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Cosine similarity measures 
between q‑rung orthopair linguistic 
sets and their application to group 
decision making problems
Jawad Ali1 & Muhammad Naeem2*

The q-rung orthopair linguistic set (q-ROLS), a combined version of linguistic term sets and q-rung 
orthopair fuzzy set, is an efficient mathematical tool to accomplish the imprecise information while 
solving the decision-making problems. Under this environment, we propose additional operations and 
relations to deal with the decision information, and some properties are well proved. Furthermore, 
we propound some cosine similarity measures and weighted cosine similarity measures for q-ROLSs 
based on the traditional cosine similarity measures with a brief study of related properties. In the 
proposed similarity measures, various linguistic scale functions are utilized in order to take into 
account the semantics of linguistic terms. Besides this, we employ the stated q-rung orthopair 
linguistic similarity measures to multi-criteria group decision making problems, in which the weights 
of DMs are delineated by the projection of individual decisions on the ideal decision results. At last, 
a numerical example is used to demonstrate the practicality of the suggested technique, and its 
efficacy is validated by comparison with prevailing techniques. The suggested method’s sensitivity and 
stability analyses are also provided.

Decision making procedure involves examining a limited set of choices and identifying them with a certain 
degree of confidence for decision makers (DMs) when all the rules are thought out simultaneously. All choices 
include both accurate information and subjective data from experts. In general, however, information collected 
from various data sources is limited and subject to significant uncertainty. To deal with such uncertainties, the 
idea of fuzzy set (FS), pioneered by Zadeh1 offers a prominent device to cope with unsure and unpredictable 
facts within the surroundings of actual existence issues. In FS, each element contains the membership function, 
whose range lies in [0,1]. Since its foundation, researchers have paid great attention to them and applied them 
in various fields, but its scope is limited because it only considers each element’s membership grade and does 
not contain its non-membership grade. To address this issue, Atanassov2 established the intuitionistic fuzzy set 
(IFS) by incorporating the non-membership grade of an element to the FS with the condition that the sum of the 
membership and non-membership grades should be at most one. With the aid of IFS, DMs are able to handle 
complex and challenging problems with ease. An increasing number of researchers have begun to focus on the 
IFS since its introduction. However, it is still noticed that the feasible region of IFS is a triangular region and 
is limited in access. For instance, when a DM states information such as (0.5, 0.6), where the membership and 
non-membership grades have the condition 0.5+ 0.6 = 1.1 > 1 , and so in such cases, IFS does not effectively 
cope with it.

To address the situations mentioned above, Yager3 put forward the notion of Pythagorean fuzzy set (PFS) as 
a generalization of IFS whose prominent characteristic is that the sum of the square of membership and non-
membership grades is less than or equal to one. From its structure, it is clear that the searching space of this set 
is broader than the FS and IFS. To study the influence of PFS on decision making, numerous researchers have 
proposed different types of algorithms. For example, Garg4 studied correlation coefficients based on PFS pairs. 
Peng and Yang5 discussed several types of PFS baseline results. Onar et al.6 presented technique of order pref-
erence similarity to the ideal solution (TOPSIS) in a PFS environment for solving decision ranking problems. 
Garg7 propound weighted aggregation operators for PFS. Khan et al.8 improved the existing VIKOR method 
by defining a novel dissimilarity measure for PFS. Peng and Selvachandran9 reviewed various decision making 
approaches to solve the problems under the Pythagorean fuzzy environment.
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More recently, Yager10 came up with the notion of q-rung otyhopair fuzzy set (q-ROFS), in which the sum 
of the qth power of the membership and non-membership grades is at most 1. Obviously, q-ROFS extends the 
existing IFS and PFS and provides the DMs with more freedom to express their assessment information. Liu 
and Wang11 established q-rung orthopair fuzzy weighted averaging and geometric operators with a brief study 
of their characteristics. Wei et al.12 presented a series of q-rung orthopair fuzzy Maclaurin symmetric mean 
(MSM) operators and their implication to decision making problems. Peng et al.13 defined score function-
based distance measures for dealing with comparison problems under q-rung orthopair fuzzy setting. Pinar 
and Boran14 discussed supplier selection problem based on their proposed novel distance measure under the 
background of q-ROFS. Liu et al.15 introduced Power MSM operator and listed its required properties with 
detailed proof. Based on the proposed operator, they further investigated the multi-criteria group decision mak-
ing (MCGDM) approach and discussed its validity. Rani and Mishra16 studied weighted aggregated sum product 
assessment (WASPAS) methodology based on their proposed score function and similarity measures to address 
the alternative-fuel technology selection problem within q-ROFS context. Ali17 pointed out the drawbacks of the 
existing q-rung orthopair fuzzy score functions and defined a novel score function. Based on the proposed novel 
score function, he extended the measurement alternatives and ranking according to the compromise solution 
(MARCOS) method and discussed its application to solid waste management. Verma18 explored order-α diver-
gence and entropy measures for q-ROFSs and addressed the best enterprise resource planning system selection 
problem to illustrate their applicability. The authors of Ref.19 critically analyzed the existing attempts of q-rung 
orthopair fuzzy divergence measure and formulated an improved divergence measure. Based on the proposed 
measure, they extended multi-attribute border approximation area comparison decision method for selection 
problems. Khan et al.20 examined the existing ranking strategies for q-rung orthopair fuzzy values and proposed 
a novel graphical ranking method based on the hesitancy index and entropy. Peng and Liu21 gave some formulas 
for information measures of q-ROFSs and employed them to pattern recognition and medical diagnosis. The 
similarity measures of q-ROFSs based on cosine function were expounded by Wang et al.22. To fill the gaps of 
the existing distance measures of q-rung picture fuzzy sets, in Ref.23, authors devised a novel distance measure 
along with detail proof of its required properties.

There are some situations wherein DMs opt to make qualitative decisions rather than quantitative decisions 
because of a loss of time and expertise. Zadeh’s24 linguistic variables are powerful equipment to make qualitative 
selections. However, traditional linguistic variables can only reflect the qualitative preferences of DMs, and the 
grade of membership or non-membership of an element of a certain concept is ignored. Therefore, Wang and 
Li25 dispatched the idea of intuitionistic linguistic set (ILS), by connecting LTS with IFS. Based on the proposed 
induced aggregation operators, Liu et al.26 investigated the MCGDM technique under intuitionistic linguistic 
environment and analyzed possibilities for its use in low carbon supplier selection. Yu et al.27 studied an interac-
tive MCGDM methodology based on nonlinear programming and an acronym in Portuguese of interactive and 
multicriteria decision making (TODIM) method using intuitionistic linguistic data. A novel dempster-shafer 
evidence theory (DSET)-based MCGDM algorithm with intuitionistic linguistic data was given by28. In view of 
the significance and the ordered position of the input arguments, Chen et al.29 defined an intuitionistic linguis-
tic hybrid weighted logarithmic averaging distance (ILHWLAD) operator and provided the decision making 
methodology based on the ILHWLAD to address the finest concrete selection problem. Though ILSs are widely 
studied and used, their ability to describe fuzzy information is limited. Motivated by the power of q-ROFS, Li 
et al.30 further extended ILS to q-rung orthopair linguistic set (q-ROLS). They established a family of Heronian 
mean operators under a q-rung orthopair linguistic setting and demonstrated their applications in MCGDM 
problems. It is evident that q-ROLS is more general than ILS due to the fact that ILS is the special case of q-ROLS 
when q = 1. It is worth noting that the space of acceptable information can increase with the rung q increases, and 
more uncertainty information satisfy the bounding constraint. Therefore, q-ROLS is more suitable to describe 
fuzzy information than ILS. So far, very limited work has been done over q-ROLS, and there is capacity of much 
work to expand its scope of applications.

The idea of projection was initially projected within the computational work of physics. Currently, it’s become 
a significant tool for handling MCGDM problems. The projection model shows both distance and angle between 
two alternatives, and it can reflect the distance more accurately than other distance measures. Xu and Hu31 
detailed two novel projection models to respectively depict the similarity between the alternative and ideal solu-
tion under intuitionistic fuzzy setting. Liang et al.32 conferred and employed the Pythagorean fuzzy projection 
model to resolve pythagorean fuzzy MCGDM problems. A projection technique with integrating Linguistic 
Z-numbers become defined through Huang et al.33 for comparing the reliability and protection of aircraft landing 
machines. Yue34 highlighted some shortcomings of the original projection computation method and studied two 
normalized projection models to overcome the defects in solving MCGDM problem. Liu and You35 propound a 
bidirectional projection measure for linguistic neutrosophic setting. In addition, the projection method can also 
be combined with some available traditional MCGDM methods. Ji et al.36 presented an improved elimination 
and choice translating reality (ELECTRE) framework based on the projection model for multi-hesitant fuzzy 
linguistic term sets. Wang et al.37 put forward a vise kriterijumska optimizacija I kompromisno resenje (VIKOR) 
methodology based on normalized projections with fuzzy image numbers in order to address the risk assessment 
of the construction project. Yue38 built a framework for group decision making that combines a normalized 
projection model with the technique for order of preference by similarity to ideal solution (TOPSIS) method. 
However, so far, no such research about the projection model of q-ROLS has been found.

The concept of q-ROLS30 is new, and some of the main issues that may be addressed are listed as follows: 

	 (1).	 There is a lack of some relations and important operational laws viz. complement, subtraction and divi-
sion operations and thus, we are unable to cope with lots of calculations while using q-ROLSs.
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	 (2).	 Unbalanced situations are quite prevalent, yet all existing techniques offered so far are only capable of 
addressing balanced circumstances.

	 (3).	 The available MCGDM techniques are based on the known weights of DMs. However, in real decision 
making, DMs’ weights are difficult to obtain due to the urgency of the decision making and the complica-
tion of the decision environment.

	 (4).	 The existing decision ranking method has counterintuitive cases. For example, when there is a linguistic 
term of one criteria is equal to £0 , the scoring function of the corresponding alternative will result in zero. 
Thus, it leads to biased results (see the details in “Heronian operators based method” section).

These challenges have prompted us to consider the following key aims for this paper. 

	 (1).	 To devise additional operational laws and relations to tackle the enlisted challenge 1.
	 (2).	 To propose cosine and weighted cosine similarity measures in terms of linguistic scale function to cover 

the limitation 2.
	 (3).	 To build up an MCGDM method for managing q-rung orthopair linguistic information, which can derive 

a ranking order with unknown weight information of DMs to resolve defects 3 and 4.

To demonstrate the applicability of the presented approach in this paper, we solve an MCGDM problem regard-
ing EVCS site selection. In addition, we embark on a comparison to further illustrate the superiority of the new 
approach over the current ones.

Our research differs from previous research25,30 in the following ways: 

	 (1).	 The criteria and the DMs weight information in the existing studies are supplied in advance; however, in 
our study, these weights information are derived using the proposed measures of q-ROLNs.

	 (2).	 No distance or similarity measures for q-ROLNs have been devised in the existing research work. Both 
of these goals are met in our research, and their characteristics are highlighted. As a result, our research 
may contribute to the theoretical foundation of q-ROLNs and encourage their broad range of applications 
in diverse domains.

	 (3).	 The aggregation operators in the existing studies are incapable of solving MCGDM problems due to 
counterintuitive cases. Our study’s proposed q-rung orthopair linguistic method is the compensatory 
MCGDM method and reports no counterintuitive cases.

