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Spatiotemporal multi‑scale 
modeling of radiopharmaceutical 
distributions in vascularized solid 
tumors
Mohammad Kiani Shahvandi1, M. Soltani1,2,3,4*, Farshad Moradi Kashkooli1, 
Babak Saboury5,6 & Arman Rahmim6,7

We present comprehensive mathematical modeling of radiopharmaceutical spatiotemporal 
distributions within vascularized solid tumors. The novelty of the presented model is at mathematical 
level. From the mathematical viewpoint, we provide a general modeling framework for the process 
of radiopharmaceutical distribution in the tumor microenvironment to enable an analysis of the 
effect of various tumor-related parameters on the distribution of different radiopharmaceuticals. 
We argue that partial differential equations (PDEs), beyond conventional methods, including ODE-
based kinetic compartment modeling, can be used to evaluate radiopharmaceutical distribution 
in both time and space. In addition, we consider the spatially-variable dynamic structure of tumor 
microvascular networks to simulate blood flow distribution. To examine the robustness of the model, 
the effects of microvessel density (MVD) and tumor size, as two important factors in tumor prognosis, 
on the radiopharmaceutical distribution within the tumor are investigated over time (in the present 
work, we focus on the radiopharmaceutical [18F]FDG, yet the framework is broadly applicable to 
radiopharmaceuticals). Results demonstrate that the maximum total uptake of [18F]FDG at all 
time frames occurs in the tumor area due to the high capillary permeability and lack of a functional 
lymphatic system. As the MVD of networks increases, the mean total uptake in the tumor is also 
enhanced, where the rate of diffusion from vessel to tissue has the highest contribution and the rate 
of convection transport has the lowest contribution. The results of this study can be used to better 
investigate various phenomena and bridge a gap among cancer biology, mathematical oncology, 
medical physics, and radiology.
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Tumor heterogeneity is among the most important contributing factors to cancer treatment failure1–5. Precision 
oncology aims to address this issue by investigating tumor biology variations and tumor micro-environment 
(TME) heterogeneity. Personalized treatment planning is required to mitigate the effect of these variations, 
away from a one-fits-all approach. The theranostic paradigm is one of the best platforms to actualize precision 
oncology6–9. Its therapeutic aspect, through radiopharmaceutical therapy, targets specific tumor cells while its 
diagnostic counterpart helps to illustrate tumor heterogeneity. This combination is a perfect match for person-
alized cancer care. In this paradigm, similar radiopharmaceuticals are used for diagnosis and therapy. Radiop-
harmaceuticals are labeled with two categories of radionuclides, one for diagnostic purposes and the other for 
treatment. The diagnostic radionuclide usually is a positron emitter (such as 18F, 13 N, 11C, or 15O), while the 
therapeutic radionuclide is an alpha or beta emitter (such as 225Ac, 177Lu, or 90Y). The critical property of these 
two radiopharmaceuticals (i.e., diagnostic and therapeutic) is their pharmacokinetic similarities. This phenom-
enon will provide physicians with a unique opportunity to image the tumor heterogeneity on the one hand and 
to address this depicted heterogeneity through therapy adjustment on the other.

Tumor heterogeneity has two components: tumor cell variations (inter-tumoral and intra-tumoral mutations) 
and tumor micro-environment heterogeneity (including vascularity, permeability and diffusability, hypoxia, and 
the extend of immune system presence and function, among the others)10–12. Quantitative imaging using dynamic 
positron emission tomography (PET) represents the aggregation of these two factors. Traditionally, the second 
category (tumor micro-environment) was assumed insignificant, and the quantitative models did not consider 
spatial heterogeneity of the micro-environment. This assumption appears unrealistic in light of recent discover-
ies about the pivotal role of the tumor micro-environment in treatment success and failure13,14. To address this 
unmet and critical need, the conventional temporal models (such as compartmental kinetic analysis based on 
ordinary differential equations (ODEs)15,16) should be updated using spatiotemporal distribution models (SDMs) 
based on partial differential equations (PDEs))17–24. This study aimed to model one of the microenvironment 
variables: neovasculature.

The majority of therapeutic radiopharmaceuticals in current medical practice are small molecules, in con-
trast to large molecules such as monoclonal antibodies (mAb). Since the pharmacokinetics of these two groups 
are significantly different, we decided to select a small molecule. Considering the availability of experimental 
data, clarity of biochemical processes, and relevance to tumor biology, [18F]-Fluorodeoxyglucose ([18F] FDG) 
was selected to represent small molecule kinetics, while our intention is to extend and apply this framework to 
theranostics in future efforts.

Several decades ago, biochemical studies in tissue cultures demonstrated that metabolic abnormalities, espe-
cially malignant tumors, show high rates of glucose uptake and glycolysis25. [18F]-Fluorodeoxyglucose ([18F] 
FDG) PET allows the use of these metabolic abnormalities of tumors for clinical diagnosis26,27. The FDG uptake 
into tissue reflects the transport and phosphorylation of glucose by viable cells, where FDG is transported across 
the cell membrane and subsequently is phosphorylated by hexokinase. In contrast to glucose, FDG-6-phosphate 
cannot be further metabolized; moreover, because FDG-6-phosphate is a highly polar molecule, it cannot diffuse 
out of the cell and remains intracellular. Therefore, due to this trapping mechanism, the concentration of FDG 
is steadily increasing in metabolically active cells, and as a result, the contrast between the tumor and normal 
tissue increases.

