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Excessive adipose tissue can lead to metabolic abnormalities resulting in lipid alteration and oxidative 
stress (OS) status. The lipid accumulation product (LAP) index is a biomarker that indicates central 
lipid accumulation and has been proposed as an accurate and independent indicator of risk for several 
cardiometabolic related conditions. There is a lack of information about the possible association of 
LAP and OS biomarkers. Therefore, this work aimed to investigate the relationship between LAP 
and OS biomarkers in adults. A cross-sectional study was performed in 250 subjects attending the 
Hospital Regional de Alta Especialidad de la Península de Yucatán. Anthropometrical and clinical 
parameters were measured. The serum oxidative biomarkers such as malondialdehyde (MDA) and 
total antioxidant capacity (TAC) were evaluated by spectrophotometry and by the oxygen radical 
absorbance capacity (ORAC), respectively. A positive and significant correlation between serum levels 
of MDA and LAP (r = 0.162, p = 0.010) was observed. This relationship was stronger in women (r = 0.189, 
p = 0.013) than in men. The association between them remained significant after adjusting for 
confounders (r = 0.23, p < 0.001). A cutoff of LAP of 73.73 predicts high levels of MDA in women aged 
between 40 and 59. LAP index was associated with OS biomarkers in women and men from Yucatan, 
Mexico. Therefore, the elevation of the LAP index could identify an imbalance in the redox status.

Excessive adipose tissue can lead to metabolic abnormalities resulting in lipid alteration and oxidative stress (OS) 
status1. These alterations are reported in several cardiometabolic related conditions such as insulin resistance 
(IR), metabolic syndrome (MetS), type 2 diabetes (T2D), and cardiovascular diseases (CVDs)2. The lipid accu-
mulation product (LAP) index is a biomarker that indicates central lipid accumulation and has been proposed 
as an accurate and independent indicator of risk for the conditions mentioned above. In fact, it has been found 
in several populations that LAP is a better predictor for MetS and T2D3. Because the LAP index is calculated 
using waist circumference and triglyceride levels4, it has a strong correlation with traditional and well-established 
risk markers5,6.

In Mexico, CVDs and T2D are the leading causes of mortality7, and MetS is reported to have a high prevalence 
in several studies among Mexican adults8. In particular, all these conditions are found at high frequencies in the 
Yucatan peninsula population9.

An excessive amount of adipose tissue results in a disruption of normal physiological processes, resulting 
in an imbalance of energy and redox status. Redox imbalance contributes to the generation of OS, and the pro-
gression of a pro-oxidative environment, including excessive production of reactive oxygen species (ROS) and 
a reduction of antioxidants10. These alterations promoted the oxidation of biomolecules such as proteins, DNA, 
and lipids. The lipid oxidation generates hydroperoxides like malondialdehyde (MDA), which is associated with 
cell and tissue dysfunction11. Moreover, MDA is one of the most common measurements for the determination 
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of OS12. In fact, studies showed that higher levels of MDA were found in individuals with higher body mass index 
(BMI) and waist circumference (WC)13,14. This suggests that OS promotes the accumulation of oxidized lipids 
in the adipose tissue that leads to several conditions, including IR, atherosclerosis, and T2D15–17. Despite this 
close relationship between excessive lipid accumulation and OS, there is a lack of information about the possible 
association of LAP and OS biomarkers. In a previous study by our lab group, LAP was shown to be the most 
effective indicator for diagnosing MetS in adults18. Against this background, the present work aims to investigate 
the relationship between LAP and OS biomarkers in adults from Yucatan, Mexico.

Results
A total of 250 adults were evaluated (77 men and 173 women). Men (48.2 ± 11.4) were older than women 
(46.2 ± 12.5). T2D (67%) and MetS (53%) were found to be more frequent in women than in men. Regarding 
the clinical characteristics, results showed that men have higher and significant values of WC (p = 0.016), sys-
tolic blood pressure (SBP) (p = 0.014), creatinine (p < 0.001), uric acid (UA) (p < 0.001); and low levels of high-
density lipoprotein-cholesterol (HDL-C) (p < 0.001) compared to women. However, women reported higher 
BMI (p = 0.022) and MDA levels (p < 0.001) (Table 1).