The rest of this article is arranged in the following sections. “Mathematical preliminaries” section reviews some 
basic concepts that are required for understanding our proposal. In “Additional operational laws and relations of 
q-ROLNs” section, some relations and operations of q-ROLSs are inserted. “Some similarity measures between 
q-rung orthopair linguistic sets” section defines q-rung orthopair linguistic cosine similarity measures and their 
weighted forms with a brief study of related properties. “Multi-criteria group decision making based on projec-
tion method” section offers an MCGDM method and a case study on EVCS site selection. In addition, sensitivity 
analysis is also performed in this section. “Comparative study” section summarizes the advantages and validity 
of the presented method by making a comparison with other methods. The last section draws some conclusions 
and point out the future research lines.

Mathematical preliminaries
This section is devoted to recall some primary concepts about linguistic term set, q-ROLS and linguistic scale 
function beneficial for entire discussions.

Definition 1  Herrera and Martínez39 Let £ = {£α|α = 0, 1, . . . , τ } with odd cardinality be a linguistic term set 
(LTS), where £α have the characteristics such as 

1.	 £α1 ≤ £α2 ⇔ α1 ≤ α2;
2.	 Negation(£α) = £τ−α;

3.	 max
{
£α1 , £α2

}
= £max (α1,α2);

4.	 min
{
£α1 , £α2

}
= £min (α1,α2).

Later on Xu40 expanded this set to continuous version and defined LTS as £ = {£α|£0 ≤ £α ≤ £τ ,α ∈ [0, τ ]}.

Definition 2  Yager41 A q-rung orthopair fuzzy set A on the universal set Z is characterized as

where σ , ̺ : Z −→ [0, 1] define the membership grade and non-membership grade with σ q(z)+ ̺q(z) ≤ 1 for 
q ≥ 1 integers ∀z ∈ Z . A pair 〈σ , ̺〉 is called a q-ROFN.

Definition 3  Yager41 For a q-ROFN A = �σ , ̺� , the score function is

(1)A = {�z, σ(z), ̺(z)�|z ∈ Z},

(2)S(A) = σ q − ̺q,
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and accuracy function is

where q ≥ 1 is integer.

Definition 4  Yager41 For two q-ROFNs A1 and A2 , A1 ≻ A2 where ≻ refers preferred to if either S(A1) > S(A1) 
or S(A1) = S(A1) and A(A1) > A(A1) holds.

Definition 5  Wang et al.22 For two q-ROFSs A1 and A2 on the universal set Z , the q-rung orthopair fuzzy cosine 
similarity measure between A1 and A2 is given as

The cosine similarity measure C(A1,A2) satisfies the following properties. 

(p1).	� 0 ≤ C(A1,A2) ≤ 1;
(p2).	� C(A1,A2) = C(A2,A1);
(p3).	� C(A1,A2) = 1 if A1 = A2 , that is, σ1(zj) = σ2(zj) and ̺ 1(zj) = ̺2(zj), ∀ j = 1, 2, . . . , n.

It is easy to know the regular similarity measure between fuzzy sets fulfills the following Lemma 1.

Lemma 1  Let F1 and F2 be two fuzzy sets, if the similarity measure C
(
F1,F2

)
 fulfills the below properties: 

(p1).	� 0 ≤ C
(
F1,F2

)
≤ 1;

(p2).	� C
(
F1,F2

)
= C

(
F2,F1

)
;

(p3).	� C
(
F1,F2

)
= 1 if and only if F1 = F2.

Definition 6  Li et al.30 Let Z be a universal set and £ be a continuous linguistic term set of £ = {£α|α = 1, 2, . . . , τ } , 
then a q-rung orthopair linguistic set (q-ROLS) Q is describe as

where £α(z) ∈ £; σ , ̺ : Z −→ [0, 1] define the membership grade and non-membership grade with 
σ q(z)+ ̺q(z) ≤ 1 for q ≥ 1 integers ∀z ∈ Z . A pair 〈σ , ̺〉 is called a q-rung orthopair linguistic number 
(q-ROLN), which can be simply marked by Q = �£α , (σ , ̺)�.

Definition 7  Li et al.30 For a q-ROLN Q = �£α , (σ , ̺)� , the score function is

and accuracy function is

where q ≥ 1 is integer.

Definition 8  Li et al.30 For two q-ROLNs Q1 and Q2 , Q1 ≻ Q2 where ≻ refers preferred to if either S(Q1) > S(Q1) 
or S(Q1) = S(Q1) and A(Q1) > A(Q1) holds.

Definition 9  Li et al.30 For two q-ROLNs Q1 =
〈
£α1 , (σ1, ̺1)

〉
 , Q2 =

〈
£α2 , (σ2, ̺2)

〉
 and positive real number 

� , the basic operational laws are stated as 

1.	 Q1 ⊕Q2 =
〈
£α1+α2 ,

((
σ
q
1 + σ

q
2 − σ

q
1 σ

q
2

)1/q
, ̺1̺2

)〉
;

2.	 Q1 ⊗Q2 =
〈
£α1×α2 ,

(
σ1σ2,

(
̺
q
1 + ̺

q
2 − ̺

q
1̺

q
2

)1/q)〉
;

3.	 �Q1 =

〈
£�×α1 ,

((
1−

(
1− σ

q
1

)�)1/q
, ̺�1

)〉
;

4.	 Q�
1 =

〈
£
α�1
,

(
σ �
1 ,
(
1−

(
1− ̺

q
1

)�)1/q
)〉

.

Definition 10  42 Let £ = {£α|α = 0, 1, . . . , 2τ } be a linguistic term set. If ϑα is a numeric value between 0 and 1, 
then the linguistic scale function g can be defined as follows:

(3)A(A) = σ q + ̺q,

(4)C(A1,A2) =
1

n

n∑

j=1

σ
q
1

(
zj
)
σ
q
2

(
zj
)
+ ̺

q
1

(
zj
)
̺
q
2

(
zj
)

√(
σ
q
1

(
zj
))2

+
(
̺
q
1

(
zj
))2

+

√(
σ
q
2

(
zj
))2

+
(
̺
q
2

(
zj
))2 .

(5)Q =
{〈

z, £α(z), (σ (z), ̺(z))
〉
|z ∈ Z

}
,

(6)S(Q) =
(
σ q + 1− ̺q

)
× α,

(7)A(Q) =
(
σ q + ̺q

)
× α,
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where 0 ≤ ϑ0 < ϑ1 < · · · < ϑ2τ ≤ 1. The linguistic scale function is strictly monotonously increasing function 
with respect to the subscript of £α ; in fact, the function value ϑα represents the semantics of the linguistic terms.

Now we discuss three commonly used linguistic scale functions as follows:

The evaluation scale of the linguistic information expressed by g1(£α) is divided on average.

For linguistic scale function g2(£α) , the absolute deviation between adjacent language sets will increase when 
we extend it from the middle of the given set of language to both ends. Many experimental studies demonstrated 
that c = 1.443.

where β1,β2 ∈ (0, 1], here we assume that β1 = β2 = 0.844.
For linguistic scale function g3(£α) , the absolute deviation between adjacent language sets will decrease when 

we extend it from the middle of the given linguistic term set to both ends.
The above linguistic scale function can be extended to continuous linguistic scale function g∗ : £̄ −→ R+ 

(where R+ is a nonnegative real number between 0 and 1), which is also a strict monotonically increasing 
function.

Example 1  Let £̄ = {£α|α ∈ [0, 6]} be a continuous LTS, we can obtain the inverse of the following linguistic 
scale function.

If g∗(£α) = ϑα = α
6 (α = 0, 1, 2, . . . , 6), then g∗−1(ϑα) = £6ϑα (ϑα ∈ [0, 1]).

If g∗(£α) = ϑα =

{
cτ−cτ−α

2cτ−2 , α = 0, 1, 2, 3;
cτ+cα−τ−2

2cτ−2 , α = 4, 5, 6,
 then g∗−1(ϑα) =

{
£3−logc [c3−(2c3−2)ϑα], ϑα ∈

[
0, 12

]
;

£3+logc [(2c3−2)ϑα−c3+2], ϑα ∈
(
1
2 , 1

]
.

If g∗(£α) = ϑα =

{
3β1−(3−α)β1

2×3β1
, α = 0, 1, 2, 3;

3β2+(α−3)β2

2×3β2
, α = 4, 5, 6,

 then g∗−1(ϑα) =

{
£
3−[3β1−2×3β1ϑα]

1/β1 , ϑα ∈ [0, 1],

£
3+[2×3β2ϑα−3β2 ]

1/β2 , ϑα ∈
(
1
2 , 1

]
.

Additional operational laws and relations of q‑ROLNs
This section mainly focuses on additional operational laws and relations of q-ROLNs to enrich the theory.

Definition 11  Let Q1 =
〈
£α1 , (σ1, ̺1)

〉
,and Q2 =

〈
£α2 , (σ2, ̺2)

〉
 be two q-ROLNs, then the following opera-

tions are defined: 

1.	 Q1
⋃

Q2 =
〈
max

(
£α1 , £α2

)
, (max (σ1, σ2), min (̺1, ̺2))

〉
;

2.	 Q1
⋂

Q2 =
〈
min

(
£α1 , £α2

)
, (min (σ1, σ2), max (̺1, ̺2))

〉
;

3.	 Qc
1 =

〈
£2τ−α1 , (̺1, σ1)

〉
;

4.	 Q1 ⊆ Q2 if α1 ≤ α2 , σ1 ≤ σ2 and ̺ 1 ≥ ̺2;
5.	 Q1 = Q2 if α1 = α2 , σ1 = σ2 and ̺ 1 = ̺2.

Example 2  Let Q1 = �£2, (0.1, 0.3)� , Q2 = �£3, (0.5, 0.4)� be two q-ROLNs with q = 1 , and £ =

{
£0 = extremely poor,

£1 = very poor, £2 = poor, £3 = fair, £4 = good, £5 = very good, £6 = extremely good
}

 be LTS. Then
Q1

⋃
Q2 = �£3, (0.5, 0.3)�, Q1

⋂
Q2 = �£2, (0.1, 0.4)�, and Qc

1 = �£4, (0.3, 0.1)�.

Theorem 1  (De Morgans’ law) Let Q1 =
〈
£α1 , (σ1, ̺1)

〉
 , and Q2 =

〈
£α2 , (σ2, ̺2)

〉
 be two q-ROLNs, then

1.	
(
Q1

⋃
Q2

)c
= Qc

1

⋂
Qc

2;

2.	
(
Q1

⋂
Q2

)c
= Qc

1

⋃
Qc

2.

Proof 

1.	 Since, Q1
⋃

Q2 =
〈
max

(
£α1 , £α2

)
, (max (σ1, σ2), min (̺1, ̺2))

〉
. There are eight different possible cases, but 

we discuss only one of them. Taking max
(
£α1 , £α2

)
= £α1 , max (σ1, σ2) = σ1 , and min (̺1, ̺2) = ̺2 . This 

implies that Q1
⋃

Q2 =
〈
£α1 , (σ1, ̺2)

〉
 . Form this, we have 

(
Q1

⋃
Q2

)c
=

〈
£2τ−α1 , (̺2, σ1)

〉
.

(8)g : £α −→ ϑα; g−1 : ϑα −→ £α(α = 0, 1, . . . , 2τ),

(9)g1(£α) =
α

2τ
(α = 0, 1, . . . 2τ).