The angiogenesis process, formation of new blood vessels from pre-existing blood vasculature, is a crucial 
component for supporting tumor growth by providing a source of nutrients and oxygen28,29. When the volume of 
the primary tumor exceeds a threshold ( ∼ 1 mm3)30, its central cells become deficient in oxygen (hypoxic state); 
in response, the tumor and the cells surrounding secrete a variety of chemotactic and morphogenic tumor angio-
genesis factors (TAFs) such as vascular endothelial growth factor (VEGF)31. The binding of TAFs to its receptor 
on the ECs of the existing vessel wall leads to the differentiation of ECs and the formation of tip endothelial cells 
(tECs) with increased motility. The tECs migrate toward the tumor in response to the TAF gradient (i.e., chemo-
taxis) and adhesion gradient to fibronectin (i.e., haptotaxis)32. Extend of tECs from the existing vessel wall, create 
new blood vessel sprouts in the initial stages of angiogenesis33. Transverse movement of the tECs leads migrat-
ing vessels to meet and forms connections to create a complex network of immature microvessels that supports 
blood flow into the tumor. Therefore, the process of tumor-induced sprouting angiogenesis is governed by the 
coordinated cell dynamics, which involves initial sprouting, branching, anastomosis, and vessel remodeling34.

Current mathematical simulation models of tumor angiogenesis can be classified into three categories: con-
tinuous, discrete, and hybrid models. The continuous approach assumes the vascular cells as bulk and continu-
ous aggregates without considering the cells alone35–38. Although this model provides good qualitative results, 
it can not model the morphological details of the vascular network structure. The discrete models assume a set 
of defined rules and building-blocks structure very close to reality to simulate EC migration and the creation of 
new vessels39–41. Hybrid models consist of a combination of continuous and discrete models that trace the EC 
pathways using variable motion probabilities42–45.

In this study, we present the design and implementation of a comprehensive spatio-temporal multi-scale 
framework to collectively model the radiopharmaceutical distribution for different tumor sizes and microvessel 
densities (MVD). Our model includes subcellular, cellular, and tissue level size scales. The subcellular scale con-
sists of biochemical agents fibronectin and tumor angiogenesis factor. The cellular scale includes the movement 
of endothelial cells and uptake of radiopharmaceuticals into the tumoral and normal cells. At the tissue scale, 
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blood vessel growth is implemented by a hybrid method for the movement of tECs in two-dimensional interstitial 
space. We also model dynamic simulation of blood flow/pressure, which is determined by mechanobiological 
and biochemical signals from wall shear stress, pressure, and metabolic stimuli with accurate hemorheology 
and hemodynamics at the tissue level. In addition, the interstitial fluid flow that influences the distribution and 
transport of radiopharmaceuticals is also calculated. Subsequently, radiopharmaceuticals transport in different 
scales is analyzed using SDM equations.

Methods
For our modeling, we assume a semi-realistic micro-scale architecture of vasculature, interstitium, and tumor, 
as schematically depicted in Fig. 1. In this structural schema, various biochemical (e.g., TAF and O2) have spa-
tially heterogeneous concentrations, and their gradients are highlighted at the border. In the following section, 
first, we present a mathematical model of angiogenesis and dynamic simulation of blood flow. Subsequently, 
spatiotemporal modeling of radiopharmaceutical transport in different scales will be described. Computational 
implementation will be discussed at the end (including geometry, computational domain, boundary conditions, 
and other simulation parameters).

Mathematical model of angiogenesis.  The present angiogenesis model is inspired by the tumor-
induced angiogenesis model initially proposed by Anderson and Chaplin43,45. The mathematical model predicts 
capillary formation by tracking the motion of ECs at the tip of the capillary sprout, ultimately forming a vascular 
network. The details of the rules have been determined in the previous publication43,45. In summary, three main 
mechanisms for the motion of ECs are considered in this model: random motility, chemotaxis, and haptotaxis. 
Each motion component is the function of the motion stimulus gradient.

Random motility is modeled like diffusion of mass due to the concentration gradient. Chemotaxis is related 
to the TAF concentration gradient. TAF diffuses through the interstitium and activates the ECs. The distribu-
tion of TAF has its maximum value near the tumor zone and decreases to its minimum near the parent vessel 
(Fig. S1). Haptotaxis is the motion of cells due to the adhesion gradient in the environment. Cells move in search 
of stronger bonds in the interstitium, which is expressed in relation to the fibronectin concentration gradient in 
the environment. The complete system of equations describing the interactions between EC density, n , fibronec-
tin, f  and TAF, cTAF , are respectively written in Eqs. (1–3) as43,45:

Figure 1.   Schematic illustration of the capillary growth process based on the movement of single tip 
endothelial cells (tECs) in response to the tumor angiogenesis factors (TAFs) gradient within the computational 
domain. The migration of individual cell at each node of computational lattice (finite difference discretization) 
is determined in five states by Pi coefficients, which include the probability of the cell being stationary ( P0 ), or 
moving right ( P1 ), left ( P2 ), up ( P3 ), or down ( P4 ). Anastomosis and branching occur during the angiogenesis 
process. It should be mentioned that Microsoft Office PowerPoint 365 was used to create this figure.
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Dn is the random motility coefficient of EC, χ is the chemotaxis coefficient, α is constant of chemotaxis coef-
ficient, φ is haptotaxis coefficient, β and γ are production and uptake coefficient of fibronectin, respectively, and 
η is uptake coefficient of TAF by ECs. Implementation of the angiogenesis method to calculate the movement 
probabilities for each endothelial cell derived from these equations is presented in Supplementary Material 
(Eqs. (S1-S8)).