Using a Spearman correlation analysis, the relationship between LAP and oxidative biomarkers was assessed. 
A positive and significant correlation between serum levels of MDA and LAP (r = 0.162, p = 0.010) was reported 
(Supplemental Fig. S1). This relationship was stronger in women (r = 0.189, p = 0.013) than in men. Serum levels 
of the antioxidant capacity (TAC) were not shown to have a significant relationship with LAP (Table 2).

The association between LAP, MDA, and TAC considering some variables that could act as confounders, was 
performed through a non-parametric multiple linear regression analysis using a rank transformation of LAP. 
In model 1, the interaction of LAP and MDA among men and women, was analyzed, including the possible 
effect of age and HDL-C and high sensitivity C-reactive protein (hs-CRP) levels. An independent and positive 
effect of MDA on LAP was observed to be significant in men (p < 0.001) and in women (p < 0.001), this remains 
significant after adjusting for confounders. In model 2, the interaction of LAP and serum levels of TAC were 
adjusted and evaluated. Results showed that the association between LAP and TAC (p < 0.001) is not affected by 
age or HDL-C and hs-CRP levels (Table 3).

To assess the clinical impact of LAP index on the oxidative biomarkers (MDA and TAC) a binominal regres-
sion was performed. It was reported that women aged 40–59 years old have an increased serum level of MDA 
(above the 50th percentile). Furthermore, a LAP cutoff value of 73.73 with a sensitivity of 54% and specificity 
of 67% with a Youden Index of 0.29 was established for this women’s group. Meaning that women with a LAP 

Table 1.   Baseline demographic, comorbidities and clinical characteristics among men (n = 77) and women 
(n = 173). Data is presented using mean ± standard deviation or median (Interquartile range). Differences 
between groups were evaluated with independent t-test or Mann–Whitney test. p-value less than 0.05 was 
considered statistically significant. T2D: type 2 diabetes; MetS: metabolic syndrome; WC: waist circumference; 
SBP: systolic blood pressure; DBP: diastolic blood pressure; FPG: fasting plasma glucose; HDL-C: high 
density lipoprotein cholesterol; UA: acid uric; hs-CRP: high-sensitive C-reactive protein, LAP: lipid product 
accumulation; MDA: malondialdehyde; TAC: total antioxidant capacity.

Characteristics
Men
(n = 77)

Women
(n = 173) p-value

Age (y) 50 (42–58) 46.2 (39–55) 0.001

Comorbidities, n (%)

T2D 15 (19) 52 (67) 0.082

Hypertension 26 (33) 59 (34) 0.952

MetS 28 (36) 92 (53) 0.014

Clinical

WC (cm) 94 (89–101) 91 (83–101) 0.016

BMI (kg/m2) 29.1 ± 4.53 30.9 ± 6.29 0.022

SBP (mmHg) 126 ± 17.3 120 ± 20.5 0.014

DBP (mmHg) 73.3 ± 10.8 71.2 ± 10.2 0.150

FPG (mmol/L) 5.22 (4.82–5.77) 5.29 (4.65–6.33) 0.920

Triglycerides (mmol/L) 1.68 (1.28–2.84) 1.31 (1.21–2.28) 0.261

HDL-C (mmol/L) 1.03 (0.86–1.17) 1.15 (1.02–1.37)  < 0.001

Urea (mmol/L) 4.56 (3.6–6.58) 4.35 (3.21–5.74) 0.104

Creatinine (µmol/L) 83.1 (76.9–102) 62.77 (55.7–74.3)  < 0.001

UA (mmol/L) 359.85 (308–404) 285.5 (238–345)  < 0.001

hs-CRP (mg/dL) 2.12 (1.32–6.84) 2.49 (1.48–8.13) 0.524

LAP 55.3 (30.8–78.8) 55.5 (34–83.1) 0.803

MDA (nmoles/mL) 17.6 ± 5.77 20.6 ± 6 .84 0.001

TAC (micromoles TE/mL) 966 (897–1006) 957 (870–997) 0.187
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cutoff of 73.73 are more likely to be in an oxidative state (OR 1.01, p = 0.013). For men, no statistical results were 
found (Table 4).