(10)g2(£α) =

{
cτ−cτ−α

2cτ−2 , α = 0, 1, . . . , τ ;
cτ+cα−τ−2

2cτ−2 , α = τ + 1, τ + 2, . . . , 2τ .

(11)g3(£α) =

{
τβ1−(τ−α)β1

2τβ1
, α = 0, 1, . . . , τ ;

τβ2+(α−τ)β2

2τβ2
, α = τ + 1, τ + 2, . . . , 2τ ,
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	   Next, according to the complement operation Qc
1 =

〈
£2τ−α1 , (̺1, σ1)

〉
 and

	   Qc
2 =

〈
£2τ−α2 , (̺2, σ2)

〉
 . This implies that Qc

1

⋂
Qc

2 =
〈
£2τ−α1 , (̺2, σ1)

〉
. Hence, we get the desired result. 

Analogously, we can obtain the required result for the remaining seven cases.
2.	 Based on the lines of part (1), we can easily get the required proof.

	�  �

Theorem 2  The complement operation is involutive, i.e., 
(
Qc

1

)c
= Q1.

Proof  It trivially follows from the defined complement operation given in Definition 11. 	�  �

The q-ROLS originally proposed by Li et al.30, is an efficient tool to express the uncertainty of DMs. Very 
limited work has been done on this context so far, particularly, no one has focused on the subtraction and 
division operations over q-ROLSs. These governing operations are significantly vital in exploring the integral 
theoretical framework of q-ROLSs. Meanwhile, these are also indispensable foundation in introducing some 
popular decision ranking techniques like PROMETHEE45 with q-rung orthopair linguistic data. Inspired by the 
defined operational laws of Gou and Xu46, in the following, we devised the subtraction and division operational 
laws for q-ROLNs.

Definition 12  For any two Q1 =
〈
£α1 , (σ1, ̺1)

〉
,and Q2 =

〈
£α2 , (σ2, ̺2)

〉
 q-ROLNs, the substraction and divi-

sion operations have the following forms: 

1.	 Q1 ⊖Q2 =

〈
g−1

(
g(£α1)−g(£α2)

1−g(£α2)

)
,

(
q

√
σ
q
1−σ

q
2

1−σ
q
2

, ̺1
̺2

)〉
; i f  g

(
£α1

)
≥ g

(
£α2

)
 a n d  g

(
£α2

)
 = 1  , 

σ1 ≥ σ
q
2 , ̺1 ≤ min

{
̺2,

̺2
q
√
1−σ

q
1−̺

q
1

q
√

1−σ
q
2−̺

q
2

}
;

2.	 Q1 ⊘Q2 =

〈
g−1

(
g(£α1)
g(£α2)

)
,

(
σ1
σ2
, q

√
̺
q
1−̺

q
2

1−̺
q
2

)〉
;  i f  g

(
£α1

)
≤ g

(
£α2

)
 a n d  g

(
£α2

)
 = 0   , 

̺1 ≥ ̺
q
2, σ1 ≤ min

{
σ2,

σ2
q
√
1−̺

q
1−σ

q
1

q
√

1−̺
q
2−σ

q
2

}
.

Example 3  Let Q1 = �£2, (0.1, 0.3)� , Q2 = �£3, (0.5, 0.4)� , Q3 = �£3, (0.2, 0.7)� , Q4 = �£4, (0.5, 0.3)� be q-ROLNs 
with q = 1 ,  £ =

{
£0 = extremely poor, £1 = very poor, £2 = poor, £3 = fair, £4 = good, £5 = very good,

£6 = extremely good
}

 be LTS and g∗ = α
2τ  be linguistic scale function. Then, one can easily check that Q1 , Q2 

and Q3 , Q4 meet the requirement of Q1 ⊖Q2 , and Q3 ⊘Q4 , respectively. Thus, Q1 ⊖Q2 =
〈
£ 3

2
, (0.4444, 0.75)

〉
 

and Q3 ⊘Q4 =
〈
£ 9

2
, (0.04, 0.5714)

〉
.

Some similarity measures between q‑rung orthopair linguistic sets
This section presents the similarity measures for q-ROLs based on linguistic scale function to consider the 
semantics of linguistic terms. Also, we prove a couple of theorems that describe certain interesting properties 
of the similarity measures.

Definition 13  Let Q1 =
{〈

zj , £α1(zj),
(
σ1(zj), ̺1(zj)

)〉
|zj ∈ Z

}
 and Q2 =

{〈
zj , £α2(zj),

(
σ2(zj), ̺2(zj)

)〉
|zj ∈ Z

}
 

be two q-ROLSs on Z = {z1, z2, . . . , zn} , £α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale 
function, then the cosine similarity measure between Q1 and Q2 is denoted and defined as

Theorem 3  The cosine similarity measure Cql(Q1,Q2) between Q1 and Q2 fulfills the following properties: 

(p1).	� 0 ≤ Cql(Q1,Q2) ≤ 1;
(p2).	� Cql(Q1,Q2) = Cql(Q2,Q1);
(p3).	� Cql(Q1,Q2) = 1 if Q1 = Q2 , that is, α1(zj) = α2(zj) , σ1(zj) = σ2(zj) and ̺ 1(zj) = ̺2(zj), ∀ j = 1, 2, . . . , n.
(p4).	� Cql(Q1,Q3) ≤ Cql(Q1,Q2)+ Cql(Q2,Q3) if Q1 ⊆ Q2 ⊆ Q3.

(12)

Cql(Q1,Q2) =
1

n

n∑

j=1

(
g∗
(
£α1(zj)

)
σ
q
1

(
zj
)
g∗
(
£α2(zj)

)
σ
q
2

(
zj
))

+
(
g∗
(
£α1(zj)

)
̺
q
1

(
zj
)
g∗
(
£α2(zj)

)
̺
q
2

(
zj
))

√(
g∗
(
£α1(zj)

)
σ
q
1

(
zj
))2

+
(
g∗
(
£α1(zj)

)
̺
q
1

(
zj
))2√(

g∗
(
£α2(zj)

)
σ
q
2

(
zj
))2

+
(
g∗
(
£α2(zj)

)
̺
q
2

(
zj
))2 ,
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Proof  (p1).	� A c c o r d i n g  t o  E q .  ( 1 2 )  i t  i s  c l e a r  t h a t  Cql(Q1,Q2) ≥ 0.  F u r t h e r, 

1
n

∑n
j=1

(
g∗
(
£
α1(zj)

)
σ
q
1 (zj)g

∗

(
£
α2(zj)

)
σ
q
2 (zj)

)
+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)g

∗

(
£
α2(zj)

)
̺
q
2(zj)

)

√(
g∗
(
£
α1(zj)

)
σ
q
1 (zj)

)2

+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)

)2
√(

g∗
(
£
α2(zj)

)
σ
q
2 (zj)

)2

+

(
g∗
(
£
α2(zj)

)
̺
q
2(zj)

)2
≤

1

 , 

according to the range of cosine function value. Thus, 0 ≤ Cql(Q1,Q2) ≤ 1.
(p2).	� Since, Cql(Q1,Q2) =

1
n

∑n
j=1(

g∗
(
£
α1(zj)

)
σ
q
1 (zj)g

∗

(
£
α2(zj)

)
σ
q
2 (zj)

)
+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)g

∗

(
£
α2(zj)

)
̺
q
2(zj)

)

√(
g∗
(
£
α1(zj)

)
σ
q
1 (zj)

)2

+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)

)2
√(

g∗
(
£
α2(zj)

)
σ
q
2 (zj)

)2

+

(
g∗
(
£
α2(zj)

)
̺
q
2(zj)

)2
= 

1
n

∑n
j=1

(
g∗
(
£
α2(zj)

)
σ
q
2 (zj)g

∗

(
£
α1(zj)

)
σ
q
1 (zj)

)
+

(
g∗
(
£
α2(zj)

)
̺
q
2(zj)g

∗

(
£
α1(zj)

)
̺
q
1(zj)

)

√(
g∗
(
£
α1(zj)

)
σ
q
2 (zj)

)2

+

(
g∗
(
£
α2(zj)

)
̺
q
2(zj)

)2
√(

g∗
(
£
α1(zj)

)
σ
q
1 (zj)

)2

+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)

)2
=

Cql(Q2,Q1).

(p3).	� If Q1 = Q2 , that is, α1(zj) = α2(zj) , σ1(zj) = σ2(zj) and ̺1(zj) = ̺2(zj), then Cql(Q1,Q2) =

1
n

∑n
j=1

(
g∗
(
£
α1(zj)

)
σ
q
1 (zj)g

∗

(
£
α1(zj)

)
σ
q
1 (zj)

)
+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)g

∗

(
£
α1(zj)

)
̺
q
1(zj)

)

√(
g∗
(
£
α1(zj)

)
σ
q
1 (zj)

)2

+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)

)2
√(

g∗
(
£
α1(zj)

)
σ
q
1 (zj)

)2

+

(
g∗
(
£
α1(zj)

)
̺
q
1(zj)

)2
= 1.

(p4).	� Since Cql
(
Q1

(
zj
)
,Q2

(
zj
))

=

Cql
(
Q2

(
zj
)
,Q3

(
zj
))

=

Cql
(
Q1

(
zj
)
,Q3

(
zj
))

=

 where Q1

(
zj
)
 , Q2

(
zj
)
 and Q3

(
zj
)
 are three vectors in one plane, if Q1

(
zj
)
⊆ Q1

(
zj
)
⊆ Q1

(
zj
)
∀j = 1, 2, . . . n , 

then it is clear that Cql
(
Q1

(
zj
)
,Q3

(
zj
))

≤ Cql
(
Q1

(
zj
)
,Q2

(
zj
))
+ Cql

(
Q1

(
zj
)
,Q3

(
zj
))

 based on the triangle 
inequality. Combining the inequalities ∀j = 1, 2, . . . , n , we can get Cql(Q1,Q3) ≤ Cql(Q1,Q2)+ Cql(Q2,Q3).

	�  �

If we consider the weight of different elements zj ∈ Z , then we introduce q-rung orthhopair linguistic 
weighted cosine similarity measure, which can be defined as follows:

Definition 14  Let Q1 =
{〈

zj , £α1(zj),
(
σ1(zj), ̺1(zj)

)〉
|zj ∈ Z

}
 and Q2 =

{〈
zj , £α2(zj),

(
σ2(zj), ̺2(zj)

)〉
|zj ∈ Z

}
 

be two q-ROLSs on Z = {z1, z2, . . . , zn} , £α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale 

function. Further, if the weight of zi is ̟ j

(∑n
j=1 ̟j = 1 and 0 ≤ ̟j ≤ 1

)
 , then the weighted cosine similarity 

measure between Q1 and Q2 is denoted and defined as

Remark 1  If the weight ̟ j =
1
n for all j, then the weighted cosine similarity measure Cqlw(Q1,Q2) is reduced to 

the cosine similarity measure Cql(Q1,Q2).

