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Identifiability of parameters 
in mathematical models 
of SARS‑CoV‑2 infections 
in humans
Stanca M. Ciupe1* & Necibe Tuncer2

Determining accurate estimates for the characteristics of the severe acute respiratory syndrome 
coronavirus 2 in the upper and lower respiratory tracts, by fitting mathematical models to data, 
is made difficult by the lack of measurements early in the infection. To determine the sensitivity 
of the parameter estimates to the noise in the data, we developed a novel two‑patch within‑host 
mathematical model that considered the infection of both respiratory tracts and assumed that the 
viral load in the lower respiratory tract decays in a density dependent manner and investigated its 
ability to match population level data. We proposed several approaches that can improve practical 
identifiability of parameters, including an optimal experimental approach, and found that availability 
of viral data early in the infection is of essence for improving the accuracy of the estimates. Our 
findings can be useful for designing interventions.

Understanding the upper respiratory tract (URT) kinetics of the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) is important for designing public health interventions such as testing, isolation, quarantine, and 
drug  therapies1–12. Similarly, understanding the kinetics of SARS-CoV-2 in the lower respiratory tract (LRT) is 
important for predicting the potential for severe disease, respiratory failure, and/or  death3,13. Insights into the 
mechanism of SARS-CoV-2-host interactions and their role in transmission and disease have been found using 
mathematical models applied to longitudinal  data3–11,14–17. While these studies are instrumental in determining 
important parameters (such as SARS-CoV-2 daily shedding and clearance rates, basic reproduction number, the 
role of innate immune responses in controlling and/or exacerbating the disease), their predictions are limited 
by the lack of data early in the infection. As such, with few (if any) samples available before viral titers peak, the 
early virus kinetics and the mechanisms for these early kinetics are uncertain. In this study, we investigate the 
sensitivity of the predicted outcomes of a within-host model of SARS-CoV-2 infection to the availability of data 
during different stages of the infection and use our findings to make recommendation.

A German study by Wolfel et al. collected data from nine patients infected early in the pandemic through 
contact with the same index  case18. The study showed independent virus replication in upper and lower respira-
tory  tracts18,19 suggesting the possibility that virus kinetics, disease stages, and host involvement in control and 
pathogenesis are dependent on which area of the respiratory tract is homing SARS-CoV-2 at different stages 
of the  disease20–22. One shortcoming when evaluating the data in this study comes from the fact that viral RNA 
was collected only after the patients became symptomatic, with an estimated first data point available on average 
5–7 days after infection. Several within-host mathematical models developed and applied to the data set in the 
Wolfel et al. study have evaluated SARS-CoV-2 parameters, determined the role of innate immune responses, 
found connections between total RNA and infectious titers, and identified the efficacy of drug  therapies3,6,7. We 
are interested in determining how the lack of data early in the infection affects these estimates.

We first developed our own within-host model that does not consider innate immunity explicitly. The 
model is an expansion of the within-host mathematical models developed for influenza and other respiratory 
 infections23–26 that includes both URT and LRT patches. We used the data from Wolfel et al. to estimate perti-
nent parameters and investigated the sensitivity of the estimated parameters to the presence of data at different 
stages of infection. To accomplish this, we created virtual data sets that span various stages of the infection and 
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determined how our initial predictions are being influenced by the additional data. Such results may influence 
our understanding of both viral expansion and the effect of inoculum dose on disease progression.

Methods
Mathematical model. SARS-CoV-2 virus infects and replicates in epithelial cells of the upper and lower 
respiratory  tract18. We model this by developing a two patch within-host model, where the patches are the two 
respiratory tracts which are linked through virus migration between patches, or viral shedding. Both respiratory 
tract patches assume interactions between uninfected epithelial cells, Tj ; infected epithelial cells, Ij ; and virus 
homing in tract j, Vj at time t. Here, j = {u, l} , with u describing the URT patch and l describing the LRT patch. 
Target cells in each patch get infected at rates βj and infected cells produce new virions at rates pj . Infected cells 
die at rates δj and virus particles are cleared at a linear rate cu in the upper respiratory tract and in a density 
dependent manner clVl/(Vl + K) in the lower respiratory tract, where K is the viral load in the LRT where 
the clearance is half maximal. The two patches are linked via the virus populations, with a proportion ku of Vu 
migrating from URT to LRT and kl of Vl migrating from LRT to URT. The model describing these interactions 
(see Fig. 1) is given by