Table 2.   Correlations between LAP and oxidative stress biomarkers malondialdehyde (MDA) and total 
antioxidant capacity (TAC) among men (n = 77) and women (n = 173). MDA: malondialdehyde; TAC: total 
antioxidant capacity. p-value less than 0.05 was considered statistically significant.

Oxidative biomarker

Lipid accumulation product

Men
n = 77

Women
n = 173

Total
n = 250

r p-value r p-value r p-value

MDA 0.097 0.401 0.189 0.013 0.162 0.010

TAC​ 0.064 0.579 0.079 0.300 0.071 0.264

Table 3.   Association between LAP and oxidative stress biomarkers (MDA and TAC) adjusted by confounders 
among men (n = 77) and women (n = 173). LAP: lipid product accumulation; MDA: malondialdehyde; HDL-C: 
high density lipoprotein-cholesterol; hs-CRP: high-sensitive C-reactive protein; TAC: total antioxidant capacity. 
p-value less than 0.05 was considered statistically significant.

Lipid accumulation product

Oxidative biomarker

Men
n = 77

Women
n = 173

Total
n = 250

β (95%CI) p-value β (95%CI) p-value β (95% CI) p-value

Model 1 R2 = 0.41  < 0.001 R2 = 0.19  < 0.001 R2 = 0.23  < 0.001

MDA 0.10 (− 0.08,0.29) 0.268 0.20 (0.06,0.33) 0.006 0.19 (0.08,0.30)  < 0.001

Age 0.10 (− 0.09,0.29) 0.283 0.20 (0.07,0.34) 0.004 0.18 (0.07,0.29) 0.002

HDL-C − 0.53 (− 0.71,− 0.34)  < 0.001 − 0.35 (− 0.49,− 0.22)  < 0.001 − 0.39 (− 0.51,− 0.28)  < 0.001

hs-CRP − 0.46 (− 0.65,− 0.27)  < 0.001 − 0.09 (− 0.23,0.04) 0.181 − 0.22 (− 0.33,− 0.11)  < 0.001

Model 2 R2 = 0.43  < 0.001 R2 = 0.15  < 0.001 R2 = 0.20  < 0.001

TAC​ 0.17 (− 0.01,0.36) 0.060 0.07 (− 0.07,0.21) 0.357 0.06 (− 0.05,0.17) 0.002

Age 0.07 (− 0.11,0.26) 0.440 0.22 (0.08,0.36) 0.002 0.18 (0.07,0.29) 0.312

HDL-C − 0.56 (− 0.74,− 0.37)  < 0.001 − 0.34 (− 0.48,− 0.20)  < 0.001 − 0.38 (− 0.50,− 0.27) 0.002

hs-CRP − 0.48 (− 0.67,− 0.29)  < 0.001 − 0.10 (− 0.24,0.05) 0.181 − 0.22 (− 0.34,− 0.11)  < 0.001

Table 4.   Correlation between cut-off points of LAP and oxidative stress biomarkers (MDA and TAC) in men 
(n = 77) and women (n = 173) by age groups. LAP: lipid product accumulation; MDA: malondialdehyde; TAC: 
total antioxidant capacity. p-value less than 0.05 was considered statistically significant.

