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SARS‑CoV‑2‑reactive 
IFN‑γ‑producing  CD4+ and  CD8+ 
T cells in blood do not correlate 
with clinical severity 
in unvaccinated critically ill 
COVID‑19 patients
Beatriz Olea1, Eliseo Albert1, Estela Giménez1, Ignacio Torres1, Paula Amat2, 
María José Remigia2, Juan Alberola3, Nieves Carbonell4, José Ferreres4, María Luisa Blasco4 & 
David Navarro1,3*

We examined the relationship between peripheral blood levels of SARS‑CoV‑2 S (Spike protein)1/M 
(Membrane protein)‑reactive IFN‑γ‑producing  CD4+ and  CD8+ T cells, serum levels of biomarkers of 
clinical severity, and mortality in critically ill COVID‑19 patients. The potential association between 
SARS‑CoV‑2‑S‑Receptor Binding Domain (RBD)‑specific IgG levels in sera and mortality was also 
investigated. SARS‑CoV‑2 T cells and anti‑RBD IgG levels were monitored in 71 non‑consecutive 
patients (49 male and 22 female; median age, 65 years) by whole‑blood flow cytometry and Enzyme‑
linked immunosorbent assay (ELISA), respectively (326 specimens). SARS‑CoV‑2 RNA loads in paired 
tracheal aspirates [TA] (n = 147) were available from 54 patients. Serum levels of interleukin‑6, ferritin, 
D‑Dimer, lactose dehydrogenase and C‑reactive protein in paired sera were known. SARS‑CoV‑2 T cells 
(either  CD4+,  CD8+ or both) were detectable in 70 patients. SARS‑CoV‑2 IFN‑γ  CD4+ T‑cell responses 
were documented more frequently than their  CD8+ counterparts (62 vs. 56 patients) and were of 
greater magnitude overall. Detectable SARS‑CoV‑2 S1/M‑reactive  CD8+ and  CD4+ T‑cell responses were 
associated with higher SARS‑CoV‑2 RNA loads in TA. SARS‑CoV‑2 RNA load in TA decreased over time, 
irrespective of the dynamics of SARS‑CoV‑2‑reactive  CD8+ and  CD4+ T cells. No correlation was found 
between SARS‑CoV‑2 IFN‑γ T‑cell counts, anti‑RBD IgG concentrations and biomarker serum levels 
(Rho ≤ 0.3). The kinetics of both T cell subsets was comparable between those who died or survived, 
whereas anti‑RBD IgG levels were higher across different time points in deceased patients than in 
survivors. Enumeration of peripheral blood levels of SARS‑CoV‑2‑S1/M‑reactive IFN‑γ  CD4+ and  CD8+ 
T cells does not predict viral clearance from the lower respiratory tract or poor clinical outcomes in 
critically ill COVID‑19 patients. In contrast, anti‑RBD IgG levels were directly associated with increased 
mortality.

SARS-CoV-2 elicits robust functional T-cell responses that seemingly play a critical role in promoting virus 
clearance and thus affording protection against severe  disease1–7. Soon after natural SARS-CoV-2 infection, 
both SARS-CoV-2  CD8+ and  CD4+ T cells expand, targeting most of the viral proteome, with those recognizing 
epitopes within the spike (S), membrane (M) and nucleoprotein (N) structural proteins being immunodominant 
in most  subjects6,8–10. Qualitative and quantitative differences in SARS-CoV-2 T-cell responses have been reported 
across individuals with asymptomatic infection or presenting with mild or severe COVID-19; specifically, delayed 
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appearance, weak IFN-γ/IL-2-producing, “misfiring”, dysfunctional or “exhausted” T-cell responses were seen 
more frequently in severe compared to mild or asymptomatic COVID-19  cases4,5,7,8,10–14. More recently, a strong 
association was found between presence of NP (nucleoprotein) 105–113-B*07:02-specific  CD8+ T-cell responses 
and mild  disease15. Nevertheless, there is limited and contradictory information as to the relationship between 
peripheral blood SARS-CoV-2 T-cell levels and clinical outcomes among critically ill  patients4,14,16–20. In fact, 
while some studies reported increased antiviral T-cell responses in patients requiring ICU admission, as opposed 
to those presenting with severe disease without ICU admission, irrespective of patient outcome (death vs. sur-
vival)14,16, others reported impaired T-cell responses, which nevertheless were inconsistently associated with 
increased  mortality4,17–20. In turn, studies that relate SARS-CoV-2 antibody levels in sera to COVID-19 severity 
and outcome returned conflicting  results21–25. Moreover, whether SARS-CoV-2 antibody levels could be used to 
predict clinical outcome in ICU patients has not been investigated in  depth26. To gain further insight into these 
issues, we examined the relationship between peripheral blood SARS-CoV-2 IFN-γ-producing  CD4+ and  CD8+ 
T-cell responses targeting the Spike (S) and membrane (M) proteins, plasma levels of biomarkers of clinical 
severity and mortality COVID-19 ICU patients. We also investigated whether SARS-CoV-2-S-Receptor Binding 
Domain (RBD)-specific IgG levels in sera were associated with mortality in this clinical setting.