We model the initial conditions of the system Eq. (1) as follows. We assume that all epithelial cells in the 
URT and LRT patches are susceptible to virus infection. When infection occurs, it results in a small initial virus 
inoculum which homes in the URT alone. Under these assumptions, system Eq. (1) is subject to initial conditions

where V0 is the viral inoculum. We aim to determine the dynamics of system Eq. (1) over time for model param-
eters that explain URT and LRT tract data in a single patient (patient A) and in the population data (all nine 
patients)  from18.

Parameter estimation. Patient data. In January 2020, nine patients tested positive for COVID-19 in a 
single-source outbreak in Bavaria,  Germany19. Early detection allowed for rapid contact tracing, testing, and 
monitoring of the affected community: young healthy professionals in their mid-thirties. A followup study pub-

(1)

dTu

dt
=− βuTuVu,

dIu

dt
=βuTuVu,−δuIu,

dVu

dt
= puIu − cuVu + klVl ,

dTl

dt
= − βlTlVl ,

dIl

dt
=βlTlVl − δl Il ,

dVl

dt
= plIl − cl

Vl

Vl + K
Vl + kuVu.

(2)
Tu(0) = T0

u , Iu(0) = 0, Vu(0) = V0,

Tl(0) = T0
l , Il(0) = 0, Vl(0) = 0,

Figure 1.  Model diagram.
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lished time series for the post symptoms virus data isolated from oral-and nasopharyngeal throat swabs (in 
copies per swabs) and from sputum samples (in RNA copies per mL) for the same patient population over their 
entire course of disease. The patients’ throat swabs and sputum data (Fig. 2 of 18) were obtained through personal 
communication with the authors. Since we know the incubation period for each  patient19 (see Table 1), we as-
sume time zero in our study to be the day of infection for the patients in Ref.18.

Identifiability analysis. Using the URT and LRT viral load data, we aim to determine the unknown param-
eters p = {βu, δu, pu, cu, kl ,βl , δl , pl , cl ,K , ku} of the within-host model Eq. (1). Before attempting to estimate 
the within-host model parameters using noisy laboratory data, it is crucial to analyze whether the model is 
structurally identifiable. Specifically, we need to know if the within-host model Eq. (1) is structured to reveal its 
parameters from upper and lower viral load observations. We approach this problem in an ideal setting where 
we assume that the observations are known for every t > 0 and they are not contaminated with any noise. This 
analysis is called structural  identifiability27.

The observed data in Wolfel et al.18 is modeled in the within-host model Eq. (1) by variables Vu and Vl , which 
account for the upper and lower respiratory tract viral titers. We denote these observed variable as

First, we give the definition of structural identifiability in terms of the observed variables y1(t) and y2(t)27–31.

Definition 1 Let p and q be the two distinct vectors of within-host model Eq. (1) parameters. We say that the 
within-host model is structurally (globally) identifiable if and only if

Simply put, we say that the within-host model Eq. (1) is structurally identifiable if two identical observation 
are only possible for identical parameters. We perform the structural identifiability analysis via differential alge-
bra approach. The first step in this approach is eliminating the unobserved state variables from the within-host 
model Eq. (1). The reason for eliminating the unobserved state variables is to obtain a system which only involves 
the observed states and model parameters. Since this is a complex procedure, we use  DAISY32 and obtain the 
following system

and

y1(t) = Vu(t) and y2(t) = Vl(t).

y1(t, p) = y1(t, q) and y2(t, p) = y2(t, q) =⇒ p = q.

(3)

d3y1

dt3
y1 −

d2y1

dt2
dy1

dt
+ d2y1

dt2
y21βu +

d2y1

dt2
y1(cu + δu)−

(

dy1

dt

)2

(cu + δu)+
dy1

dt

dy2

dt
kl

+ dy1

dt
y21βu(cu + δu)+

dy1

dt
y2δukl −

d2y2

dt2
y1kl −

dy2

dt
y21βukl −

dy2

dt
y1δukl + y31βucuδu − y21y2βuδukl = 0.