Age groups Oxidative biomarkers LAP cut-off Sensitivity (%) Specificity (%) Youden Index OR p-value

Men

20–39 MDA 25.16 0.00 1.00 0.367 1.02 0.386

(n = 17) TAC​ 14.74 0.571 0.778 0.286 0.96 0.315

40–59 MDA 30.60 0.708 0.333 0.202 1.05 0.433

(n = 45) TAC​ 44.09 0.833 0.333 0.214 1.00 0.891

 ≥ 60 MDA 47.19 0.429 0.750 0.339 1.10 0.643

(n = 15) TAC​ 35.11 0.286 0.750 0.018 0.99 0.355

Women

20–39 MDA 8.61 0.920 0.200 0.080 0.93 0.326

(n = 46) TAC​ 14.62 0.273 0.783 0.138 1.00 0.276

40–59 MDA 73.73 0.543 0.673 0.299 1.01 0.013

(n = 101) TAC​ 17.98 0.130 0.891 0.011 1.00 0.377

 ≥ 60 MDA 75.43 0.00 1.00 0.363 1.01 0.370

(n = 26) TAC​ 67.72 0.800 0.182 0.170 0.99 0.775
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Discussion
In our study, it was found that there was a significant association between LAP and serum levels of MDA; this 
association was reported to be stronger in women than in men from our study population. Moreover, models 
exploring the effect of LAP on OS biomarkers showed that the relationship between LAP and MDA and TAC 
remains independent and significant, even after age, HDL-C and hs-CRP adjustment. Binary logistic regression 
analysis to estimate LAP predictive ability towards high MDA and low TAC values reported that a cutoff of LAP 
of 73.73 predicts high MDA levels in women aged between 40 and 59.

OS has been involved in the development of several metabolic diseases, including T2D, MetS, and hyper-
tension, among others19,20. At the same time, LAP has been shown to have potential in the prediction of these 
conditions21. However, there is little literature on the association of LAP and OS biomarkers. In fact, only one 
cohort study that investigated the relationship between OS markers and different cardiometabolic risk factors, 
showing that LAP is independently associated with the prediction of OS parameters such as total protein sul-
phydryl groups (tSHG) and the ratio of prooxidant-antioxidant balance and tSHG22. Contrary to these results, 
in our study there was found a significant relationship between the LAP index and high levels of MDA, which is 
an oxidative biomarker. One reason for this could be explained by the high proportion of participants included 
in the study showed an excess of body weight (84%). This is in line with previous reports, that pointed out an 
increase in the activity of another OS marker, the enzyme xanthine oxidase (XO) in the population with obesity23. 
Evidence suggests that excessive accumulation of abdominal fat causes dysregulation of metabolic and signal-
ing pathways, including lipid peroxidation24,25. Results from our study showed no difference in the antioxidant 
activity, but an increase in the concentration of MDA was observed. This means that although there is circulating 
antioxidative activity, it is insufficient to prevent, reduce or eliminate the oxidative damage caused to the lipids. 
These results are according to a previous report that showed an increase in activity of the antioxidant enzyme 
superoxide dismutase (SOD), and high MDA levels in subjects with obesity26. The relationship between LAP 
and OS biomarkers (MDA and TAC) was significant in men and women after adjusting for some cofounders 
such as age, HDL-C and hs-CRP.

The LAP index was defined for the first time by Kahn as a lipid over accumulation4, and it is an easy and 
inexpensive marker that can be used in clinical evaluation, especially for low and middle-income countries with 
limited resources and a high prevalence of non-communicable diseases like Mexico27.

The impact of the redox status on the LAP index is an under-researched issue. Therefore, this study presents 
the first evidence of the relationship between LAP and OS biomarkers among adults by gender in Mexico.

A limitation of the present work is the study design as cross-sectional study; it is not possible to identify 
whether lipid over accumulation or imbalance in the redox status occurred first. The presented results should 
be interpreted in terms of association rather than causality.

In conclusion, LAP index was associated with OS biomarkers in women and men from Yucatan, Mexico. 
Therefore, the elevation of the LAP index could identify an imbalance in the redox status. The implementation 
of long-term studies will help to comprehend this association and its mechanisms.