Hemodynamics and interstitial fluid flow.  For the fluid dynamics simulation model, we consider flow 
in three regions: intravascular blood flow, transvascular fluid flow, and interstitial fluid flow. To study the incom-
pressible flow through the microvascular network, the flow rate in each vessel is calculated by applying mass con-
servation at each network junction. The continuity equation for intravascular blood flow at an interconnecting 
point, like c, in the network is written as Eq. (4) (Fig. S3). In this equation, the index k refers to adjacent nodes, 
Qk
c  is the net blood flow rate for each capillary calculated as the difference between the intravascular blood flow 

rate, Qk
b.c , and the transvascular fluid flow rate, Qk

t.c . The Womersley flow number for blood flow in the capillary 
network is very low due to the very small diameter of the newly created vessels. Hence, the pulsatile effects of 
the cardiac cycle can be ignored. Thus, Hagen-Poissville’s law can be applied for intravascular blood flow as an 
exact solution to the Navier–Stokes fluid dynamics equation (Eq. 5)41. Transvascular fluid flow rate is calculated 
by Starling’s law, which indicates the role of oncotic and hydrostatic pressures in fluid movement across capillary 
membranes (Eq. 6)41.

In Eq. (4), N is the number of peripheral vessel lattice nodes adjacent to the central vessel node. In the 2-D 
simulation for a fully connected network, N is 4 and βk

c  is a positive integer ’0’ or ’1’, which describes whether 
nodes k and c are connected ( βk

c  = 1) or not ( βk
c  = 0). In Eq. (5), Pb is intravascular pressure (IVP), H is hematocrit, 

and d and l  are the diameter and length of the new vessel, respectively. In Eq. (6), Lp is the hydraulic conductivity 
of the microvascular wall, Pb is the average IVP in each element, Pi is the average interstitial fluid pressure (IFP) 
outside of the vascular element, πb is the osmotic pressure of the intravascular plasma, πi is the osmotic pressure 
of the interstitial fluid, and σ is the average osmotic reflection coefficient for plasma proteins.

IVP is calculated by applying Poiseuille’s equation for the flow in the vessels. In contrast, interstitial pressure 
for the peripheral tissue of a microvascular network is calculated by solving the governing equation for fluid 
flow through a porous medium. The mass balance equation for a steady-state incompressible fluid is modified by 
adding source and sink terms for biological tissues (Eq. 7). Blood vessels are fluid source terms, and lymphatic 
vessels are sink terms, which are respectively shown in Eqs. (8) and (9), according to Starling’s law. Moreover, 
Darcy’s experimental observations show that the interstitial fluid velocity (IFV) in porous media is proportional 
to the pressure gradient (Eq. 10).

vi is the IFV, φb is the rate of fluid flow per unit volume from blood vessels into the interstitial space, φL is the 
rate of fluid flow per unit volume from the interstitial space into lymph vessels, S/V  is the surface area of the 
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microvascular per unit volume for mass transport in the interstitium, PL the hydrostatic pressure of the lymphatic, 
and K is the hydraulic conductivity of the interstitium.

By combining Eqs. (7) and (10), we can derive the Poisson-Laplace’s equation to calculate IFP in both normal 
and tumor tissues (Eq. 11).

Hemorheology.  Blood has significant non-Newtonian properties in low Reynolds numbers. We assume 
that blood is a suspension of non-Newtonian red blood cells within a Newtonian plasma fluid46–48. Pries et al.49 
presented an empirical relation for the dynamic blood viscosity in capillaries, shown in Eq. (12). In Eq. (12), 
µblood , µplasma and µrel are the dynamic viscosity of blood and plasma and apparent viscosity of blood, respec-
tively. The apparent blood viscosity is defined as a function of vessel diameter and hematocrit by Eq. (13). µ0.45 
is the relative apparent blood viscosity for a fixed hematocrit of 0.45, which is defined in Eq. (14) as a function 
of vessel diameter, and C is a function that describes the shape of viscosity dependency on hematocrit, which is 
defined in Eq. (15). In Eqs. (13–15), the unit of d is the µm.

Hematocrit distribution has a significant role in simulating the hemodynamic characteristic of the micro-
vascular network, which depends on blood flow characteristics such as velocity. In general, the hematocrit 
distribution at vessel bifurcations can change depending on the flow velocity in each branch. In other words, if 
the velocity ratio of the two branches exceeds the threshold value, Ucr , all hematocrit enter the faster branch at 
bifurcations50. According to this, the relation between the hematocrit of the parent vessel, Hi , and the branches, 
H1 and H2 , are written as Eqs. (16–18), respectively, based on the velocity ratio of the two branches, U1/U2 . � is 
a phenomenological parameter that accounts for the strength of the non-symmetry of the hematocrit distribu-
tion at bifurcations50.

Dynamic structure adaptation method.  Capillaries are able to continuously adapt their diameter in 
response to physical and biochemical stimuli of the tissues that the capillaries supply47,49. The wall shear stress 
stimuli, Swss , and the IVP created by blood flow,Sp , and the biochemical stimuli such as the hematocrit-induced 
metabolic, Sm , lead to the remodeling of the vascular diameter, shown in Eqs. (19–21), respectively. τw is the 
wall shear stress in a capillary vessel defined by Eq. (22). Experimental observations show that when each ves-
sel senses the shear stress of the wall, it adjusts its diameter to achieve a uniform level of stress. τref  is a small 
constant to avoid singular behavior at low wall shear stress rates. τe(Pb) is the wall shear stress resulting from the 
blood pressure, Pb , defined in Eq. (23). Qb is the rate of blood flow in the vessel, and Qref  is the maximum value 
of Qb within the network.
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Finally, the change of diameter for each vessel in the network in proportion to the total signal and time step 
is considered in Eq. (24). kp is the adaptive response sensitivity of the vessel diameter to changes in IVP, km is the 
adaptive response sensitivity of the vessel diameter to changes in metabolic state, and ks is the shrinking tendency 
of the vessel in the absence of positive growth stimuli.