Theorem  4  Let Q1 , Q2 and Q3 be three q-ROLSs, then the weighted cosine similarity measure 
Cqlw

(
Qi ,Qj

)
(i, j = 1, 2, 3) fulfills the following properties: 

(
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(
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)
σ
q
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)
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(13)

Cqlw(Q1,Q2) =
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(p1).	� 0 ≤ Cqlw(Q1,Q2) ≤ 1;

(p2).	� Cqlw(Q1,Q2) = Cqlw(Q2,Q1);

(p3).	� Cqlw(Q1,Q2) = 1 if Q1 = Q2 , that is, α1(zj) = α2(zj) , σ1(zj) = σ2(zj) and ̺ 1(zj) = ̺2(zj), ∀ j = 1, 2, . . . , n;

(p4).	� Cqlw(Q1,Q3) ≤ Cqlw(Q1,Q2)+ Cqlw(Q2,Q3) if Q1 ⊆ Q2 ⊆ Q3.

Proof  Based on the lines of Theorem 3, one can easily prove these properties, therefore, we omit the proof 
here. 	�  �

According to Lemma 1 the cosine similarity measures described in Definitions 13 and  14 are not the regular 
similarity measure since they do not meet the condition p3 in Lemma 1, as shown in Example 4.

Example 4  Let Q1 = {�z1, £2, (0.1, 0.3)�, �z2, £5, (0.2, 0)�} and Q2 = {�z1, £4, (0.6, 0)�, �z2, £3, (0.5, 0.4)�} be two 
q-ROLSs on Z = {z1, z2} and LTS £ =

{
£0 = extremely poor, £1 = very poor, £2 = poor, £3 = fair, £4 = good,

£5 = very good, £6 = extremely good
}

 . If q = 1 , g∗ = α
2τ  and ̟ = (̟1,̟2)

T = (0.5, 0.5) . Then, we have 
Cql(Q1,Q2) = 1 and Cqlw(Q1,Q2) = 1.

It is obvious that Q1 and Q2 are not equal, but Cqlw(Q1,Q2) = Cqlw(Q1,Q2) = 1 , which means that the cosine 
similarity measures Cql and Cqlw are not regular.

If the cosine similarity measure Cqlw is employed to MCDM problems, the findings will be unfruitful. To 
address this issue, we need to enhance the cosine similarity measures provided in Definitions 13 and 14. We put 
forward a novel q-rung orthopair fuzzy linguistic similarity measure based on the presented cosine similarity 
measure Cqlw(Q1,Q2) and the following Minkowski distance measure Dqlw(Q1,Q2).

Definition 15  Let Q1 =
{〈

zj , £α1(zj),
(
σ1(zj), ̺1(zj)

)〉
|zj ∈ Z

}
 and Q2 =

{〈
zj , £α2(zj),

(
σ2(zj), ̺2(zj)

)〉
|zj ∈ Z

}
 

be two q-ROLSs on Z = {z1, z2, . . . , zn} , £α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale 
function, then the Minkowski distance measure between Q1 and Q2 is denoted and defined as

If we consider the weight of different elements zj ∈ Z , then we introduce q-rung orthhopair linguistic 
weighted Minkowski distance measure, which can be defined as follows.

Definition 16  Let Q1 =
{〈

zj , £α1(zj),
(
σ1(zj), ̺1(zj)

)〉
|zj ∈ Z

}
 and Q2 =

{〈
zj , £α2(zj),

(
σ2(zj), ̺2(zj)

)〉
|zj ∈ Z

}
 

be two q-ROLSs on Z = {z1, z2, . . . , zn} , £α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale 

function. Further, if the weight of zi is ̟ j

(∑n
j=1 ̟j = 1 and 0 ≤ ̟j ≤ 1

)
 , then weighted Minkowski distance 

measure between Q1 and Q2 is denoted and defined as

Remark 2  If � = 1 , the distance measure Dqlw is reduced to the following Hamming distance measure Dqlwh:

Remark 3  If � = 2 , the distance measure Dqlw is reduced to the following Euclidean distance measure Dqlwe:

Theorem 5  Let Qi =
{〈

zj , £αi(zj),
(
σi(zj), ̺i(zj)

)〉
|zj ∈ Z

}
(i = 1, 2, 3) be three q-ROLSs on Z = {z1, z2, . . . , zn} , 

£α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale function. Then the weighted Minkowski distance 
Dqlw meets the following properties: 

(p1).	� 0 ≤ Dqlw(Q1,Q2) ≤ 1;
(p2).	� Dqlw(Q1,Q2) = Dqlw(Q2,Q1);

(14)

Dql(Q1,Q2) =


 1

3n

n�

j=1

����
�
g∗
�
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�
− g∗

�
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�����
�

+
���σ q

1

�
zj
�
− σ

q
2

�
zj
����� +

���̺q1
�
zj
�
− ̺

q
2

�
zj
�����

�

1/�

.

(15)

Dqlw(Q1,Q2) =


1

3

n�

j=1

̟j

����
�
g∗
�
£α1(zj)

�
− g∗

�
£α2(zj)

�����
�

+
���σ q

1

�
zj
�
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q
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�
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����� +
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q
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(16)

Dqlwh(Q1,Q2) =
1

3

n∑

j=1

̟j

(∣∣∣
(
g∗
(
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)
− g∗

(
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(
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(17)

Dqlwe(Q1,Q2) =


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(p3).	� Dqlw(Q1,Q2) = 0 if and only if Q1 = Q2 , that is, α1(zj) = α2(zj) , σ1(zj) = σ2(zj) and ̺1(zj) = ̺2(zj), 
∀ j = 1, 2, . . . , n;

(p4).	� Dqlw(Q1,Q3) ≤ Dqlw(Q1,Q2)+Dqlw(Q2,Q3) if Q1 ⊆ Q2 ⊆ Q3.

Proof  (p1) , (p2) and (p4) are obvious, thereby we omit their proof. 

(p3).	� If Q1 = Q2 , then g∗
(
£α1(zj)

)
= g∗

(
£α2(zj)

)
 , σ1(zj) = σ2(zj) and ̺1(zj) = ̺2(zj). So, Dqlw(Q1,Q2) = 0 

is obtained.
	� Conversely, if Dqlw(Q1,Q2) = 0 , we have g∗

(
£α1(zj)

)
= g∗

(
£α2(zj)

)
 , σ q

1

(
zj
)
= σ

q
2

(
zj
)
 and 

̺
q
1

(
zj
)
= ̺

q
2

(
zj
)
. Since, the linguistic scale function g∗ is monotonic. Therefore, £α1(zj) = £α2(zj) are 

obtained.

	�  �

In what follows, we define a novel similarity measure between q-ROLSs based on the linguistic scale function, 
which connects the proposed cosine similarity measure Cqlw and the distance measure Dqlw together.

Definition 17  Let Q1 =
{〈

zj , £α1(zj),
(
σ1(zj), ̺1(zj)

)〉
|zj ∈ Z

}
 and Q2 =

{〈
zj , £α2(zj),

(
σ2(zj), ̺2(zj)

)〉
|zj ∈ Z

}
 

be two q-ROLSs on Z = {z1, z2, . . . , zn} , £α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale 

function. Further, if the weight of zi is ̟ j

(∑n
j=1 ̟j = 1 and 0 ≤ ̟j ≤ 1

)
 , then the novel weighted cosine simi-

larity measure between Q1 and Q2 is denoted and defined as

Particularly, if ̟ j = 1 ∀ j = 1, 2, . . . , n, the presented similarity measure C̆qlw reduces to the following simi-
larity measure C̆ql .

Definition 18  Let Q1 =
{〈

zj , £α1(zj),
(
σ1(zj), ̺1(zj)

)〉
|zj ∈ Z

}
 and Q2 =

{〈
zj , £α2(zj),

(
σ2(zj), ̺2(zj)

)〉
|zj ∈ Z

}
 

be two q-ROLSs on Z = {z1, z2, . . . , zn} , £α1(zj) , £α2(zj) ∈ £ = {£0, £1, . . . , £2τ } , and let g∗ be a linguistic scale 
function. Then the novel cosine similarity measure between Q1 and Q2 is denoted and defined as

Theorem  6  Let Q1 , Q2 and Q3 be three q-ROLSs. Then the novel weighted cosine similarity measure 
C̆qlw

(
Qi ,Qj

)
(i, j = 1, 2, 3) meets the following properties: 

(p1).	� 0 ≤ C̆qlw(Q1,Q2) ≤ 1;

(p2).	� C̆qlw(Q1,Q2) = C̆qlw(Q2,Q1);

(p3).	� C̆qlw(Q1,Q2) = 1 if and only if Q1 = Q2 , that is, α1(zj) = α2(zj) , σ1(zj) = σ2(zj) and ̺1(zj) = ̺2(zj), 
∀ j = 1, 2, . . . , n.

(p4).	� C̆qlw(Q1,Q3) ≤ C̆qlw(Q1,Q2)+ C̆qlw(Q2,Q3) if Q1 ⊆ Q2 ⊆ Q3.

Proof  (p1).	� According to Theorems 4 and 5, Cqlw(Q1,Q2) and 1−Dqlw(Q1,Q2) ⇒

	� 0 ≤
Cqlw(Q1,Q2)+1−Dqlw(Q1,Q2)

2 ≤ 1 . Thus, we get 0 ≤ C̆qlw(Q1,Q2) ≤ 1.

(p2).	� This property is obvious. Therefore, we omit its proof.
(p3).	� If C̆qlw(Q1,Q2) = 1 , according to Eq. (19), we have Cqlw(Q1,Q2)+ 1−Dqlw(Q1,Q2) = 2. 

Cqlw(Q1,Q2)− 1 = Dqlw(Q1,Q2),  t h e n  0 ≤ Cqlw(Q1,Q2)
(
Dqlw(Q1,Q2)

)
≤ 1.  T h u s , 

Cqlw(Q1,Q2) = 1 and Dqlw(Q1,Q2) = 0 are established at the same time. Therefore, according 
to Theorem 5, Q1 = Q2. Conversely, if Q1 = Q2 , then Cqlw(Q1,Q2) = 1 and Dqlw(Q1,Q2) = 0 , 
so C̆qlw(Q1,Q2) = 1 is obtained.

(p4).	� Straightforward.

	�  �

(18)C̆qlw(Q1,Q2) =
Cqlw(Q1,Q2)+ 1−Dqlw(Q1,Q2)

2
.

(19)C̆ql(Q1,Q2) =
Cql(Q1,Q2)+ 1−Dql(Q1,Q2)

2
.
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Multi‑criteria group decision making based on projection method
The present section builds up projection based MCGDM method and discuss its application to EVCS site 
selection.

Problem description.  In this part, we present q-rung orthopair linguistic approach for MCGDM problems 
with unknown DMs’ weight. The subsequent mathematical notations are used to solve the q-rung orthopair 
linguistic MCGDM problems. Let O = {o1, o2, . . . , om} be a set of m available alternatives, and 
℘ = {℘1,℘2, . . . ,℘n} be a set of n criteria with weight information ̟ = {̟1,̟2, . . . ,̟n}, where 
̟j ∈ [0, 1], j = 1, 2, . . . , n, 

∑n
j=1 ̟j = 1 and a set of k DMs D = {d1, d2, . . . , dk} . Assume that ℘j are evaluated 

for oi by DM dℓ and depicted as q-rung orthopair linguistic expressions Qℓ
ij =

〈
£ℓαij ,

(
σℓ
ij , ̺

ℓ
ij

)〉
 

(
i = 1, 2, . . . ,m, j = 1, 2, . . . , n, ℓ = 1, 2, . . . , k

)
.