Methods
Study population.  A cross-sectional study was performed in subjects attending the Hospital Regional de 
Alta Especialidad de la Península de Yucatán (HRAEPY in the Spanish acronym) in Merida, Yucatan. More 
detail on the sampling is described and published elsewhere18. A total of 250 participants conformed by 77 men 
and 173 women aged between 20 and 65 years were included. Pregnant women and individuals attending the 
departments of cardiology, neurology, endocrinology, and oncology were excluded. This research project was 
approved by the Ethics Committee of the HRAEPY (no. CONBIOETICA-31-CEI-002-20170731) with the iden-
tification code: 2017-025. In addition, the Helsinki Declaration for medical research involving human subjects 
guidelines was followed.

Anthropometrical measurements and clinical parameters.  Anthropometric measurements such 
as body weight, height, and WC were obtained while wearing light clothing and, according to the Lohman 
method28. BMI was calculated by dividing weight by height squared (kg/m2). SBP and diastolic blood pressure 
(DBP) were estimated with an automatic electronic sphygmomanometer (Omron, Japan). Blood pressure was 
measured after 15 min of rest in a sitting position, with an uncovered right arm and no crossed legs.

Blood samples were collected after 12 h of fasting. Fasting plasma glucose (FPG) (mg/dL), triglycerides (mg/
dL), HDL-C (mg/dL), urea (mg/dL), creatinine (mg/dL), UA, (mg/dL) and hs-CRP (mg/dL) levels were meas-
ured following standard protocols and with a pre-validated kit (COBAS Integra 400 Plus autoanalyzer, Roche 
Diagnostics). The LAP was calculated following a formula reported by Kahn4:

Measurement of redox status by oxidative and antioxidant biomarkers.  OS was determined 
using the product of lipoperoxidation (MDA) and the antioxidant capacity (TAC). Serum levels of MDA were 
measured by a spectrophotometric method at 586 nm wavelength (BioTek Instruments, Winooski, VT)29 and 
expressed by nmoles/mL of sample. Serum levels of TAC were determined by the oxygen radical absorbance 
capacity (ORAC) assay30. The TAC data was calculated and expressed in Trolox equivalents (TE) per mL of sam-
ple (BioTek Instruments, Winooski, VT).

LAP in men = [(WC (cm)−65)(TG(mmol/L)]

LAP in women = [(WC (cm)−58) (TG(mmol/L)]
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Statistics.  The statistical package Jamovi (version 2.25, Sydney, Australia) was used to analyze the data. 
Clinical and biochemical characteristics were presented as means ± standard deviation (SD) or medians and 
interquartile range (IQR) for parameters with non-normal distributions. Proportions and corresponding per-
centages (%) were reported for comorbidities. Normality was evaluated using the Shapiro–Wilk normality test. 
Continuous variables between groups were compared using the t-test or the Mann–Whitney U test. A Spearman 
correlation analysis was performed to access the relationship between LAP, MDA, and TAC. A non-parametric 
multiple linear regression analysis using rank transformation of LAP was performed and evaluated in Model 1 
(MDA) and Model 2 (TAC) to adjust some parameters that could act as confounders (age, HDL-C and hs-CRP). 
Using binomial logistic regression analysis, the discriminatory abilities of LAP to predict OS in the population 
were examined. Cut-off values were based on the Youden Index (sensitivity + specificity − 1). The sensitivity 
and specificity of cut-off values of LAP were calculated to evaluate OS based on the increased levels of MDA 
above the 50th percentile and levels of TAC below the 50th percentile. Cut-off values of LAP were grouped by 
age among men and women (20–39, 40–59, and ≥ 60 years). For all analyses, statistical significance was set at 
p < 0.05.

Ethics declaration.  The study was conducted in accordance with the Declaration of Helsinki and approved 
by the Ethics and Research Committees of the Hospital Regional de Alta Especialidad de la Peninsula de Yucatan 
(protocol code 2017-025 and date of approval 16 May 2018).

Consent to participate.  Informed consent was obtained from all subjects involved in the study.

Data availability
Data underlying this work are available upon reasonable request. Requests for data should be addressed to cor-
responding author.
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