Spatiotemporal distribution of FDG.  In PET, images are a composite of different superimposed sig-
nals. A signal, for example, may describe the amount of the phosphorylated radiopharmaceutical. In order to 
separate the desired component of the signal, a mathematical model is required that relates the dynamics of all 
radiopharmaceutical states to the resulting PET image. Mathematical kinetic models are used to analyze the time 
sequences of PET images, in which each of the radiopharmaceutical states is known as a compartment. Each 
compartment is determined by the concentration of the radiopharmaceutical inside it as a function of time. 
These concentrations are related through a set of ODEs, which express the balance between the input and output 
of each compartment. In compartmental modeling, it is assumed that there are no spatial concentration gradi-
ents within the sampled area (e.g., a voxel). The directly measured radiopharmaceutical concentration in blood 
as a function of time acts as a model input function. The coefficients of the differential equations in the model are 
considered as constants that reflect the inherent kinetic properties of the specific radiopharmaceutical molecule 
in the system. By formally comparing the model output to the experimentally obtained PET data, the values 
of these kinetic parameters can be estimated, and information about the delivery process can be extracted51. 
The 4-compartment 5-rate-constant (5  K) model distinguishes the kinetic steps of [18F]FDG delivery to the 
extracellular matrix (ECM), its transport from the extracellular to the intracellular space, and its intracellular 
phosphorylation16. The 5 K model is described by ODEs, shown in Eqs. (S9–S11) at the Supplementary Mate-
rial, and can be viewed as an extension of the classic model by Sokoloff et al.15. In fact, a value of the 5 K model 
is in its explicit accounting of an extracellular compartment.K1 and K2 are exchange rate parameters between 
plasma and extracellular space, K3 and  K4 are transport rate parameters into and out of the cell, and  K5 is the 
phosphorylation rate.

As mentioned before, in contrast to classic compartment model, the SDM model uses PDEs that enables the 
evaluation of radiopharmaceutical distribution in both space and time scales, hence distribution in space is not 
modeled as independent from time. Fig. 2 describes the SDM model. From the arterial blood, the radiopharma-
ceutical passes into the second compartment, known as the extracellular compartment, where it is considered 
that the radiopharmaceutical is redistributed in both time and space. The third and fourth compartments are 
the region of intracellular radiopharmaceutical. Movement between the plasma, extracellular, and intracellular 
spaces is governed through five parameters: L1 , L2 , L3 , L4 , and L5 , similar to the rate constants K1 , K2 , K3 , K4 , 
and K5 seen in conventional compartmental models. The general form of the SDM equations in tissue is shown 
by Eqs. (25–27) as52:

(21)Sm = Log10

(
Qref

QbH
+ 1

)

(22)τw =
32µbloodQ

πd3

(23)τe(Pb) = 100− 86 · exp
(
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))5.4
)

(24)
d(d)

dt
= (Swss + kpSp + kmSm − ks)

(25)
∂Ci

∂t
= Deff∇

2Ci − vi · ∇(Ci)+ L1CP − (L2 + L3)Ci + L4Ce

Figure 2.   Four-compartment 5-rate-constant model for spatiotemporal modeling of [18F]FDG distribution.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14582  | https://doi.org/10.1038/s41598-022-18723-6

www.nature.com/scientificreports/

where Ci is extracellular concentration of [18F]FDG, Ce is [18F]FDG intracellular concentration, and Cm is [18F]
FDG 6-phosphate intracellular concentration. Furthermore, Deff  is the effective spatially-invariant diffusion 
coefficient, vi is the IFV vector,σf  is the filtration reflection coefficient, Pm is the vascular permeability coefficient, 
and Pe represents the Peclet number, indicating the ratio of convection transport rate to diffusion transport rate 
across the vessel wall to interstitium. The first and second terms in the right-hand side of Eq. (25) determine 
the diffusion transport and convection transport of radiopharmaceuticals within the interstitium, respectively.

Computational implementation.  Computational geometry and simulation cases.  To reduce computa-
tional cost and simplify the calculations, we selected a L× L square as the computational domain representing 
TME and its surrounding normal tissues, as demonstrated in Fig. 3. The “D” in this figure shows the tumor size 
and is non-dimensionalized by the domain length ( DL = 0.2 ). A parent vessel is located the left edge of the do-
main where the vascular network starts to grow. To investigate the effect of tumor size, three different tumor sizes 
including D, 2× D , and 3× D are considered. On the other hand, to examine the impact of MVD within the 
TME, two different states are considered for initiating angiogenesis from the parent vessel, including network 
with 3 initial sprouts and network with 5 initial sprouts, at the same distance from each other. The values of the 
model parameters used in this study are listed in Table S2 of the Supplementary Material.