Table 1.  Incubation periods estimated in Ref.19.

Patient id A B C D E F G H I

Incubation period (days) 2.5 4 1 4 4 4 2 4.5 7
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Equations (3) and (4) are called input–output equations of within-host model Eq. (1), which are differential poly-
nomials involving the observed state variables y1 = Vu(t) and y2 = Vl(t) and the within-host model parameters. 
Note that solving input–output equations Eqs. (3) and (4) is equivalent to solving the within-host model Eq. (1) 
for the state variables Vu(t) and Vl(t) . For identifiability analysis, it is crucial that the input-output equations 
are monic, i.e. the leading coefficient is 1. It is clear that the input–output equation Eq. (3) is monic, and the 
input–output equation Eq. (4) can be made monic by dividing the coefficients with the coefficient of the leading 
term, which is ku . As a result, the definition of the structural identifiability within differential algebra approach 
which involves input–output equations takes the following  form27–30.

Definition 2 Let c(p) denote the coefficients of the input-output equations, Eqs. (3) and (4), where p is the vec-
tor of model parameters. We say that the within-host model Eq. (1) is structured to reveal its parameters from 
the observations if and only if

Suppose p = {βu, δu, pu, cu, kl ,βl , δl , pl , cl ,K , ku} and q = {β̂u, δ̂u, p̂u, ĉu, k̂l , β̂l , δ̂l , p̂l , ĉl , K̂ , k̂u} are two parameter 
sets of the within-host model which produced the same observations. This can only happen if the coefficients of 
the input-output Eqs. (3) and (4) are the same. Hence, if c(p) denote the coefficients of the corresponding monic 
polynomial of input–output equations, we solve c(p) = c(q) to obtain

The solution set (5) means that the parameters, βu, δu, cu, ku,βl , δl , cl ,K and kl can be identified uniquely. How-
ever, parameters pu and pl both disappear from the input–output Eqs. (3) and (4). It is easier to see the reason 
behind this by scaling the unobserved state variables of the within-host model Eq. (1) with a postive scalar σ > 0 . 
Hence, (σTu, σ Iu,Vu, σTl , σ Il ,Vl) = (T̂u, Îu,Vu, T̂l , Îl ,Vl) will solve the following system

(4)
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c(p) = c(q) =⇒ p = q.

(5)βu = β̂u, δu = δ̂u, cu = ĉu, ku = k̂u, βl = β̂l , δl = δ̂l , cl = ĉl , K = K̂ , kl = k̂l .
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where p̂u = pu
σ

 and p̂l = pl
σ
. Since σ > 0 was arbitrary and the observations do not give information about the 

scaling parameter σ , the parameters pu and pl can not be identified from the viral load in the URT and LRT tracts. 
We conclude that the within-host model Eq. (1) is not identifiable. We summarize the structural identifiability 
result in the following Proposition 1.

Proposition 1 The within-host model Eq. (1) is not structured to reveal its parameters from the observations of viral 
load in upper and lower respiratory tracts. The parameters pu and pl are not identifiable and only the parameters 
βu, δu, cu, ku,βl , δl , cl ,K , kl can be identified.

To obtain a structurally identifiable model from the Vu and Vl observations, we scale the unobserved state 
variables with T̂u = puTu, Îu = puIu, T̂l = plTl , Îl = plIl and obtain the following scaled within-host model

Proposition 2 The scaled within-host model Eq. (7) is structured to reveal its parameters from the observations of 
viral load in upper and lower respiratory tracts. All the parameters

can be identified, hence the within-host model Eq. (7) is globally identifiable.

