical models, age, age-adjusted HbF elevation, and PTPN11 muta-
tion were specified as classifiers to dichotomize the methylation profile, while age, age-adjusted HbF elevation, 
platelet count, PTPN11 and CBL mutations, and monosomy 7 were utilized as classification factors for the three 
methylation subgroups. Among the three machine learning algorithms we tested, namely, decision tree, SVM, 
and naïve Bayes models, decision tree algorithms were more intuitive than the others and were in line with our 
clinical knowledge as well as previous studies. Furthermore, the discrimination performance of the decision tree 
algorithm-based model was comparable to the array-based model in the training cohort and the other models 
in the validation cohort. Although the concordance between predicted and array-based classification was quite 
high for both dichotomous and trichotomous methylation profiles, dichotomized methylation enabled us to 
stratify patients with JMML simply and effectively for both OS and TFS.

Our models enabled us to effectively dichotomize patients with JMML (c-HM/IM and c-LM). In the training 
cohort, the 2-year TFS was nearly 50% in the c-LM group. The models were also capable of stratifying patients 
for augmented treatment for c-HM/IM patients. There is also clinical utility in identifying the patients most 
likely to survive in the absence of hematopoietic stem cell transplantation, in particular in developing countries.

The decision tree algorithm successfully stratified patients with JMML into three groups, as did the consen-
sus classification in the previous study. However, the decision tree algorithm fitted to the validation cohort for 
categorization into three methylation groups showed a significant difference in TFS but not in OS. This likely 
reflects the shorter duration of follow-up in the validation cohort. Using a consensus classification, TFS in the 
HM and IM groups was equally poor in the European, American, and Japanese  cohorts19. These findings suggest 
that the HM and IM groups may be biologically similar to one another.

There were some limitations in this study. First, the sample size in our study was relatively small. However, 
this international collaborative study contained a substantial number of patients with JMML despite the rarity of 
the disease, and machine learning algorithms enabled us to enhance the statistical power as well as the precision 
of prediction. Second, because of the lack of methylation profile data in the validation cohort, we have not been 
able to test whether the risk classifier established in this study can reproduce the methylation profile itself, and 
validation is needed in future studies.

In conclusion, we successfully developed preliminary clinical parameter-based DNA methylation prediction 
models and tested them in an independent cohort. These models stratified patients based on the necessity for 
more intensive treatment, including transplantation. With additional validation, these models will be helpful 
for patients with JMML worldwide.

Table 3.  Comparison of C-statistics in the models. C-statistics represent Harrel’s C concordance statistics. OS 
overall survival, TFS transplantation-free survival.

Classification C-statistics ∆C-statistics P value

Training cohort

OS

Array-based 0.616 (0.542–0.690) Reference

Decision tree-based 0.588 (0.513–0.663) − 0.028 (− 0.093 to 0.037) 0.39

SVM-based 0.603 (0.529–0.677) − 0.013 (− 0.077 to 0.050) 0.68

Naïve Bayes-based 0.588 (0.513–0.663) − 0.028 (− 0.093 to 0.037) 0.39

TFS

Array-based 0.657 (0.610–0.705) Reference

Decision tree-based 0.663 (0.620–0.706) 0.006 (− 0.037 to 0.048) 0.79

SVM-based 0.659 (0.617–0.702) 0.002 (− 0.036 to 0.041) 0.92

Naïve Bayes-based 0.663 (0.620–0.706) 0.006 (− 0.037 to 0.048) 0.79

Validation cohort

OS

Decision tree-based 0.573 (0.440–0.705) Reference

SVM-based 0.624 (0.492–0.757) 0.052 (− 0.035 to 0.138) 0.24

Naïve Bayes-based 0.560 (0.426–0.693) − 0.013 (− 0.104 to 0.078) 0.78

TFS

Decision tree-based 0.553 (0.486–0.619) Reference

SVM-based 0.582 (0.516–0.649) 0.030 (− 0.014 to 0.074) 0.18

Naïve Bayes-based 0.586 (0.515–0.657) 0.034 (− 0.022 to 0.090) 0.23
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Methods
Study design. We developed prediction models of methylation classification using machine learning algo-
rithms in a training cohort and assessed the models’ survival analysis efficacy using a validation cohort. We 
implemented three machine learning algorithms to dichotomize the subjects. Then, we derived classification 
models from the training cohort using machine learning algorithms and implemented these models to predict 
OS and TFS in a validation cohort to assess efficacy. We developed and validated the prediction models based 
on the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRI-
POD) Statement. TRIPOD is intended to help readers better understand the study design, conduct, analysis, and 
interpretation of data and assess the validity, transportability, and application of study  results23,24. All patients’ 
parents or legal guardians provided informed consent according to the Declaration of Helsinki. Institutional 
ethics committees approved the storage and collection of patient specimens. The ethics committee of the Nagoya 
University Graduate School of Medicine approved this study.

Data sources. We used data from recently published international consensus definitions for the training 
 cohort19. We also used data from 72 patients from Japan and the United States with available clinical informa-
tion, which had not previously undergone methylation analysis for the validation cohort to examine the validity 
of the clinical model to predict OS and TFS.

Statistical analysis. We compared the mutation frequency and other clinical features between the disease 
groups using Fisher’s exact test. OS and TFS were calculated using the Kaplan–Meier method. For the TFS analy-
sis, transplantation and death from any cause were censored as events.

We implemented three different supervised machine learning algorithms (decision tree, SVM, and naïve 
Bayes model) to differentiate the methylation profiles. Features were extracted as older age (> 2 years old), male 
sex, decreased platelet count (< 33,000), elevated age-adjusted HbF, monosomy 7, and mutations in PTPN11, 
CBL, NRAS, and KRAS and were dichotomized (as in Supplementary Data). Standard methods (fitcsvm, fitcnb, 
fitctree, and predict) from the  Matlab®2020b Statistics and Machine Learning Toolbox with default parameter 
settings were used to derive the naïve Bayes classifier, the SVM-based classifier, and the decision tree. Tenfold 
cross-validation was employed to internally validate the models. First, we dichotomized the methylation profiles 
into two groups: HM/IM and LM. Second, we implemented each model to differentiate the methylation profiles 
into three categories: HM, IM, and LM. We first developed the decision tree algorithm as our primary analysis 
since it is an intuitive approach. Survival differences were tested using the log-rank test. All statistical analyses 
were performed using Stata 17.0 MP software (Stata Corp., College Station, TX, USA), and the machine learning 
algorithms were developed using MATLAB software (The MathWorks, Inc. Natick, MA, USA).

Data availability
The data underlying this article cannot be shared publicly to protect the study participants’ privacy.

Received: 13 May 2022; Accepted: 18 August 2022
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