(26)
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= L3Ci − (L4 + L5)Ce

(27)
∂Cm

∂t
= L5Ce
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(
1− σf

)
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S
V

Figure 3.   A schematic of the computational domain employed in the current study. The vascular network 
consists of a parent vessel located on the left side of the domain. It should be mentioned that Microsoft Office 
PowerPoint 365 was used to create this figure.
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Solution strategy.  In this study, a two-dimensional hybrid sprouting angiogenesis method is applied to produce 
the microvascular network. The governing equations are discretized by a finite difference scheme to a set of 
algebraic equations. The solution of the discretized equations is performed in an iterative process by MATLAB. 
The calculation of blood flow in capillaries includes a set of non-linear equations. Hence, an iterative method 
is applied to solve the blood flow equations in the capillary network by MATLAB (160,000 elements). Subse-
quently, the momentum and mass equations in the microvascular network and interstitial space are solved. 
The resulting IFP and IFV values are used for solving the SDM equations to obtain the distribution of different 
concentrations (28,082 elements). The initial and boundary conditions of this study are mentioned in Supple-
mentary Material (Table S1). A step-by-step flowchart of the present multi-scale model is reflected in Fig. 4. 
The Darcy, and SDM equations are solved by the commercial finite element software COMSOL Multiphysics 
version 5.5a (COMSOL Inc., Stockholm, Sweden). In addition, the residual square errors are set to 4 orders of 
magnitudes and the time of analysis for the FDG distribution is considered 1 h. All simulations described in this 
manuscript were performed on an Intel Core i5-8250U, 1.8 GHz CPU and RAM 8 GB computer.

Results and discussion
Morphology of the angiogenesis network.  To analyze the different stages of tumor angiogenesis, a 
sample vascular network induced by two parent vessels on the left and right sides of the domain has been gen-
erated over 30 days (Fig. 5). At 5 days, the TAF forms a gradient in the domain that reaches the parent vessels 
and causes sprouting angiogenesis to form new vessels. Between days 5–15, the generated vessels are elongate, 
branch, deform and spread toward the tumor. After day 15, new vessels have been extended within the TME to 
reach together and form vascular loops.

A qualitative comparison between the results of this study and biological observations of tumor angiogenesis 
morphology53,54 is shown in Fig. 6. In agreement with in vivo observations, the simulations show that the branch-
ing of new vessels increases near the tumor boundary as well as within the tumor where the TAF concentration is 
high (Fig. 6a–c), because TAF induces new tECs and create new branches. As mentioned, to reduce computational 

Figure 4.   A step-by-step flowchart of the present multi-scale model (generation of the capillary network 
corresponds to one time step).
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cost and simplify the calculations, the angiogenesis model caused by one parent vessel has been considered in 
this study (Fig. 6d). This assumption is biologically validated and confirmed by Fig. 6e,f.

In the calculations, given the sake of investigating the dependency of FDG radiopharmaceutical activity 
on the tumor size as well as MVD within the tumor, six capillary networks—including three different tumor 
sizes (D, 2× D , and 3× D ) in two different states of initiating angiogenesis (with 3 initial sprouts and 5 initial 

Figure 5.   Different stages of microvascular network formation during angiogenesis at days 5, 10, 15, 20, 25, and 
30.

Figure 6.   Biological validation of the angiogenesis modeling. (a) Our simulations show that the branching of 
new vessels occurs near the tumor boundary and inside the tumor; in vivo observations of tumor angiogenesis 
by (b) Vakoc et al.53 and (c) Roudnicky et al.54. (d) The sprouting angiogenesis induced by one parent vessel 
form vascular loops; and in vivo observations of tumor angiogenesis by (e) Vakoc et al.53 and (f) Roudnicky 
et al.54. It should be mentioned that (b) and (e) are extracted from Vakoc et al.53 with permissions. Additionally, 
(c) and (f) are taken from Roudnicky et al.54 with permissions.
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sprouts)—have been generated and examined in detail, as demonstrated in Fig. S2 of Supplementary Material. 
It should be noted that in a realistic capillary network, the maximum distance between the tumor cells and the 
closest microvessels is considered to be about 100 μm55. This is not considered in our microvascular networks, 
to more clearly investigate the effect of MVD and the distribution of solute within the tumor. However, this 
assumption satisfies the mechanisms of extravasation from microvessels and transport in interstitium. In fact, 
MVD plays a potential role as prognostic biomarker for different cancers including breast56,57 and has been shown 
as elevated in higher-grade tumor tissues compared to lower-grade ones58. Meanwhile, different sizes of tumors 
can imply different stages of tumor growth59.

Pressure and velocity distribution.  The computational domain includes two different tumor and nor-
mal tissues. The capillary network is used to simulate IVP and IFP. The various mechanisms of transport, namely 
diffusion and convention from vessel to tissue and within a tissue, are elaborately calculated across the compu-
tational domain. The diffusion terms are related to concentration gradient and the convection terms are related 
to interstitial flow. The distribution of IVP in networks with adaptable capillaries are shown in Fig. S4 of Sup-
plementary Material. It can be seen that the inlet sides of the parent vessel have the maximum values of IVP and 
it decreases towards the outlet to the minimum values. The IVP is also adjusted based on the pressure drop of 
the parent vessel, which causes blood flow. The obtained results are in very good agreement with IVPs obtained 
by Soltani and Chen41 and Stylianopoulos et al.60.

The distribution of IFP of tumor and normal tissues for six considered networks are shown in Fig. 7. The 
mean spatial value of tumor IFP for the networks 1–6 is 1525.7 Pa, 1585.5 Pa, 1698.3 Pa, 1570.2 Pa, 1700.7 Pa 
and 1868.2 Pa, respectively. The results are good compatible with the numerical studies of Soltani et al.61, Souri 
et al.62, Al-Zu’bi and Mohan63 as well as the experimental study of Butcher et al.64, which demonstrated the range 
of 586–4200 Pa for IFP in the tumor. Moreover, the IFP value in normal tissue is around 53.7–97.5 Pa, that agrees 
with the values of the experimental study65,66, which demonstrated the range of − 400 to 800 Pa for IFP in normal 
tissue. IFP has its greatest value in the tumor region because the lymphatic system is dysfunctional and the capil-
lary network of the tumor has a higher leakage rate than that of normal tissue, leading to radiopharmaceutical 
accumulation in the tumor interstitium, and as a result, an elevated IFP.