Patients and methods
Patients and specimens. This observational, prospective and longitudinal study included a total of 71 
non-consecutive critically ill patients, (49 male and 22 female; median age, 65  years; range, 21–80  years, as 
previously  defined27) with COVID-19 microbiologically documented by RT-PCR in nasopharyngeal specimens 
collected prior to recruitment at the intensive care unit (ICU) between October 2020 and February 2021. These 
patients were included in previous  studies28–30 assessing the rate and kinetics of SARS-CoV-2 RNAemia and 
Nucleocapsid (N) antigenemia, as well as the potential role of SARS-CoV-2-Spike-targeting antibodies in medi-
ating SARS-CoV-2 RNAemia and N-antigenemia clearance. No data on SARS-CoV-2 T-cell responses were 
included in these studies. The only patient inclusion criterion was availability of whole blood specimens for 
analyses, which were scheduled for once-weekly collection during ICU stay. No patient had received COVID-
19 vaccination at ICU admission. Medical history and laboratory data were retrospectively reviewed. The most 
relevant patient characteristics are shown in Table 1. The current study was approved by the Research Ethics 
Committee of Hospital Clínico Universitario INCLIVA (May 2020). Informed consent was obtained from par-
ticipants either on the hospital ward or at the time of ICU admission.

Table 1.  Baseline clinical characteristics of the study population at Intensive Care Unit admission.

Variable No. (%)

Sex

Male 49 (69.0)

Female 22 (31.0)

Acute physiology and chronic health evaluation (APACHE) II score

< 10 14 (19.7)

10–14 27 (38.0)

15–29 30 (42.3)

Comorbidities

Diabetes mellitus 17 (23.9)

Asthma/chronic lung disease 10 (14.1)

Hypertension 32 (45.1)

Obesity 37 (52.1)

Chronic heart disease 8 (11.3)

Vascular disease 7 (9.8)

Cancer 3 (4.2)

Hematologic disease 3 (4.2)

Number of comorbidity conditions

One 21 (29.6)

Two or more 32 (45.1)

None 18 (25.3)

Oxygenation and ventilator support

Invasive mechanical ventilation 63 (88.7)

PiO2/FiO2 < 150 mmHg 56 (78.9)

Acute kidney dysfunction 17 (23.9)

Antiviral or anti-inflammatory treatment

Remdesivir 16 (22.5)

Corticosteroids 69 (97.2)

Tocilizumab 27 (38.0)



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14271  | https://doi.org/10.1038/s41598-022-18659-x

www.nature.com/scientificreports/

SARS‑CoV‑2 RNA load in tracheal aspirates. Undiluted tracheal aspirates (TA) were obtained through 
a Halyard Turbo-cleaning closed suction system, which was connected to an orotracheal tube as a standard 
of care during the pandemic. SARS-CoV-2 RNA quantitation in TA was carried out by the Abbott RealTime 
SARS-CoV-2 assay Abbott Molecular (Des Plaines, IL, USA)29,30. SARS-CoV-2 viral loads (in copies/mL) were 
estimated using the AmpliRun Total SARS-CoV-2 RNA Control (Vircell SA, Granada, Spain).