Data fitting. Parameter values. We assume that the upper respiratory tract susceptible population is 
Tu
0 = 4× 108 epithelial cells, as in influenza  studies23. This estimate was obtained by assuming a URT surface in 

adults of 160 cm233 and an epithelial cell’s surface area of 2× 10−11 − 4× 10−11 m 234. We use a similar method 
to estimate the target cell population in the LRT. The lung’s surface area of 70 m 2 (with range between 35 m 2 and 
180 m 2)35 is composed of gas exchange regions (aveoli), and of conducting airways (trachea, bronchi, bronchi-
oles). Since the gas exchange region is affected by SARS-Cov-2 only in severe  cases20 we ignore it, and restrict 
the LRT compartment to the conducting airways whose surface area is 2471± 320 cm236. Therefore, we obtain 
an initial epithelial cell target population in the LRT of T0

l = 6.25× 109 epithelial cells. If we assume that viral 
production rates are pu = 50 and pl = 32 per day then, after scaling, we have initial target cell populations in the 
URT and LRT of T̂0

u = 2× 1010 epithelial cells and T̂0
l = 2× 1011 epithelial cells. The other initial conditions are 

unaffected by scaling and are set at Î0u = Î0L = 0 , V̂0
u = 0.1 and V̂0

L = 0 , where the virus inoculum of V̂0
u = 0.1 cp/

ml is set below the reported limit of quantification of 102 cp/ml18. Lastly, the incubation periods were estimated 
in Ref.19 and are listed in Table 1.

(6)
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dVl

dt
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βu, δu, cu, ku,βl , δl , cl ,K , kl
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Bayesian parameter estimation. During the data collection process, observations are perturbed with noise. 
Hence, the URT and LRT viral load deviates from the smooth trajectory of the observations y1(t) and y2(t) at 
measurement times. We represent measurement error using the following statistical model

where p̂ is the true parameter vector assumed to generate the data, and the random variables ǫi and ǫj are assumed 
to be Gaussian with mean zero and standard deviation σ.

We use Bayesian inference and Markov Chain Monte Carlo (MCMC) to determine the remaining nine 
parameters of the model Eq. (7)

Bayesian inference treats model parameters as random variables and seeks to determine the parameters’ posterior 
distribution, where the term “posterior” refers to data-informed distributions. The posterior densities are deter-
mined using Bayes’ theorem, which defines them as the normalised product of the prior density and the likeli-
hood. Let π(p|D) denote the probability distribution of the parameter p given the data D =

(

Vu(ti),Vl(tj)
)

 , 
then the Bayes theorem states that

where π(p) is the prior parameter distribution and π(D) is a constant which is usually considered to be a normali-
zation constant so that the posterior distribution is indeed a probability density function (pdf), i.e. its integral 
equals to 1. The likelihood function π(D|p) gives the probability of observing the measurements D given that the 
parameter values is p . In terms of the within-host model Eq. (7) and the laboratory data Eq. (8), the likelihood 
function π(D|p) takes the following form

The ultimate goal is to determine the posterior distributions of the parameters in the light of laboratory data. 
To approximate the posterior distributions, we use the MCMC method introduced in Refs.37,38. MCMC meth-
ods generate a sequence of random samples p1, p2, . . . , pN whose distribution asymptotically approaches the 
posterior distribution for size N. The random walk Metropolis algorithm is one of the most extensively used 
MCMC algorithms. The Metropolis algorithm starts at position pi , then the Markov chain generates a candidate 
parameter value p∗ from the proposal distribution, and the algorithm accepts or rejects the proposed value based 
on probability α given by

As with the Metropolis algorithm, the essential feature of MCMC approaches is the formulation of a proposal 
distribution and an accept–reject criteria. In this paper, we employ the Delayed Rejection Adaptive Metropolis, 
 (DRAM37) and use the MATLAB toolbox provided by the same  authors39. In comparison to other Metropolis 
algorithms, the Markov chain constructed with DRAM is robust and converges rapidly (see Fig. 2).

The two patch within-host model Eq. (7) is novel, hence we do not have any prior information regarding 
model parameters. We determine the prior distributions by fitting the structurally identifiable within-host model 
Eq. (7) to patient A’s data and to the population data (all nine patients). The prior distributions π(p) are then 
defined as a normal distribution with a mean equal to the fitted value and variance equal to σ 2 , π(p) ∼ N(µ, σ). 
Table 2 shows the obtained prior distribution of each parameter for patient A and population data, together with 
the lower and upper bounds of the prior π(p).