IFP is known as an important barrier against efficient solute transport to tumor tissue. IFP is proportional to 
the MVD in tumor and normal tissues. Hence, the IFP value is higher in the area where the capillaries are closer 
together. In addition, tumor with higher MVD has greater IFP, according to the mean values of the measured 
IFP. As Fig. 7 illustrates, the value of IFP decreased rapidly at the tumor boundary because the transvascular 
flow is absorbed by the lymphatic vessels in the normal tissue region. Moreover, the heterogeneous capillary 
network, as the source term in the interstitial fluid flow equation, causes the heterogeneous distribution of IFP 
in tumor tissue.

Given a direct relationship between IFP and IFV based on Darcy’s law, IFV distribution can be obtained in the 
whole tissue domain, as demonstrated in Fig. 8 for six considered networks. The velocity has very low values in 
most areas. The fluid flow direction is from high pressure area toward a low pressure area. Indeed, the maximum 

Figure 7.   Interstitial fluid pressure distribution for six considered networks.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14582  | https://doi.org/10.1038/s41598-022-18723-6

www.nature.com/scientificreports/

value of IFV occurs at the boundary between tumor and normal tissue where there is a large IFP gradient. IFV 
results are in the same order as the prediction of Jain et al.38, Soltani et al.61, Souri et al.62, Kashkooli et al.67, and 
experimental observation of Hompland et al.68.

In the following, the effect of five factors on flow simulation is examined:

Osmotic pressure.  The transvascular flow, which is of crucial importance for the homeostasis of tissues, is deter-
mined by the hydrostatic and osmotic pressures in vessels and in the interstitium. In tumors, normal osmotic 
pressures necessary for the transit of solutes into and out of vessels along gradients are severely compromised 
owing to the local tumor microenvironment69. Hence, the hydrostatic pressure difference between intra- and 
extravascular spaces is the dominant term of transvascular flow70. Therefore, due to the minor role of osmotic 
pressure in the transvascular flow, it can be neglected71, although this assumption is far from the truth.

Hematocrit distribution.  As can be seen from the equations, intravascular flow ( Qb ), dynamic blood viscosity 
( µblood ), and metabolic stimuli for changing the diameter ( Sm ) of each branch depend on the hematocrit in that 
branch. No change in hematocrit of the branches affects the mentioned cases. According to the researches on 
vascular dynamics, the hematocrit distribution in branches varies proportional to velocity.

Changing vessel diameter.  If we call a network with change in diameter a “dynamic network” and a network 
with fixed diameter a “static network”, the dynamic network adapts its vessels diameter to reach enough blood 
flow in each vessel. Therefore, the intravascular pressure of the dynamic network is higher than the static net-
work (Fig. S5). In addition, the dynamic network has a higher IFP because of the elevated intravascular blood 
pressure in the tumor, which increases the transvascular flow rate. The results of the blood pressure distribution 
for the static network led to an unrealistic distribution of solute concentrations.

Lymph pressure.  Lymphatic vessels are absent or non-functional in tumors72,73. According to the equations, if 
the lymphatic term is considered in tumor, it will act as a sink term. Therefore, it removes both the drug and the 
fluid inside the tumor, which reduces the IFP and radiopharmaceutical accumulation. Moreover, if PL > 0 , the 
difference between Pi and PL becomes larger and the sink term effect decreases in normal tissue.

The removal of blind ends and void of flow vessels.  Since a mathematical method is used to generate the net-
work, all the generated branches may not be placed in a flow loop. These branches, which are generated due to 
the nature of the mathematical model, are not practical from a physical viewpoint. As stated by74 and applied 
in41,75–77, elimination of vessels which are void of flow has proven to be applicable in mathematical models. 
Therefore, the capillaries that have a flow rate of less than 1% of the network’s maximum flow rate can be elimi-

Figure 8.   Interstitial fluid velocity distribution for six considered networks. Streamlines are given in each 
subfigure. IFV has very low values for both tumor and normal tissues. Maximum IFV occurs at the tumor 
boundary where there is a large IFP gradient. Fluid flow is directed from high pressure areas to low pressure 
areas.
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nated. Bazmara et  al. showed that in the absence of blood flow and shear stress, a loop cannot maintain its 
stability and collapses at the end78. Stephanou et al. investigated removing the vessels having flow less than 1% 
of the maximum capillary flow. It was observed that the flow distribution remains essentially unchanged when 
compared with the unmodified vasculature and a comparison of drug uptake in the two systems shows that 
maximum uptakes are also similar. However, the modified network initially delivers the drug more quickly: the 
treated vasculature has been optimized79.

Distributions of FDG uptake.  A qualitative comparison between the results of this study and the real 
FDG PET image of a large polyp-shaped gastric cancer for a 70-year-old man80 is shown in Fig. 9. In agreement 
with the real PET image, the simulations show high uptake of [18F]FDG in the tumor region. In addition, the cre-
ated color gradient clearly demonstrates the difference between normal and tumor tissue. We emphasize that this 
comparison with experimental data is only for demonstration purpose and the simulated FDG image (Fig. 9a) 
does not use any clinical data.