SARS‑CoV‑2‑reactive IFN‑γ  CD4+ and  CD8+ T cells. Heparinized whole blood (0.5 mL) was simul-
taneously stimulated for 6 h with two sets of 15‐mer overlapping peptides (11‐mer overlap) encompassing the 
SARS-CoV-2 S glycoprotein N-terminal 1–643 amino acid sequence (158 peptides) and the entire sequence 
of SARS-CoV-2 M protein (53 peptides) at a concentration of 1 μg/mL per peptide, in the presence of 1 μg/
mL of costimulatory monoclonal antibodies (mAbs) to CD28 and CD49d. Peptide mixes were obtained from 
JPT peptide Technologies GmbH (Berlin, Germany). SARS-CoV-2-reactive IFNγ-producing-CD4+ and  CD8+ 
T cells were enumerated by flow cytometry for intracellular cytokine staining (ICS) (BD Fastimmune, BD Bio-
sciences, San Jose, CA, USA) as previously  described31,32. Samples mock-stimulated with phosphate‐buffered 
saline (PBS)/dimethyl sulfoxide and costimulatory antibodies were run in parallel. Brefeldin A (10 μg/mL) was 
added for the last 4 h of incubation. Blood was then lysed (BD FACS lysing solution) and frozen at − 80 °C until 
tested. On the day of testing, stimulated blood was thawed at 37 °C, washed, permeabilized (BD permeabilizing 
solution) and stained with a combination of labeled mAbs (anti‐IFNγ‐FITC, anti‐CD4‐APC-H7, anti‐CD8‐
PerCP‐Cy5.5, and anti‐CD3‐APC) for 1 h at room temperature. Appropriate positive (phytohemagglutinin) and 
isotype controls were used. Cells were then washed, resuspended in 200 μL of 1% paraformaldehyde in PBS, and 
analyzed within 2 h on an FACSCanto flow cytometer using BD FACSDiva™ Software v.8.0 (https:// www. bdbio 
scien ces. com/ en- ca/ produ cts/ softw are/ instr ument- softw are/ bd- facsd iva- softw are# Overv iew).  CD3+/CD8+ or 
 CD3+/CD4+ events were gated and then analyzed for IFN‐γ production. All data were corrected for background 
IFN-γ production. The data are expressed as the number of SARS-CoV-2-reactive IFN-γ-producing  CD4+ or 
 CD8+ T cells relative to the absolute number of  CD4+ and  CD8+ T cells, respectively (cells/µL). Any frequency 
value of SARS-CoV-2-reactive IFN-γ-producing  CD4+ or  CD8+ T cells after background substraction was con-
sidered as a positive (detectable) result and used for analysis purposes.

SARS‑CoV‑2 RBD IgG immunoassay. Serum levels of SARS-CoV-2 RBD IgG were measured as previ-
ously  described33. Briefly, SARS-CoV-2 RBD was produced in Sf9 insect cells infected with recombinant bacu-
loviruses (Invitrogen, CA, USA). Following purification, the protein was concentrated to 5 mg/mL by ultrafil-
tration. Ninety-six well microplates were coated with RBD at 1 μg/mL. Serum samples were diluted 1:500 in 
phosphate-buffered saline-Tween (PBS-T) containing 1% bovine serum albumin and run in triplicate (mean val-
ues are reported). The plates were incubated with 1:5000 dilution of horseradish peroxidase (HRP)-conjugated 
goat anti-human IgG (Jackson Laboratories). After three washes with PBS-T, the binding was detected using 
SigmaFast OPD reagent (Sigma) according to the manufacturer’s recommendations. Color development was 
stopped with 3 M  H2SO4 and read on a Multiskan FC (ThermoFisher Scientific) plate reader at 492 nm. Serial 
sera from individual patients were analyzed in the same run. The cut-off discriminating between positive and 
negative sera was set as the mean absorbance of control sera plus three times the standard deviation.