Afterward, the projection methodology is devised to address the decision making problems with unknown 
DMs weight information. The detailed calculation procedures are manifested below: 

Step 1	� Establish decision matrices:

	� Obtain the linguistic q-rung orthopair fuzzy decision matrix Mℓ of the DM dℓ.
Step 2	� Normalization:

	� The criteria values in MCGDM problem might be of different types, such as benefit and cost. Since 
different types of criteria may be neutralized during the aggregation process, it needs to convert 
different criteria types into the same. Because of cognitive habits, cost-based criteria are typically 
converted into benefit ones using the following formula: 

 and 
(
Qℓ

ij

)c
 is the complement of Qℓ

ij.
Step 3	� Collective decision matrix:

	� According to the decision matrices Mℓ =
[
Qℓ

ij

]
m×n

(
i = 1, 2, . . . ,m, j = 1, 2, . . . , n, ℓ = 1, 2, . . . , k

)
 

and the weight 1/k for all DMs, the collective decision matrix M =
[
Qij

]
m×n

 can be yielded by Eq. 
(21) as follows: 

Step 4	� Collective similarity measure:

	� The collective similarity measure between Mℓ(ℓ = 1, 2, . . . , k) and M is determined by 

Step 5	� DMs weight:

	� Determine the weight of DMs by Formula (23): 

 where 0 ≤ wℓ ≤ 1, 
∑k

ℓ=1 wℓ = 1 for ℓ = 1, 2, . . . , k.
Step 6	� Weighted collective decision matrix:

	� According to the derived weight of DMs w = (w1, w2, . . . , wk) and the decision matrices 
Mℓ =

[
Qℓ

ij

]
m×n

(
i = 1, 2, . . . ,m, j = 1, 2, . . . , n, ℓ = 1, 2, . . . , k

)
 , the weighted collective decision 

matrix M =
[
Q̌ij

]
m×n

 is obtained as follows: 

(20)Qℓ
ij =

{
Qℓ

ij , for benefit criteria ℘j(
Qℓ

ij

)c
, for cost criteria ℘j ,

(21)

Qij = q− ROLWA
�
Q1

ij ,Q
2
ij , . . . ,Q

k
ij

�
=

�
£�k

ℓ=1
1/kαℓ

ij ,



�
1−

k�

ℓ=1

�
1−

�
σℓ
ij

�q�1/k
�1/q

,

k�

ℓ=1

�
̺ℓij

�1/k


�

(22)C̆ql

(
Mℓ,M

)
=

1

mn

m∑

i=1

n∑

j=1

Cql

(
Qℓ

ij ,Qij

)
+ 1−Dql

(
Qℓ

ij ,Qij

)

2

(23)wℓ =
C̆ql

(
Mℓ,M

)
∑k

ℓ=1 C̆ql
(
Mℓ,M

) ,
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Step 7	� Optimal solution:

	� Employ the score function and accuracy function of q-ROLS to get the optimal solution 
Q̃ =

{
Q̃1, Q̃2, . . . , Q̃n

}
 under different criteria. Here, Q̃j =

〈
£αj ,

(
σ̃j , ˜̺j

)〉
= max1≤i≤m

{
Q̌ij

}
 ; 

j = 1, 2, . . . n.
Step 8	� Weighted similarity measure:

	� Determine the weighted similarity measure between each alternative and the optimal solution as 
follows: 

	� Here, Q̌i =
{
Q̌i1, Q̌i2, . . . , Q̌in

}
(i.e., the ith row in the weighted collective decision matrix M for 

the alternative oi(i = 1, 2, . . . ,m), and ̟j

(∑n
j=1 ̟j = 1 and 0 ≤ ̟j ≤ 1

)
 represent the weight of 

criteria ℘j.
Step 9	� Ranking:

(24)

Q̌ij = q− ROLWA
�
Q1

ij ,Q
2
ij , . . . ,Q

k
ij

�
=

�
£�k

ℓ=1
wℓα

ℓ
ij ,



�
1−

k�

ℓ=1

�
1−

�
σℓ
ij

�q�wℓ

�1/q

,

k�

ℓ=1

�
̺ℓij

�wℓ



�

(25)C̆qlw

(
Q̌i , Q̃

)
=

n∑

j=1

̟j

Cql

(
Q̌ij , Q̃j

)
+ 1−Dql

(
Q̌ij , Q̃j

)

2
.

Figure 1.   Flow chart of the proposed method.
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	� Rank the alternatives in accordance with their weighted similarity measure C̆qlw . The larger C̆qlw means 
the better alternative.

The flowchart of the presented MCGDM method is depicted in Fig. 1.

Application.  This section is dedicated to present projection-based MCGDM method for q-ROLNs with 
unknown DMs weights based on stated similarity measures. Furthermore, we apply the proposed technique to 
electric vehicle charging station (EVCS) site selection and perform in-depth sensitivity analysis to analyze its 
practicality and stability.

Background.  In what follows, we briefly describe the considered problem:
Electric vehicles are a type of clean energy transportation that can effectively reduce noise pollution, green-

house gases, harmful emissions, and fossil energy consumption. With the advancement of battery technology 
and the worsening of environmental pollution and energy scarcity, electric vehicles are gaining popularity and 
rapid development worldwide. According to the appropriate development plan carried out by governments and 
manufacturers, the market share of electric cars would increase in the near future. The large-scale development 
of electric cars, on the other hand, will create a big gap in charging infrastructure building on the one hand and 
will pose a threat to the safe and economic functioning of the power grid on the other. The EVCS site selection is 
seen as an MCGDM problem47. As follows, in this part, a numerical scenario for EVCS site selection is developed.

Table 1.   q-rung orthopair linguistic decision matrix provided by d1.

℘1 ℘2 ℘3

o1 〈£4, (0.8, 0.2)〉 〈£2, (0.5, 0.2)〉 〈£6, (0.4, 0.7)〉

o2 〈£3, (0.3, 0.5)〉 〈£1, (0.7, 0.45)〉 〈£0, (0.5, 0.5)〉

o3 〈£2, (0.3, 0.7)〉 〈£3, (0.8, 0.6)〉 〈£4, (0.4, 0.45)〉

o4 〈£2, (0.55, 0.3)〉 〈£5, (0.35, 0.4)〉 〈£2, (0.7, 0.35)〉

Table 2.   q-rung orthopair linguistic decision matrix provided by d2.

℘1 ℘2 ℘3

o1 〈£5, (0.9, 0.2)〉 〈£3, (0.4, 0.3)〉 〈£7, (0.5, 0.6)〉

o2 〈£4, (0.4, 0.4)〉 〈£2, (0.8, 0.35)〉 〈£0, (0.6, 0.5)〉

o3 〈£3, (0.4, 0.7)〉 〈£2, (0.7, 0.65)〉 〈£5, (0.45, 0.4)〉

o4 〈£3, (0.65, 0.35)〉 〈£4, (0.45, 0.4)〉 〈£1, (0.75, 0.3)〉

Table 3.   q-rung orthopair linguistic decision matrix provided by d3.

℘1 ℘2 ℘3

o1 〈£3, (0.7, 0.25)〉 〈£1, (0.4, 0.3)〉 〈£5, (0.3, 0.75)〉

o2 〈£2, (0.35, 0.5)〉 〈£0, (0.45, 0.7)〉 〈£1, (0.6, 0.5)〉

o3 〈£1, (0.2, 0.7)〉 〈£2, (0.8, 0.6)〉 〈£4, (0.35, 0.55)〉

o4 〈£3, (0.45, 0.4)〉 〈£6, (0.5, 0.5)〉 〈£3, (0.65, 0.5)〉

Table 4.   Normalized decision matrix provided by d1.

℘1 ℘2 ℘3

o1 〈£4, (0.8, 0.2)〉 〈£4, (0.2, 0.5)〉 〈£6, (0.4, 0.7)〉

o2 〈£3, (0.3, 0.5)〉 〈£5, (0.45, 0.7)〉 〈£0, (0.5, 0.5)〉

o3 〈£2, (0.3, 0.7)〉 〈£3, (0.6, 0.8)〉 〈£4, (0.4, 0.45)〉

o4 〈£2, (0.55, 0.3)〉 〈£1, (0.4, 0.35)〉 〈£2, (0.7, 0.35)〉
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The four underlying EVCS sites oi(i = 1, 2, . . . , 4) are to be assessed by using the LTS 
£ =

{
£0 = extremely poor, £1 = very poor, £2 = poor, £3 = fair, £4 = good, £5 = very good, £6 = extremely good

}
 

under the criteria ℘1 = Traffic convenience, ℘2 = Construction cost (cost criteria), ℘3 = Service capability with 
weight vector (0.3, 0.3, 0.4) by three DMs as shown in Tables 1, 2 and 3.

The decision making process.  In this subsection, we employ the suggested technique for the selection of optimal 
EVCS site selection taking the linguistic scale function g∗ = α

2τ  and q = 2.
Step 1 The DMs’ decision matrices are listed in Tables 1, 2 and 3.
Step 2 Shift the original decision metrics into normalized form (see Tables 4, 5, 6).
Step 3 Based on Eq. (21), the collective decision matrix is determined as shown in Table 7.
Step 4 In the light of Eq. (22), the collective similarity measure are calculated as C̆ql

(
M1,M

)
= 0.9358, 

C̆ql
(
M2,M

)
= 0.8982, C̆ql

(
M3,M

)
= 0.8942.

Step 5 According to Eq. (23), the weights of three DMs are w1 = 0.3430, w2 = 0.3292, and w3 = 0.3278.
Step 6 Utilizing Eq. (24), we get the weighted collective decision matrix listed in Table 8.
S t e p  7  B a s e d  o n  D e f i n i t i o n  7 ,  w e  g e t  t h e  o p t i m a l  s o l u t i o n 

Q̃ = {�£4.0014, (0.8204, 0.2152)�, �£4.9986, (0.5378, 0.6328)�, �£6.0014, (0.411, 0.6806)�}.

Step 8 According to Eq. (25), the weighted similarity measures are C̆qlw
(
Q̌1, Q̃

)
= 0.9457 

C̆qlw

(
Q̌2, Q̃

)
= 0.7327 C̆qlw

(
Q̌3, Q̃

)
= 0.7376 C̆qlw

(
Q̌4, Q̃

)
= 0.7067.

Step 9 Based on Step 8, the ranking result of alternatives is gotten and is shown in Table 13 and Fig. 2.

Table 5.   Normalized decision matrix provided by d2.

℘1 ℘2 ℘3

o1 〈£5, (0.9, 0.2)〉 〈£3, (0.3, 0.4)〉 〈£7, (0.5, 0.6)〉

o2 〈£4, (0.4, 0.4)〉 〈£4, (0.35, 0.8)〉 〈£0, (0.6, 0.5)〉

o3 〈£3, (0.4, 0.7)〉 〈£4, (0.65, 0.7)〉 〈£5, (0.45, 0.4)〉

o4 〈£3, (0.65, 0.35)〉 〈£2, (0.4, 0.45)〉 〈£1, (0.75, 0.3)〉

Table 6.   Normalized decision matrix provided by d3.

℘1 ℘2 ℘3

o1 〈£3, (0.7, 0.25)〉 〈£5, (0.3, 0.4)〉 〈£5, (0.3, 0.75)〉

o2 〈£2, (0.35, 0.5)〉 〈£6, (0.7, 0.45)〉 〈£1, (0.6, 0.5)〉

o3 〈£1, (0.2, 0.7)〉 〈£4, (0.6, 0.8)〉 〈£4, (0.35, 0.55)〉

o4 〈£3, (0.45, 0.4)〉 〈£0, (0.5, 0.5)〉 〈£3, (0.65, 0.5)〉

Table 7.   Collective decision matrix.