Since the plasma concentration of the radiopharmaceutical varies by time, the arterial concentration curve 
of FDG, obtained from Backes et al.81, is used for the CP concentration profile (Fig. 13). We assumed that CP is 
uniformly distributed throughout the vascular network and will enter into the interstitium67. The spatiotemporal 
distribution of FDG concentrations at seven different post-injection time frames for six considered networks 
are shown in Fig. 10 and Figs. S6–S8 of Supplementary Material. At the beginning of FDG infusion, Ci is domi-
nant compared to Ce and Cm . Over time, the value of Ci decreases and first Ce and then Cm dominate the total 
concentration ( Ctot = Ci + Ce + Cm ). Since the vessels in the capillary network act as source terms for the 
radiopharmaceutical, the maximum concentration values can be found in the vicinity of the capillary walls. 
The radiopharmaceutical is then transported and distributed in the other parts of the domain via diffusion and 
convection mechanisms.

According to the results, the networks induced from the 5 initial sprouts show a more uniform distribution 
due to the higher MVD. For networks induced from the 3 initial sprouts, due to the heterogeneous structure of 
the capillary network in tumor region, the radiopharmaceutical delivery to some cells is limited, and as such, 
uptake is reduced. Furthermore, the maximum total concentration occurs in the tumor region at all time frames 
due to the high permeability of tumor capillaries compared to normal tissue and also the higher rate of metabo-
lism in cancerous tissue than normal tissue. We also considered the ‘uniform network’ model by assuming uni-
form solute transport throughout the tumor. In the uniform network model, the vessels do not exist physically. 
Instead, it is assumed that they are existed in the whole domain as a source term including tumor and normal 
tissue. The capillaries’ effects have been included in the mathematical modeling by S/V  parameter in the equa-
tions as a source term in whole the domain (in Eq. S12-1 for concentration transport source term and in Eq. (8) 
for fluid transport source term); therefore, geometry of parent vessel is not considered in this case. Similarly, CP as 
the injected concentration term, acts as a parameter in the source term equation (in Eq. S12-1 for concentration 
transport source term)61,82. This model can show the effect of the extreme case of MVD on FDG concentration.

Figure 11 shows the mean FDG concentration across the tumor tissue of the considered networks over time. 
The results include the comparison of outcomes of all six investigated cases with the uniform network case. In 
addition, the results of FDG distribution were averaged spatially and reported.

Equation (25) in the SDM equations consists of three processes related to diffusion transport ,convection 
transport, and chemical reactions. The results clearly show that MVD of the capillary network has a significant 
effect on FDG uptake. The uniform network shows a higher concentration value than the vascularized models. 
In this case, the solute distribution is only dependent on diffusion from vessels due to the uniform distribution 
of the capillary network; therefore, the effect of transport in tissue is greatly reduced. At all times, the uptake of 
the dense network induced from the 5 initial sprouts is greater than that of the 3 initial sprouts, at equal tumor 

Figure 9.   Qualitative validation of simulation results. (a) Synthetic PET image generated by the current 
mathematical model; (b) [18F]FDG PET imaging shows high uptake of [18F]FDG, suggesting the possibility of 
advanced gastric cancer80; (c) Upper gastrointestinal endoscopy image shows a large (3.5 cm) pedunculated 
polyp-shaped gastric cancer with prolapse into the duodenal bulb80. (Sections (b) and (c) are used with 
permission from Suzuki et al.80).
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size. By increasing the MVD of networks, the effect of terms related to spatiotemporal transport decreases and 
the contribution of diffusion terms found a significant effect. When MVD is high, the contribution of diffusion 
from vessel in the solute transport is greater than diffusion in tissue interstitum; however, with decreasing MVD, 
the effect of diffusion in tissue interstitum increases. In other words, the diffusion term from vessels depends on 
the structure of the capillary network. Additionally, as shown in Fig. 12a,b, as the size decreased in tumors by the 
same MVD, the mean total FDG concentration increased; the contribution of diffusion from vessels increases by 
decreases in tumor size. Moreover, as shown in the previous section, in the smaller tumor size, the IFP values are 
lower, leading to an increase in the convection rate of the source term in Eq. (25). Indeed, by reducing the IFP 
value, the volumetric flow rate from vessels increases, facilitating radiopharmaceutical transport to the tumor 
tissue. According to Fig. 12c,d, although it appears that the mean intracellular uptake of FDG increased with 
decreasing tumor size, this is not always fixed for all cases in the clinical conditions and requires consideration 
of direct effect of cell microscopic variables, such as GLUT expression and HXK enzymes. Consideration of these 
variables can be used as an advanced model in future efforts to more highlight FDG uptake.

The proposed comprehensive spatiotemporal distribution framework enables the investigation of the relation-
ship between molecular processes and imaging data. Inverse problems can be subsequently developed (future 
work) to estimate the parameters of interest, including kinetic parameters (Ki) from dynamic concentration 
data, diffusion coefficient in the tissue and the input function, towards personalized assessment of disease. Dif-
ferent imaging scenerios (tasks, exam durations, scanners, noise levels, etc.) can be simulated. Subsequently, by 
constructing appropriate numerical inverse methods (e.g., non-linear regression paradigms), the parameters 
of interest can be determined. This is hypothesized to result in improved estimates given enhanced SDM mod-
eling over conventional kinetic compartmental methods. Future efforts also include artificial intelligence (AI) 
towards faster computation of the forward model, and improved inverse models. Such AI-assisted models can 
be developed via access to large real and synthetic PET datasets.