Results
Viral dynamics. To study the kinetics of SARS-CoV-2 in the upper and lower respiratory tracts we devel-
oped a two patch within-host model Eq. (1) that assumed viral shedding between the two patches. To ensure 
structural identifiability, we rescaled our equations by removing the non-identifiable parameters pu and pl (see 
“Identifiability analysis” section in “Materials and methods”). The resulting model Eq. (7) was validated against 
SARS-CoV-2 RNA data from throat swabs and sputum samples collected from an infectious event with the same 
index case early in the  pandemic18. We used Bayesian parameter estimation with the viral samples in URT and 
LRT from a single individual (patient A) and the entire population (nine individuals) and approximated poste-
rior distributions with N = 106 Markov chain iterations (see “Data fitting” section in “Materials and methods”).

We generated prediction graphs of the within-host model Eq. (7) by sampling parameter realizations from 
posterior distributions. The model’s predictive posterior distribution for single patient URT-LRT viral data and 
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population URT-LRT viral data are presented in Fig. 3. The resulting dynamics show viral expansion to peak 
values at days 2.1 in URT and 2.9 in LRT followed by decline in both tracts (see Fig. 3). The grey areas in the 
graph represent the 50% and 95% posterior regions. The fewer data points in patient A results in wider model 
prediction range (gray regions) compared to the population predictions, especially for the LRT viral load.

While the viral titers decay to low levels (below 102 cp/ml) 3 weeks after infection in the URT, they stay 
elevated (to above 5.4× 103 cp/ml at week four) in the LRT. To model viral RNA persistence in the LRT we 
included a density dependent term for the loss of LRT virus, clVl/(Vl + K) , and estimated parameter K where 
Vl loss is half-maximal, together with the other viral specific terms.

We found similar mean infectivity rates in the URT for both the individual patient considered (patient A) 
and the entire population, βu = 1.4× 10−8 ml/(vir× day). By contrast, the mean infectivity rates in the LRT for 
patient A is 3.2-times higher than the LRT infectivity rate of the total population, βl = 3.9× 10−10 ml/(vir× 
day) versus βl = 1.2× 10−10 ml/(vir× day). The mean infected cells death rates are similar in URT and LRT, 
δu = 4.9 , δu = 4.6 per day and δl = 5.7 , δl = 3 per day for patient A and for the total population, respectively. The 
mean viral clearance rates are higher in LRT compared to URT, cl = 11.5 , cl = 9.2 per day compared to cu = 2.8 , 

Figure 2.  The Markov chain of the within-host model Eq. (7)’s parameters obtained when the model is fitted to 
the population data. Every 1000th point of 106 iterations are shown. The black line shows the mean of the chain.

Table 2.  Parameters for the within-host model Eq. (7) are listed together with their lower and upper bounds 
for the priors. Prior distributions are normally distributed with mean equal to the fitted value and variance, σ 2.

Parameter Description

Prior π(p) Patient A Population

Min–Max π(p) ∼ N (µ, σ) π(p) ∼ N (µ, σ)

βu Viral infectivity in URT (10−12, 10−7) N (1.1× 10−8, 10−8) N (8.9× 10−9, 10−8)

βl Viral infectivity in LRT (10−12, 10−7) N (3.9× 10−8, 10−10) N (9.3× 10−11, 10−10)

δu Infected cell decay rate in URT (0, 50) N (4.88, 0.5) N (4.64, 0.5)

δl Infected cell decay rate in LRT (0, 50) N (5.59, 0.5) N (2.99, 0.5)

cu Viral decay rate in URT (0, 30) N (2.88, 0.5) N (4.27, 0.5)

cl Viral decay rate in LRT (0, 30) N (11.43, 0.5) N (9.21, 0.5)

K Vl where loss is half-maximal (0, 3000) N (910, 100) N (1840, 100)

ku Shedding into LRT (10−6, 1) N (0.24, 0.1) N (0.62, 0.1)

kl Shedding into URT (10−6, 1) N (0.0008, 0.0001) N (0.036, 0.01)
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cu = 4.2 per day, for patient A and for the total population, respectively. This may indicate increased immune 
responses occurring in LRT. The mean URT to LRT shedding rates are higher than the mean LRT to URT shed-
ding rates, ku = 0.24 , ku = 0.63 (swab/ml) per day compared to kl = 7.9× 10−4 , kl = 0.04 (ml/swab) per day 
for patient A and for the total population, respectively. This one way shedding was observed by other studies 
that investigated the Wofle et al.  data3. Lastly, the mean LRT viral load where viral clearance is half-maximal is 
K = 910 RNA per ml for patient A and K = 1841 RNA per ml for the total population.