℘1 ℘2 ℘3

o1 〈£4, (0.8205, 0.2154)〉 〈£4, (0.2713, 0.4309)〉 〈£6, (0.4114, 0.6804)〉

o2 〈£3, (0.3530, 0.4642)〉 〈£5, (0.5391, 0.6316)〉 〈£0.3333, (0.5703, 0.5000)〉

o3 〈£2, (0.3131, 0.7000)〉 〈£3.6667, (0.6177, 0.7652)〉 〈£4.3333, (0.4029, 0.4626)〉

o4 〈£2.6667, (0.5614, 0.3476)〉 〈£1, (0.4372, 0.4286)〉 〈£2, (0.7035, 0.3744)〉

Table 8.   Weighted collective decision matrix.

℘1 ℘2 ℘3

o1 〈£4.0014, (0.8204, 0.2152)〉 〈£3.9986, (0.2705, 0.4318)〉 〈£6.0014, (0.411, 0.6806)〉

o2 〈£3.0014, (0.3524, 0.4646)〉 〈£4.9986, (0.5378, 0.6328)〉 〈£0.3278, (0.5694, 0.5000)〉

o3 〈£2.0014, (0.3130, 0.7000)〉 〈£3.6570, (0.6175, 0.7656)〉 〈£4.3292, (0.4029, 0.4623)〉

o4 〈£2.6570, (0.5613, 0.3468)〉 〈£1.0014, (0.4366, 0.4273)〉 〈£1.9986, (0.7035, 0.3739)〉
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Influence of the parameters on the ranking results.  In the following subsections, we examine the 
impact of the parameter q and the sensitivity of criteria weights over the ranking orders of considered problem 
alternatives.

Sensitivity analysis with respect to parameter q.  This subsection aims to discuss the impact of the parameter q 
on the ranking orders. The detailed calculation results by altering parameter q in the proposed similarity meas-
ure are shown in Table 9. The corresponding results with different values of q are also manipulated graphically 
in Fig. 3. From Table 9, we can note that the ranking of alternatives remains stable when q ∈ [2, 7] . The ordering 
positions of o2 and o4 interchange if we set q ≥ 7 . However, the optimal alternative still remains the same, i.e., o1 . 
This indicates that the obtained ordering result of the suggested technique is robust and reliable. In addition, the 
ranking order of alternative o2 moves down as the value of q increases. Thus, the stated method is able to model 
the degrees of optimism or pessimism displayed by DMs. In general, this method is highly flexible as DMs can 
choose the value of parameter q based on their preferences and theoretical concepts.

Sensitivity analysis with respect to criteria weight.  This section concentrates on sensitivity analysis with respect 
to criteria weight. In the criteria weight analysis, the weights of the given criteria are assigned by changing the 
weight of each criteria proportionally to the weights of other criteria. In this article, we have taken the weights 
̟1 = 0.3 , ̟2 = 0.3 and ̟3 = 0.4 for ℘1 , ℘2 and ℘3 , respectively. Now, if we change the weight ̟1 from 0.3 to 
0.2. The weights of other criteria, i.e., ̟2 and ̟3 becomes 0.343 and 0.457. These weights are determined as 

Figure 2.   Graphical representation of the proposed method ranking.

Table 9.   Ranking of alternatives under different values of q.

Parameter Weighted similarity measures Ranking

q = 2
C̆qlw

(
Q̌1, Q̃

)
= 0.9457 , C̆qlw

(
Q̌2, Q̃

)
= 0.7327,

o1 ≻ o3 ≻ o2 ≻ o4
C̆qlw

(
Q̌3, Q̃

)
= 0.7376 , C̆qlw

(
Q̌4, Q̃

)
= 0.7067

q = 3
C̆qlw

(
Q̌1, Q̃

)
= 0.9671 , C̆qlw

(
Q̌2, Q̃

)
= 0.6999,

o1 ≻ o3 ≻ o2 ≻ o4
C̆qlw

(
Q̌3, Q̃

)
= 0.7251 , C̆qlw

(
Q̌4, Q̃

)
= 0.6790

q = 5
C̆qlw

(
Q̌1, Q̃

)
= 0.9669 , C̆qlw

(
Q̌2, Q̃

)
= 0.6509,

o1 ≻ o3 ≻ o2 ≻ o4
C̆qlw

(
Q̌3, Q̃

)
= 0.7287 , C̆qlw

(
Q̌4, Q̃

)
= 0.6477

q = 7
C̆qlw

(
Q̌1, Q̃

)
= 0.9612 , C̆qlw

(
Q̌2, Q̃

)
= 0.6170

o1 ≻ o3 ≻ o4 ≻ o2
C̆qlw

(
Q̌3, Q̃

)
= 0.7328 , C̆qlw

(
Q̌4, Q̃

)
= 0.6384

q = 9
C̆qlw

(
Q̌1, Q̃

)
= 0.9526 , C̆qlw

(
Q̌2, Q̃

)
= 0.5920,

o1 ≻ o3 ≻ o4 ≻ o2
C̆qlw

(
Q̌3, Q̃

)
= 0.7302 , C̆qlw

(
Q̌4, Q̃

)
= 0.6359

q = 11
C̆qlw

(
Q̌3, Q̃

)
= 0.9423 , C̆qlw

(
Q̌4, Q̃

)
= 0.5735

o1 ≻ o3 ≻ o4 ≻ o2
C̆qlw

(
Q̌4, Q̃

)
= 0.7227 C̆qlw

(
Q̌4, Q̃

)
= 0.6356
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follows: By taking ̟1 = 0.2 , the sum of ̟2 and ̟3 becomes 1− 0.2 = 0.8 . The sum of these weights is used 
to compute the ratio of the weights for the remaining criteria. The weight of ℘3 is ̟3 =

0.4
1−0.3 × 0.8 = 0.457 . 

Analogously, the weight of ℘2 is 0.343. The ranking results are recalculated by taking these new weights of crite-
ria. The obtained results for this analysis are shown in Fig. 4 and Table 10. From the results, it is clear that there 
is no sensitivity, i.e., the proposed approach is stable against the slight changes in the criteria weights.

By taking ̟ 2 = 0.2 , we get ̟ 1 = 0.343 and ̟ 3 = 0.457 . The resulting ranking is shown in Fig. 5. In this case 
the alternatives o2 and o4 have replaced their positions.

If we reduce the weight of criteria ℘3 to 0.3. This switches the weights of ℘1 and ℘2 to 0.35 and 0.35, respec-
tively. The ranking of alternatives for these changing to weight values is sensitive, as can be seen from Table 10. 
Only the most preferable alternative has maintained its position while the remaining alternatives have altered 
their ordering positions (see Fig. 6).

Validity test for the proposed method.  Motivated by the literature48,49, this analysis established the 
presented method’s validity. The preferred relationship among alternatives satisfies the following three criteria: 

1. Non-substitutability	� When a non-optimal alternative is replaced with a worse alternative, an effective 
MCGDM approach should not modify the indication of the best alternative without 
altering the relative weight of any decision criteria49.

2. Transitivity	� An effective approach should adhere to the transitive property. That is, if oi ≻ ok and 
ok ≻ ol , then oi ≻ ol , (i, k, l = 1, 2, . . . ,m).

Figure 3.   Sensitivity analysis with respect to q.

Table 10.   Ranking of alternatives under different values of criteria.

Criteria weights Weighted similarity measures Ranking

̟1 = 0.300, ̟ 2 = 0.300, C̆qlw

(
Q̌1, Q̃

)
= 0.9457 , C̆qlw

(
Q̌2, Q̃

)
= 0.7327,

̟3 = 0.400 C̆qlw

(
Q̌3, Q̃

)
= 0.7376 , C̆qlw

(
Q̌4, Q̃

)
= 0.7067 o1 ≻ o3 ≻ o2 ≻ o4

̟1 = 0.200, ̟ 2 = 0.343, C̆qlw

(
Q̌1, Q̃

)
= 0.9380 , C̆qlw

(
Q̌2, Q̃

)
= 0.7509,

̟3 = 0.457 C̆qlw

(
Q̌3, Q̃

)
= 0.7858 , C̆qlw

(
Q̌4, Q̃

)
= 0.6856 o1 ≻ o3 ≻ o2 ≻ o4

̟1 = 0.343, ̟ 2 = 0.200, C̆qlw

(
Q̌1, Q̃

)
= 0.9545 , C̆qlw

(
Q̌2, Q̃

)
= 0.6945,

̟3 = 0.457 C̆qlw

(
Q̌3, Q̃

)
= 0.7127 , C̆qlw

(
Q̌4, Q̃

)
= 0.6952 o1 ≻ o3 ≻ o4 ≻ o2

̟1 = 0.350, ̟ 2 = 0.350, C̆qlw

(
Q̌1, Q̃

)
= 0.9448 , C̆qlw

(
Q̌2, Q̃

)
= 0.7503,

̟3 = 0.300 C̆qlw

(
Q̌3, Q̃

)
= 0.7172 , C̆qlw

(
Q̌4, Q̃

)
= 0.7352 o1 ≻ o2 ≻ o4 ≻ o3
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3. Consistency	� When all alternatives are treated as a set and each subset of the set is ranked using 
the same evaluation technique, the preference relations between the subset’s alter-
natives and the set’s alternatives are consistent. That is, there is a set of alternatives 
O =

{
oi , oj , ok , ol

}
 , and MCGDM approach produces the following sorting result: 

oi ≻ oj ≻ ok ≻ ol . If Ó = {oi , ok , ol} is a subset of O, then the outcome of sorting is 
oi ≻ ok ≻ ol.

These criteria are tested on the suggested approach as follows:

Criteria 1.  If we choose o2 as the non-optimal alternative and o4 as the worse alternative, and switch their rating 
values in Tables 1, 2 and 3. Then, employing the proposed approach, we get the weighted similarity measure of 
each alternative oi as: C̆qlw

(
Q̌1, Q̃

)
= 0.9265 , C̆qlw

(
Q̌2, Q̃

)
= 0.6972 , C̆qlw

(
Q̌3, Q̃

)
= 0.7434 and 

C̆qlw

(
Q̌4, Q̃

)
= 0.7223 . Hence, ordering position of alternatives becomes: o1 ≻ o3 ≻ o4 ≻ o2. Because the best 

alternative is o1 , which is the same as it was before switching data, it is proven that the suggested technique does 
not modify the indication of the best alternative when a non-optimal alternative is substituted with another 
worst alternative. Thus, the suggested technique is valid for the non-substitutability of criteria 149.

Figure 4.   Ranking results when ̟ 1 = 0.2 , ̟ 2 = 0.343 and ̟ 3 = 0.457.

Figure 5.   Ranking results when ̟ 1 = 0.343 , ̟ 2 = 0.2 and ̟ 3 = 0.457.
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Criteria 2 and 3.  In these two criteria, we split the original MCGDM problem into three smaller ones, which 
consist of alternatives {o1, o2, o3} , {o2, o3, o4} and {o3, o4, o1} . Based on this, we employ the suggested technique 
to each sub-problem, and the corresponding ranking orders are o1 ≻ o3 ≻ o2, o3 ≻ o2 ≻ o1 and o1 ≻ o3 ≻ o4, 
respectively. By combining these orderings, we obtain o1 ≻ o3 ≻ o2 ≻ o4 , demonstrating that the transitivity 
condition holds and the final ranking is equal to the un-decomposed problem. As a result, we conclude that the 
suggested approach is valid for the transitivity of criteria 2 and consistency of criteria 3.