Laboratory measurements. Clinical laboratory investigation included serum levels of interleukin-6 (IL-
6), ferritin, D-Dimer, lactose dehydrogenase (LDH), C-reactive protein (CRP).

Statistical methods. Frequency comparisons for categorical variables were carried out using the Fisher 
exact test. Differences between medians were compared using the Mann–Whitney U test. Spearman’s rank test 
was used for analysis of correlation between continuous variables. Two-sided exact P-values were reported. 
A P-value < 0.05 was considered statistically significant. The analyses were performed using SPSS version 20.0 
(SPSS, Chicago, IL, USA).

Ethical statement. The current study was approved by the Ethics Committee of Hospital Clínico Univer-
sitario INCLIVA (May, 2020). All experiments were performed in accordance with relevant local guidelines and 
regulations. Informed consent was obtained from all participants, either on the hospital ward or at the time of 
ICU admission.

Results
Patient clinical features. Patients were recruited at a median of 3  days (range, 0–27  days) after ICU 
admission, corresponding to a median of 12 days (range, 3–38 days) after COVID-19 symptom onset. Sixty-
three patients (88.7%) underwent mechanical ventilation. Median time of ICU stay was 19 days (range, 1–67). 
All patients were treated at some point with anti-inflammatory drugs (Table 1), in particular corticosteroids 
(97.2%). Remdesivir was administered to 16 patients.

Dynamics of SARS‑CoV‑2‑reactive IFN‑γ  CD4+ and  CD8+ T cells in intensive care COVID‑19 
patients. A total of 326 whole blood specimens were available for assessment of SARS-CoV-2 S1/M-reactive 
IFN-γ T-cell responses (a median of 4 specimens/patient; range 1–16; detailed in Supplementary Table 1), of 
which 211 from 70 patients had detectable SARS-CoV-2 T cells (either  CD4+,  CD8+ or both). Representative 
flow cytometry plots are shown in Supplementary Fig. 1. The time to the first whole blood specimen display-
ing measurable SARS-CoV-2-reactive T cells since symptom onset and ICU admission was 13  days (range, 

https://www.bdbiosciences.com/en-ca/products/software/instrument-software/bd-facsdiva-software#Overview
https://www.bdbiosciences.com/en-ca/products/software/instrument-software/bd-facsdiva-software#Overview
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3–42) and 3 days (range, 0–27), respectively. SARS-CoV-2 IFN-γ T-  CD4+ T cells responses were documented 
more frequently (169 specimens from 62 patients, 87.3%) than their  CD8+ counterparts (140 specimens from 
56 patients, 78.9%) over different arbitrarily defined time frames since symptom onset (Fig.  1A). Overall, a 
trend towards higher  CD4+ T-cell than  CD8+ T-cell counts was observed within all time windows explored 
(Fig. 1B and Supplementary Table 2). SARS-CoV-2 IFN-γ  CD4+ T-cell levels appeared to fluctuate over the first 
5 weeks after symptom onset, and increase at later times; in contrast, SARS-CoV-2 IFN-γ  CD8+ T cells waned 
over time. Importantly, neither the use of remdesivir nor that of tocilizumab had an impact on median levels of 
SARS-CoV-2  CD4+ and  CD8+ T cells (not shown). Also relevant, SARS-CoV-2 T cells could be detected, even 
at high frequencies, in patients undergoing corticosteroids therapy (see Supplementary Fig. 1 for a representa-
tive example). Moreover, patient age was not correlated with SARS-CoV-2 IFN-γ  CD8+ (Rho = 0.2; P = 0.25) or 
 CD4+ (Rho = 0.1; P = 0.1) T-cell counts. Next, we examined the kinetics of SARS-CoV-2 T-cell responses at the 
individual level in 47 patients with ≥ 3 available specimens (Supplementary Table 3). Qualitatively, many patients 
exhibited fluctuating  CD8+ and  CD4+ T-cell responses (n = 25 for both T-cell subsets), while fewer tested positive 
(4 for  CD8+ and 8 for  CD4+) or negative (10 for  CD8+ and 3 for  CD4+) systematically over time.