Practical identifiability. During MCMC data fitting, we used parameters limits predetermined to range 
around a single point estimation obtained using the ’fminsearch’ algorithm in Matlab (see Table  2). Param-
eter distributions for the nine parameter considered p = {βu, δu, cu, ku,βl , δl , cl ,K , kl} were obtained using an 
MCMC Bayesian approach that sampled the parameter space N = 106 times. We apply DRAM MCMC algo-
rithm and observe fast convergence of the chains (see Fig. 2). The resulting distributions, together with the prior 
probability density functions (pdf) are presented in Fig. 4. We observe good agreement between the prior pdf 
and the posterior distributions for all parameters with the exception of infectivity rates βu and βl . Moreover, 
while all parameters follow normal distributions for patient A (Fig. 4A and Supplementary Fig. S1), the LRT 
infectivity rate βl follows a bimodal distribution in the fit to the total population data (Fig. 4B and Supplementary 
Fig. S2).

Figure 5 shows the scatter plots of for paired (βl , kl) , (βl ,K) , (βl , δl) and (βl , cl) parameter distributions 
obtained when the within-host model Eq. (7) is fitted to patient A’s data (panel A) and population data (panel 
B) (see also Supplementary Fig. S2 for the scatter plots of all parameter distributions). In the scatter plots for 
the population data containing parameter βl we observe bimodal clustering. In joint density plots, bimodal 
clustering may suggest practical  unidentifiability40. This implies that, despite the fact that we have shown that 
the within-host model Eq. (7) is structurally identifiable, it may in fact not be practically unidentifiable. It is well 
understood that a structurally identifiable model may be practically  unidentifiable28–30,41. Many variables can 
lead to practical non-identifiability, such as considerable noise in the data, limited data points, or inadequate 
timing of data collection.

Optimal experimental design. The possible lack of practical identifiability for the total population may 
be due to (1) restrictions on the parameter space and the types of distributions we are imposing on the param-
eters, or (2) the limited data points early in the infection.

To investigate the first hypothesis, we collected samples in the parameter space of

rather than {βu,βl , ku, kl} and the assumed that either {ln βu, ln βl , ln ku, ln kl} are normally distributed, 
or that {βu,βl , ku, kl} are lognormally distributed. We set the limits of logarithmic parameter priors as in 
Table 3 while keeping the limits of the other parameters as before (see Table 2). We sampled the new param-
eter space N = 106 times and reapplied the MCMC Bayesian approach. The resulting estimates for param-
eters p = {βu, δu, cu, ku,βl , δl , cl ,K , kl} no longer show bimodal results regardless on whether we assume that 
{ln βu, ln βl , ln ku, ln kl} are normally distributed (see Fig. 6A) or that {βu,βl , ku, kl} are lognormally distributed 
(see Fig. 6B).

{ln βu, ln βl , ln ku, ln kl},
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Figure 3.  Virus dynamics obtained from fitting within-host model Eq. (7) to URT virus titer (left) and LRT 
virus titer (right) in patient A and in the entire population. The grey bars represent 50% and 95% posterior 
regions.
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Figure 4.  Histogram of estimated parameter distributions from fitting within-host model Eq. (7) to URT virus 
titer and LRT virus titer in: (A) patient A and (B) entire population. All parameters were considered normally 
distributed.

Figure 5.  Scatter plots showing correlation among relevant parameters for (A) patient A and (B) total 
population.
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To investigate the second hypothesis, we created synthetic data and used it to further examine how the tim-
ing of the data collection in the population correlates to the structure of the resulting parameter estimations. 
We assumed that the real data corresponds to the solution of model Eq. (7) with parameters in Tables 2 and 3 
which are randomly perturbed according to Eq. (8) with errors ǫi and ǫj assumed to be uniformly distributed 
with mean 0 and standard deviation 0.5. We produced two data sets. The first data set, which assumes data is 
collected daily from day 0 to day 12 post infection, is

Table 3.  Adjusted parameters for the within-host model Eq. (7) are listed together with their lower and upper 
bounds for the priors which are normally distributed with mean equal to the fitted value and variance, σ 2.