Comparative study
To further demonstrate the validity and supremacy of the presented MCGDM approach, we utilize the other three 
existing approaches to address the same EVCS selection problem delineated in “Multi-criteria group decision 
making based on projection method” section. These existing MCGDM methods include WHM and WGHM 
operators-based method30, DSET-based method with ILNs28, and q-rung orthopair weighted cosine similarity 
measures approach22.

Heronian operators based method.  In the first phase, we make a comparison with Li et al.30 work. The 
computational steps and results are listed as follows:

Step 1	� Likewise the proposed approach, we first normalize the provided decision matrices, which have already 
been normalized in “Multi-criteria group decision making based on projection method” section as 
shown in Tables 4, 5 and 6.

Figure 6.   Ranking results when ̟ 1 = 0.35 , ̟ 2 = 0.35 and ̟ 3 = 0.3.

Table 11.   WHM Collective decision matrix.

℘1 ℘2 ℘3

o1 〈£4.0221, (0.8146, 0.2164)〉 〈£4.0187, (0.2759, 0.4331)〉 〈£6.0155, (0.4127, 0.6825)〉

o2 〈£3.0287, (0.3529, 0.4663)〉 〈£5.0147, (0.5363, 0.6447)〉 〈£0.4015, (0.5692, 0.5000)〉

o3 〈£2.0419, (0.3160, 0.7000)〉 〈£3.6626, (0.6174, 0.7733)〉 〈£4.3347, (0.4033, 0.4654)〉

o4 〈£2.6654, (0.5606, 0.3493)〉 〈£1.0796, (0.4369, 0.4319)〉 〈£2.0385, (0.7028, 0.3805)〉

Table 12.   WGHM Collective decision matrix.

℘1 ℘2 ℘3

o1 〈£3.9505, (0.7977, 0.2183)〉 〈£3.9463, (0.2657, 0.4386)〉 〈£5.9695, (0.3978, 0.6895)〉

o2 〈£2.9312, (0.3494, 0.4708)〉 〈£4.9574, (0.4925, 0.6825)〉 〈£0, (0.5657, 0.4999)〉

o3 〈£1.8890, (0.2967, 0.6999)〉 〈£3.5441, (0.6164, 0.7708)〉 〈£4.3122, (0.3995, 0.4731)〉

o4 〈£2.6253, (0.5484, 0.3528)〉 〈£0, (0.4325, 0.4390)〉 〈£1.8856, (0.6997, 0.3973)〉
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Step 2	� Secondly, the weighted collective decision matrix is obtained according to WHM or WGHM operator. 
The derived collective decision matrices by WHM and WGHM operators are listed in Table 11 and 12, 
respectively.

Step 3	� Thirdly, the aggregated values of alternatives are computed by utilizing these operators as follows.

	� Aggregated values of alternatives produced by WHM operator: o1 = �£4.8926, (0.5823, 0.4430)� , 
o2 = �£2.7025, (0.5079, 0.5348)�,

	� o3 = �£3.5134, (0.4685, 0.6308)� , o4 = �£1.9689, (0.5977, 0.3891)�.

	� Aggregated values of alternatives produced by WGHM operator:

	� o1 = �£5.9989, (0.4612, 0.5333)� , o2 = �£0, (0.4729, 0.5603)�,

	� o3 = �£3.3097, (0.4303, 0.6582)� , o4 = �£0, (0.5668, 0.3988)�.
Step 4	� Based on Definition 7, the score value of each alternative is computed as detailed below:

	� Score values of alternatives produced by WHM operator:

	� S(o1) = 5.5741, S(o2) = 2.6298, S(o3) = 2.943, S(o4) = 2.3796.

	� Score values of alternatives produced by WGHM operator:

	� S(o1) = 5.5664, S(o2) = 0, S(o3) = 2.5554, S(o4) = 0.
Step 5	� Finally, rank the alternatives accordingly to their score values in descending order. The obtained ranking 

results for WHM and WGHM are tabulated in Table 13.

It is evident from Table 13 that the ranking results obtained by the WHM operator is identical to the rank-
ing obtained by our constructed method. Obviously, this verifies the validity of the suggested approach. Apart 
from the WHM operator, we can observe from Table 13 that the preferred positions of the alternatives o1 and o3 
produced by the WGHM operator also match with our derived results. But the alternatives o2 and o4 are incom-
parable because the score and accuracy values of these two alternatives are the same. Thus, the ranking result 
produced by the WGHM operator is unreasonable. It is worth noting that whenever there is a linguistic term £0 
in q-ROLN, WGHM leads to unreasonable results. Let us illustrate this defect by Example 5.

Example 5  Let Q1 =
〈
£α1 , (σ1, ̺1)

〉
,and Q2 = �£0, (σ2, ̺2)� be two q-ROLNs, if the multiplicative operation ⊗ 

defined in Definition 9 is performed on the q-ROLNs Q1 and Q2 , namely, Q1 ⊗Q2 , then the linguistic part result 
is always £0 no matter what the value of the linguistic part of Q1 is.

From the above example, it is clear that the WGHM operator is invalid when the linguistic term of any 
q-ROLN is £0 . Since the WGHM operator is based on the multiplication operation, we get the same results in 
this situation. However, in practice, it is often unavoidable that the linguistic term is £0 in q-ROLNs. In such 
situation, the WGHM operator is not capable to obtain fruitful results.

DSET‑based method.  This part is devoted to address the considered EVCS selection problem through 
Liu and Zhang approach28. But this study is based on intuitionstic linguistic information. From Table 4, we can 
observe that in the assessment information, most of the data membership and no-membership grades sum is 
greater than one. For instance, 〈£6, (0.4, 0.7)〉 , we have 0.4+ 0.7 � 1 . Now, by allowing such information in the 
evaluation matrices Liu and Zhang approach is not capable to solve the problem. Thus, the existing method28 has 
a lack of fuzzy information and is not capable to address complex scenario problems. Basically, 〈£6, (0.4, 0.7)〉 is 
q-ROLN and28 is valid only for ILNs. q-ROLNs are clearly better than ILNs since they can represent evaluation 
criterion values of alternatives more comprehensively. By using a parameter q, q-ROLNs are more adaptable in 
expressing fuzzy information. As the value of the parameter q increases, the breadth of the fuzzy information 

Table 13.   Ranking results from different methods.

Method Ranking

(r1)–WHM operator30 o1 ≻ o3 ≻ o2 ≻ o4

(r2)–WGHM operator30 o1 ≻ o3 ≻ o2 = o4

(r3)–Liu and Zhang approach28 Not applicable

(r4)–Cosine similarity measure C̆qlw1
22 o1 ≻ o4 ≻ o2 ≻ o3

(r5)–Cosine similarity measure C̆qlw2
22 o1 ≻ o2 ≻ o4 ≻ o3

(r6)–Proposed method o1 ≻ o3 ≻ o2 ≻ o4
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expands. This analysis shows that the stated MCGDM method is superior and more capable than the available 
methods.

Cosine similarity measures approach with q‑ROFNs.  q-rung orthopair cosine similarity measures 
regards only the q-rung orthopair fuzzy information as the belief degrees of alternatives on criteria regarding 
membership and non-membership grades based on the known weight vector of criteria. In what follows, we use 
these measures in the proposed approach to determine the degree of similarity between each alternative and 
optimal solution and rank the alternatives.

Because the similarity measures presented by22 can only tackle the problems with q-rung orthhopair fuzzy 
information. Thereby, we first reduce the decision matrix (depicted in Table 8) and optimal solution derived in Step 
7, into q-ROFNs by removing the linguistic parts from q-ROLNs. The deduced weighted collective decision matrix 
is outlined in Table 14, while the optimal solution is Q̃ = {�0.8204, 0.2152�, �0.5378, 0.6328�, �0.411, 0.6806�}.

Then the cosine similarity measures C̆qlw1 and C̆qlw222 of alternatives can be gotten as follows:

Weighted similarity measures are C̆qlw1
(
Ǎ1, Ã

)
= 0.9906 , C̆qlw1

(
Ǎ2, Ã

)
= 0.8051,

C̆qlw1

(
Ǎ3, Ã

)
= 0.7607 , C̆qlw1

(
Ǎ4, Ã

)
= 0.8161.

Weighted similarity measures are C̆qlw2
(
Ǎ1, Ã

)
= 0.9183 , C̆qlw2

(
Ǎ2, Ã

)
= 0.8225,

C̆qlw2

(
Ǎ3, Ã

)
= 0.7311 , C̆qlw2

(
Ǎ4, Ã

)
= 0.7703.

and finally, the ranking of EVCS sites is obtained as shown in Table 13 and Fig. 7.
From Table 13, we can observe that the results obtained by q-rung orthopair fuzzy cosine measures are entirely 

different from the suggested technique’s outcomes. This is due to the fact that Liu and Zhang approach28 is based 
on q-ROFNs and is ineffective when dealing with MCGDM problems with q-ROLNs. To solve the considered 
problem using this technique, we discard the LTS from q-ROLNs, resulting in a significant loss of original assess-
ment information. As a result, an irrational ranking is obtained.

The main merits of the presented method in comparison to other methods are listed in the following. 

(i).	� Unlike Li et al. approach30, the proposed method is more appropriate for practical problems. For example, 
when there is a linguistic term of one criteria is equal to £0 , the scoring function of the corresponding 
alternative will result in zero. Thus, it leads to biased results (see Table 13). On the other hand, the devel-
oped method has overcome this defect by using the proposed cosine measures.

Table 14.   Weighted collective q-rung orthopair fuzzy decision matrix.

℘1 ℘2 ℘3

o1 〈0.8204, 0.2152〉 〈0.2705, 0.4318〉 〈0.411, 0.6806〉

o2 〈0.3524, 0.4646〉 〈0.5378, 0.6328〉 〈0.5694, 0.5000〉

o3 〈0.3130, 0.7000〉 〈0.6175, 0.7656〉 〈0.4029, 0.4623〉

o4 〈0.5613, 0.3468〉 〈0.4366, 0.4273〉 〈0.7035, 0.3739〉

Figure 7.   Ranking of EVCS based on different methods.
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(ii).	� Unlike the existing q-rung orthopair linguistic methods, the proposed approach has the capability to 
determine the unknown weights of DMs.

(iii).	� The method adopted here aims to find the best alternative through the proposed regular similarity meas-
ure, while the previous similarity measures22 do not satisfy the axiom of regularity. For that reason, the 
evaluation results obtained by utilizing the proposed measures are more evident and easy to distinguish 
in comparison to22.

(iv).	� Compared with the existing method established in intuitionistic linguistic environment28, our provided 
method is based on q-ROLNs which have a wide range to describe real cases.

In addition to the comparative analysis presented above, we provide some characteristic comparisons of our 
proposed MCGDM method with the prevailing approaches in Table 15.