Overall, combining both the paradigms of therapeutics and diagnostics (i.e., theranostics) into clinical formu-
lations allows for rapid assessment and adjustment of treatment to individual needs for personalized medicine. 
In theranostics, a diagnostic radiopharmaceutical (e.g. 68Ga-PSMA-11 for PET imaging) is used to detect a 

Figure 10.   Spatiotemporal distribution of total FDG radiopharmaceutical concentration ( kBqml  ) at 1, 3, 6, 10, 
30 and, 60 min in six networks.
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molecular target with sufficient uptake and abnormal specificity. A therapeutic radiopharmaceutical (e.g., 177Lu-
PSMA-617) is then administered at a therapeutic dose level to treat the abnormal tissue. Quantitative imaging 
of the therapeutic radionuclide to image pharmacodynamic response to treatment allows the patient to select 
personalized and patient-specific dosages to reduce radiation toxicity and optimize the benefits of radiation 
therapy. Existing radiopharmaceutical therapy practice tends to focus on fixed doses for patients (e.g. 7.4 GBq 
(200 mCi) for 177Lu-DOTATATE). However, to truly personalize therapies it will be necessary to predict the 
delivered dose. This will require construction of sophisticated digital twins for patients, incorporating more 
detailed biology and pharmacokinetic modeling. As such, the construction of models such as ours can help 
enable such a vision, such as our recent efforts83–85. While our current model still requires a significant amount 
of patient-specific data for clinical utility, this study shed lights on the field in what we believe is a needed angle 
toward a future where deeper understanding on effective factors and parameters translates to more realistic 
models and decisions. Thus, considering the outcomes of such models, more thorough models incorporating 
individual patient data will be provided.

Validation of numerical model.  The distribution trend of FDG uptake in the tissue for Ce and Cm agrees 
well with the experimental results of studies by Carson et al.86 and Eastman et al.87. Figure 13 shows the com-
parison of the mean total concentration of FDG in the tumor area with the experimental observation of Backes 
et  al.81. Total FDG concentration is calculated in both extracellular and intracellular spaces, as measured in 
radionuclide imaging. There is a good agreement between the present study and the experimental observations, 
as the trend of both curves is nearly identical. However, since the domain and conditions of the experimental 
and modeling are different, the results are not exactly matched. After 15 min, the total concentration of FDG for 
the current study is very close to the total concentration in the experimental results, and after 25 min, the results 
exactly matched the experimental results. It should be noted that accurate examination of FDG concentration 
peaks requires accurate values of the input function at all times. Since the input function of Backes et al. is only 
available for up to one hour, it is possible to investigate the model’s capabilities in distinguishing the kinetic steps 
of [18F]FDG delivery to the extracellular matrix, its transport from the extracellular to the intracellular space, 

Figure 11.   Comparison of the mean FDG concentration in the tumor tissue of all six considered networks 
calculated via the SDM method and the ‘uniform network’ state. (a) Ci , (b) Ce , (c) Cm , and (d) Ctot (summation 
of last 3 terms).
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and its intracellular phosphorylation. Additionally, it is possible to evaluate spatiotemporal distribution of radi-
opharmaceutical by considering different heterogeneity of tumor microenvironment.

Figure 12.   Effect of tumor size on total FDG concentration across the tumor tissue and total cell FDG uptake 
for the networks of first state considering 3 initial sprouts (a,c) and the networks of second state considering 5 
initial sprouts (b,d).

Figure 13.   Comparison of results for SDM model with experimental results of Backes et al.81 for FDG in tumor 
region over time.
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Conclusion
We have presented a comprehensive mathematical model to accurately simulate the spatiotemporal distribution 
of the [18F]FDG radiopharmaceutical uptake within vascularized solid tumors. This model includes the produc-
tion of tumor-induced microvascular network by a two-dimensional hybrid sprouting angiogenesis method 
along with the calculation of blood flow in the adaptable new vessels that remodels the network structure in 
response to metabolic and hemodynamic stimuli. Biological validation of the produced angiogenic networks 
was performed with in vivo observations. The spatiotemporal distribution of FDG was obtained by coupling 
intravascular blood flow and interstitial fluid flow equations with the SDM solute transport mathematical model. 
This model includes convection and diffusion transport mechanisms from the vessels to the tissue and within 
the tissue, as well as the reaction mechanism.

We demonstrated the capabilities of the model by examining the effects of tumor size and MVD on the 
radiopharmaceutical distribution over time. Results show that the behavior of FDG radiopharmaceutical dis-
tribution is highly dependent on MVD. Due to the high permeability of tumor capillaries, the maximum total 
concentration occurred in the tumor area at all time frames. Additionally, the maximum concentration value 
occurs in the vicinity of the vessel walls and decreases with increasing distance from the capillaries due to the 
low diffusion coefficient. As the MVD increases, the mean FDG uptake into the tumor is also enhanced. In addi-
tion, this model correctly predicts the effect of desmoplasia, which involves an increase in IFP in larger tumor 
sizes. At smaller tumor sizes, an increase in volumetric flow rate, due to lower IFP values, and an increase in the 
contribution of diffusion mechanism from vessels increased the mean total FDG concentration. The proposed 
spatiotemporal modeling framework can be used to comprehensively evaluate the effect of various parameters 
on the spatiotemporal distribution of different radiopharmaceuticals, beyond the usage of conventional methods, 
including ODE-based kinetic compartment modeling. A goal of the present study is to help bridge the gap among 
different related fields, including mathematical oncology, radiology, and cancer diagnosis.

Data availability
All data used for this study are available from the corresponding author upon request.
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