Parameter Description

Prior π(p) Population

Min–Max π(p) ∼ N (µ, σ)

ln βu Viral infectivity in URT (log scale) (−25,−14) N (−18.5, 1)

ln βl Viral infectivity in LRT (log scale) (−30,−15) N (−23, 1)

ln ku Shedding into LRT (log scale) (−11, 0) N (−0.5, 1)

ln kl Shedding into URT (log scale) (−7, 4) N (−3.3, 1)

Figure 6.  Histogram of estimated parameter distributions from fitting model Eq. (7) to URT virus titer and 
LRT virus titer in total populations. (A) Parameters ln βu , ln βl , ln ku , ln kl were considered normally distributed. 
(B) Parameters βu , βl , ku , kl were considered lognormally distributed. All other parameters were considered 
normally distributed.
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The second data set, which assumes data is collected from day 7 to day 27 post infection, is

Since the practical identifiability is a local property of the parameters, we used the priors for

given in Table 3 and the priors for the rest of the parameters as in Table 2, to generate prediction graphs of the 
within-host model Eq. (7). The model’s predictive posterior distribution for all patients’ URT- LRT viral data for 
Experiments 1 and 2 are presented in Fig. 7 together with grey areas for the 50% and 95% posterior regions (see 
also Supplementary Fig. S4). As expected, we observe wider model prediction ranges (gray regions) in the second 
phase decay for experiment 1 and in the expansion and peak areas for experiment 2, where data is scarce (Fig. 7).

To determine whether practical identifiability is lost in each experiment we created parameter histograms 
for each parameters (see Fig. 8 and Supplementary Fig. S3). When data samples at the expansion stages of the 
infection are collected (as in Experiment 1), the LRT infectivity parameter βl follows a normal distribution (see 
Fig. 8A, left panel, blue bars). This results are validated by the corresponding dual parameter scatter plots (see 
Fig. 9A). In contrast, when the data at the expansion stages of the infection is sparse (as in Experiment 2), the 
LRT infectivity parameter βl follows a bimodal distribution (see Fig. 8A, right panel, blue bars). This results are 
observed in the corresponding scatter plots, where we see bimodal clustering involving not just parameter βl , 
but involving parameter βu as well (see Fig. 9B). These results can be slightly improved when we consider that βu 
and βl follow lognormal distributions (see Fig. 8B, right panel, blue bars). This suggests that the practical uniden-
tifiability that appeared in the population data might be fixed by collecting data at the early stages of infection.

Discussion
In this study, we developed a within-host mathematical model of SARS-CoV-2 infection that connected the 
virus kinetics in the upper and lower respiratory tracts of infected individuals and used it to determine the tract 
specific viral parameters. We removed viral production rates, to ensure structural identifiability, and fitted the 
rescaled model Eq. (7) to published longitudinal throat swabs and sputum titers in a single individual and in the 
entire population from SARS-CoV-2 infection  study18. We estimated nine unknown parameters using an MCMC 
Bayesian fitting  approach37. To avoid over fitting, we determined best estimates in a single patient (for which we 
have 26 data points) and in the entire population (for which we have 201 data points). We found shorter virus 
life-spans in LRT compared to viral URT, 2–3 h compared to 5.7–8.5 h. Our LRT estimates are similar to the fixed 
(and non-tract specific) virus life-span of 2.4 h used by Ke et al.3 and the estimated (and tract specific) life-span 
of 1.2 h in Wang et al.6, but longer than the 10 h seen in influenza and used by Hernandez et al.7. The between 
tracts differences may suggest the presence of additional immune mediated viral clearance in the LRT. We found 
similar infected cells life-span between the two tracts, with a range of 4.2–8 h, shorter than in other  studies3,7. 
Lastly, the mean URT basic reproductive number for the entire population, R0 = βT̂0