Conclusions and ongoing work
q-ROLS is a hybrid mathematical tool, which combines the advantages of q-ROFS and LTS has caught the atten-
tion of scholars. In this work, certain additional operational laws and relations with some results are originated 
as a useful supplement to the existing operational laws of q-ROLSs. Keeping the necessity of similarity measures, 
several q-rung orthopair linguistic cosine and weighted cosine similarity measures are investigated based on 
the linguistic scale function to consider the semantics of linguistic terms. The prominent characteristic of these 
proposed similarity measures is that they fulfill the required properties of the regular similarity measure. After-
ward, we pioneered the MCGDM method with q-ROLNs and unknown weights of DMs. We further applied the 
stated approach to MCGDM problem concerning EVCS site selection to illustrate its implementation. Sensitiv-
ity analysis with respect to criteria weight and parameter q is carried out to light on the stability. The validity 
test was also performed. Meanwhile, the derived results were compared with prevailing techniques to show the 
effectiveness and supremacies of the proposed method. The results for this analysis were shown in tabular and 
graphical representation.

In ongoing research, we aim to discuss the following topics: 

(1).	� The improvement of the existing operational laws of q-ROLNs and their utilization in aggregation opera-
tors such as Bonferroni mean operator and Maclaurin symmetric mean operator.

(2).	� The introduction of a generalized q-rung orthopair linguistic soft set to expand the implantation scope of 
q-ROLS.

(3).	� The expansion of the developed approach to some other fuzzy environments such as T-spherical fuzzy 
environments and interval-valued T-spherical fuzzy environments where DMs have a variety of choices 
for the selection of membership, non-membership, and neutral grades.

(4).	� The investigation of q-rung orthopair linguistic optimization model for fully and partially unknown 
criteria weight determination.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 21 April 2022; Accepted: 17 August 2022

References
	 1.	 Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353 (1965).
	 2.	 Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986).
	 3.	 Yager, R. R. Pythagorean fuzzy subsets, in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57–61 

(IEEE, 2013).
	 4.	 Garg, H. A novel correlation coefficients between pythagorean fuzzy sets and its applications to decision-making processes. Int. J. 

Intell. Syst. 31(12), 1234–1252 (2016).
	 5.	 Peng, X. & Yang, Y. Some results for pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11), 1133–1160 (2015).
	 6.	 Onar, S. C., Oztaysi, B. & Kahraman, C. Multicriteria evaluation of cloud service providers using pythagorean fuzzy TOPSIS. J. 

Multiple-Valued Logic Soft Comput. 30 (2018).

Table 15.   Characteristic comparison of different approaches.

Aggregation-based method30 DSET-based method28
Similarity measure-based 
method22 Proposed method

Data Both qualitative and quantita-
tive Only qualitative Only quantitative Both qualitative and quantita-

tive

Range of informa-
tion Wider Limited Wider Wider

Weights Known Known Known Unknown

Extra parameter Yes No Yes Yes



21

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14456  | https://doi.org/10.1038/s41598-022-18694-8

www.nature.com/scientificreports/

	 7.	 Garg, H. A new generalized pythagorean fuzzy information aggregation using einstein operations and its application to decision 
making. Int. J. Intell. Syst. 31(9), 886–920 (2016).

	 8.	 Khan, M. J. et al. Improved generalized dissimilarity measure-based vikor method for pythagorean fuzzy sets. Int. J. Intell. Syst. 
37(3), 1807–1845 (2022).

	 9.	 Peng, X. & Selvachandran, G. Pythagorean fuzzy set: State of the art and future directions. Artif. Intell. Rev. 52(3), 1873–1927 
(2019).

	10.	 Yager, R. R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016).
	11.	 Liu, P. & Wang, P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. 

Int. J. Intell. Syst. 33(2), 259–280 (2018).
	12.	 Wei, G., Wei, C., Wang, J., Gao, H. & Wei, Y. Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applica-

tions to potential evaluation of emerging technology commercialization. Int. J. Intell. Syst. 34(1), 50–81 (2019).
	13.	 Peng, X., Huang, H. & Luo, Z. q-rung orthopair fuzzy decision-making framework for integrating mobile edge caching scheme 

preferences. Int. J. Intell. Syst. 36(5), 2229–2266 (2021).
	14.	 Pinar, A. & Boran, F. E. A q-rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a 

novel distance measure. Int. J. Mach. Learn. Cybern. 11(8), 1749–1780 (2020).
	15.	 Liu, P., Chen, S.-M. & Wang, P. Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin 

symmetric mean operators. IEEE Trans. Syst. Man Cybern.: Syst. 50(10), 3741–3756 (2018).
	16.	 Rani, P. & Mishra, A. R. Multi-criteria weighted aggregated sum product assessment framework for fuel technology selection using 

q-rung orthopair fuzzy sets. Sustain. Prod. Consum. 24, 90–104 (2020).
	17.	 Ali, J. A q-rung orthopair fuzzy MARCOS method using novel score function and its application to solid waste management. Appl. 

Intell. 1–23 (2021).
	18.	 Verma, R. Multiple attribute group decision-making based on order-α divergence and entropy measures under q-rung orthopair 

fuzzy environment. Int. J. Intell. Syst. 35(4), 718–750 (2020).
	19.	 Khan, M. J., Alcantud, J. C. R., Kumam, P., Kumam, W. & Al-Kenani, A. N. An axiomatically supported divergence measures for 

q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 36(10), 6133–6155 (2021).
	20.	 Khan, M. J., Ali, M. I. & Kumam, P. A new ranking technique for q-rung orthopair fuzzy values. Int. J. Intell. Syst. 36(1), 558–592 

(2021).
	21.	 Peng, X. & Liu, L. Information measures for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 34(8), 1795–1834 (2019).
	22.	 Wang, P., Wang, J., Wei, G. & Wei, C. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their appli-

cations. Mathematics 7(4), 340 (2019).
	23.	 Pinar, A. & Boran, F. E. A novel distance measure on q-rung picture fuzzy sets and its application to decision making and clas-

sification problems. Artif. Intell. Rev. 55(2), 1317–1350 (2022).
	24.	 Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning-ii. Inf. Sci. 8(4), 301–357 (1975).
	25.	 Wang, J.-Q. & Li, H.-B. Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy 

numbers. Control Decis. 25(10), 1571–1574 (2010).
	26.	 Liu, J., Wu, X., Zeng, S. & Pan, T. Intuitionistic linguistic multiple attribute decision-making with induced aggregation operator 

and its application to low carbon supplier selection. Int. J. Environ. Res. Public Health 14(12), 1451 (2017).
	27.	 Yu, S.-M., Wang, J. & Wang, J.-Q. An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 

25(3), 781–805 (2018).
	28.	 Liu, P. & Zhang, X. Approach to multi-attributes decision making with intuitionistic linguistic information based on dempster-

shafer evidence theory. IEEE Access 6, 52969–52981 (2018).
	29.	 Chen, J., Zhang, C., Li, P. & Xu, M. The ILHWLAD-MCDM framework for the evaluation of concrete materials under an intui-

tionistic linguistic fuzzy environment. J. Math. 2020 (2020).
	30.	 Li, L., Zhang, R. & Shang, Some q-rung orthopair linguistic Heronian mean operators with their application to multi-attribute 

group decision making. Arch. Control Sci. 28 (2018).
	31.	 Xu, Z. & Hu, H. Projection models for intuitionistic fuzzy multiple attribute decision making. Int. J. Inf. Technol. Decis. Mak. 9(02), 

267–280 (2010).
	32.	 Liang, D., Xu, Z. & Darko, A. P. Projection model for fusing the information of pythagorean fuzzy multicriteria group decision 

making based on geometric Bonferroni mean. Int. J. Intell. Syst. 32(9), 966–987 (2017).
	33.	 Huang, J., Xu, D.-H., Liu, H.-C. & Song, M.-S. A new model for failure mode and effect analysis integrating linguistic Z-numbers 

and projection method. IEEE Trans. Fuzzy Syst. 29(3), 530–538 (2019).
	34.	 Yue, C. Two normalized projection models and application to group decision-making. J. Intell. Fuzzy Syst. 32(6), 4389–4402 (2017).
	35.	 Liu, P. & You, X. Bidirectional projection measure of linguistic neutrosophic numbers and their application to multi-criteria group 

decision making. Comput. Ind. Eng. 128, 447–457 (2019).
	36.	 Ji, P., Zhang, H.-Y. & Wang, J.-Q. A projection-based outranking method with multi-hesitant fuzzy linguistic term sets for hotel 

location selection. Cogn. Comput. 10(5), 737–751 (2018).
	37.	 Wang, L., Zhang, H.-Y., Wang, J.-Q. & Li, L. Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of 

construction project. Appl. Soft Comput. 64, 216–226 (2018).
	38.	 Yue, C. A normalized projection-based group decision-making method with heterogeneous decision information and application 

to software development effort assessment. Appl. Intell. 49(10), 3587–3605 (2019).
	39.	 Herrera, F. & Martínez, L. A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in 

multi-expert decision-making, IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybern.) 31(2), 227–234 (2001).
	40.	 Xu, Z. A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 

166(1–4), 19–30 (2004).
	41.	 Yager, R. R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016).
	42.	 Xu, Z. A multi-attribute group decision making method based on term indices in linguistic evaluation scales. J. Syst. Eng. 20(1), 

84–8 (2005).
	43.	 Kahneman, D. & Tversky, A. Prospect theory: An analysis of decision under risk. In Handbook of the Fundamentals of Financial 

Decision Making: Part I 99–127 (World Scientific, Berlin, 2013).
	44.	 Bao, G.-Y., Lian, X.-L., He, M. & Wang, L.-L. Improved two-tuple linguistic representation model based on new linguistic evalu-

ation scale. Control Decis. 25(5), 780–784 (2010).
	45.	 Jian-qiang, W. PROMETHEE method with incomplete certain information and its application. Syst. Eng. Electron. 11 (2005).
	46.	 Gou, X. & Xu, Z. Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic 

term sets. Inf. Sci. 372, 407–427 (2016).
	47.	 Gao, H., Ran, L., Wei, G., Wei, C. & Wu, J. VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy informa-

tion and its application to supplier selection of medical consumption products. Int. J. Environ. Res. Public Health 17(2), 525 (2020).
	48.	 Wang, X. & Triantaphyllou, E. Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega 

36(1), 45–63 (2008).
	49.	 Kumar, K. & Garg, H. Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their applica-

tion to decision making. Appl. Intell. 48(8), 2112–2119 (2018).



22

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14456  | https://doi.org/10.1038/s41598-022-18694-8

www.nature.com/scientificreports/

Acknowledgements
The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting 
this work by Grant Code:(22UQU4310396DSR22).

Author contributions
Conceptualization, J.A.; Formal analysis, M.N., and J.A.; Investigation, J.A.; Methodology, M.N.; Software, M.N., 
and J.A.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Cosine similarity measures between q-rung orthopair linguistic sets and their application to group decision making problems
	Mathematical preliminaries
	Additional operational laws and relations of q-ROLNs
	Some similarity measures between q-rung orthopair linguistic sets
	Multi-criteria group decision making based on projection method
	Problem description. 
	Application. 
	Background. 
	The decision making process. 

	Influence of the parameters on the ranking results. 
	Sensitivity analysis with respect to parameter q. 
	Sensitivity analysis with respect to criteria weight. 

	Validity test for the proposed method. 
	Criteria 1. 
	Criteria 2 and 3. 


	Comparative study
	Heronian operators based method. 
	DSET-based method. 
	Cosine similarity measures approach with q-ROFNs. 

	Conclusions and ongoing work
	References
	Acknowledgements