cδ  , equals 17.4, higher than 
in Ref.3. While we assumed two-way viral shedding between tracts, data fitting suggested higher virus shedding 
from upper and lower respiratory tracts than the other way around, consistent with other  studies3.
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(
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for tj = {1, . . . , 12}.
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Figure 7.  Virus dynamics obtained from fitting within-host model Eq. (7) to URT virus titer and LRT virus 
titer in (A) Experiment 1 and (B) Experiment 2. The grey bars represent 50% and 95% posterior regions.
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Interestingly, we found that the estimated LRT infectivity rate parameter follows a bimodal distribution when 
the model was fitted to the entire population data. We attributed this behavior to practical non-identifiability. 
Practical non-identifiability is observed when the measured data is contaminated with noise. We have inherently 
accounted for noisy data by combining viral measurements from nine patients with different viral profiles. We 
investigated several ways for improving practical identifiability of this parameter and found that both estimating 
the logaritmic value ln βl and assuming log-normally distributions for some parameters improves the accuracy 
of our estimates.

Most importantly, it has been reported that practical identifiability can be achieved by adding pertinent data 
measurements that can help improve the identity of unknown  parameters42,43. Such a process, known as optimal 
experimental design, aims to obtain additional information about a system through the addition of new meas-
urements. Since in system Eq. (7) the non-practically identifiable infectivity parameter βl is responsible for the 
LRT dynamics early in the infection, we investigated whether the addition of early data contains the maximal 
information needed for improving its estimate. We created two virtual data sets, one in which data is collected 
daily for the first 12 days and one in which data is collected daily for 20 days, starting at day 7. We found that the 
infectivity rate βl is bimodal and, hence, non-practically identifiable when data is missing during the first 7 days 
of infection. The absence of early data leads to an underestimation of overall LRT viral titer in the first 14 days 
following infection (see Supplementary Fig. S4). This may affect one’s ability for determining the best window 
for antiviral and immune modulation  interventions44. Moreover, it will provide an underestimate for the period 
of maximum  infectiousness14, which may affect recommendations for quarantine and  isolation1. Hence, the 
existence of data measurements before and/or at symptoms onset is crucial for best parameter estimation and 
model prediction when considering noisy population data.

Our study has several limitations. First, we considered a density dependent clearance term for the URT virus 
that saturates at around 1–2 ×103 RNA copies per ml, in order to explain the viral RNA persistence in the LRT at 
30 days following infection reported in the Wolfle et al.18. While in public health setting a SARS-CoV-2 diagnostic 
is determined by PCR assays, long-term RNA levels are not a reliable measurement of infectiousness, with the 

Figure 8.  Histograms for βu and βl for Experiment 1 (yellow) and Experiment 2 (blue) when (A) ln βu and ln βl 
are assumed to be normally distributed; and (B) βu and βl are assumed to be lognormally distributed.

Figure 9.  Scatter plots for (A) Experiment 1 and (B) Experiment 2. Parameters ln βu and ln βl are assumed to 
be normally distributed.
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measured RNA values indicating the presence of genomic fragments, immune-complexed or neutralised virus, 
rather than replication-competent  virus14,45,46. Further work is needed to separate the presence of infectious 
versus non-infectious viral RNA in the lower respiratory tract. Secondly, we did not consider an eclipse phase 
in the virus infectiousness (usually assumed to be around 6  h3,14). This simplification may be the leading reason 
for larger infected cell death rate estimates in our study compared to other  studies3,7. Thirdly, due to the novelty 
of the model, we have no information on parameter priors. Therefore, we fitted the within-host model to the 
patient A and population data, and used those estimates as means in the prior distributions. However, since 
the resulting means fall within ranges observed for other acute  infections23–26,47,48, and since we consider large 
standard deviations around the prior means, we are confident that we are covering a large enough search space 
that does not exclude viable outcomes.

In conclusion, we have developed a within-host model of SARS-CoV-2 infection in the upper and lower res-
piratory tracts, used it to determine pertinent viral parameters, and suggested the optimal experimental designs 
that can help improve the model predictions. These techniques may inform interventions.

Data availibility
The code generated during the current study will be made available on the corresponding author’s page upon 
acceptance.
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