SARS‑CoV‑2‑reactive IFN‑γ  CD4+ and  CD8+ T cells and SARS‑CoV‑2 RNA load in the lower res‑
piratory tract. We next investigated the potential impact of SARS-CoV-2 RNA load in tracheal aspirates on 
the detection rate and magnitude of SARS-CoV-2 S1/M-reactive IFN-γ T-cell responses. A total of 147 paired 
TA and whole blood specimens from 54 patients were available for analyses; these specimens were collected at a 
median of 21 days (range, 2–71 days) since symptom onset. As shown in Fig. 2, higher SARS-CoV-2 RNA loads 
in TA were associated with measurable SARS-CoV-2 S1/M-reactive  CD8+ (Fig. 2A) and  CD4+ (Fig. 2B) T-cell 
responses (P = 0.01 and P = 0.06, respectively) in paired whole-blood specimens. Additionally, a trend towards 
higher SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ and  CD4+ T-cell counts (P = 0.13 and P = 0.15) was documented 
when SARS-COV-2 RNA (at any level) could be detected in paired TA specimens (Fig. 2C,D, respectively). How-
ever, SARS-CoV-2  CD8+ and  CD4+ T cells correlated either poorly (Rho = 0.20) or not at all (Rho = 0.09) with 
SARS-CoV-2 RNA loads (Supplementary Fig. 2). Removal of specimens with undetectable (negative) results 
from correlation analyses had no impact on the results (not shown).

Following this, we examined the dynamics of SARS-CoV-2 S1/M-reactive IFN-γ T-cell responses in periph-
eral blood relative to that of SARS-COV-2 RNA load in the lower respiratory tract. This analysis involved 14 
patients (n = 53 specimens) with ≥ 3 whole blood and TA paired specimens. As shown in Table 2, no obvious 
(inverse) relationship between the dynamics of SARS-CoV-2 RNA load in TA and peripheral levels of SARS-
CoV-2-reactive  CD8+ and  CD4+ T cells was noticed; in fact, while SARS-CoV-2 RNA load clearly decreased over 
time, SARS-CoV-2  CD8+ T cells fluctuated within the first 4 weeks since symptom onset and tended to wane 
subsequently, while SARS-CoV-2  CD4+ T-cell counts fluctuated within the first 5 weeks since symptom onset 
and slightly increased afterwards.

SARS‑CoV‑2‑reactive IFN‑γ  CD4+ and  CD8+ T cells and serum levels of clinical severity biomark‑
ers. Since development of adaptive immunity responses may be modulated in magnitude and breadth by the 
net state of  inflammation34, we next investigated whether serum levels of IL-6, ferritin D-Dimer, LDH and CRP 
correlated with SARS-CoV-2-reactive IFN-γ  CD4+ and  CD8+ T-cell levels in paired whole blood specimens. 
Median levels of all these biomarkers were comparable across patients either with or without detectable T-cell 
responses at the corresponding sample time (Table 3). Furthermore, no correlation was found between whole 
blood T-cell counts and biomarker serum levels (Table 4).

Figure 1.  SARS-CoV-2 S1/M-reactive IFN-γ T-cell responses in critically ill COVID-19 patients, as determined 
by flow cytometry for intracellular staining. (A) Percentage of patients displaying detectable SARS-CoV-2-
reactive  CD8+ and  CD4+ T-cell responses at different times (weekly basis) since symptom onset. (B) SARS-CoV-
2-reactive  CD8+ and  CD4+ T-cell counts at different arbitrarily defined time windows since symptom onset. Bars 
represent medians and 95% CI values. P values for comparisons are shown.
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Figure 2.  Relationship between SARS-CoV-2 RNA load in the lower respiratory tract and peripheral blood 
levels of SARS-CoV-2 S1/M-reactive IFN-γ T cells. SARS-CoV-2 RNA load in tracheal aspirates in patients with 
or without concurrent detection of peripheral blood SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ (A) or  CD4+ (B) 
T cells and SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ (C) or  CD4+ (D) T-cell levels in peripheral blood according 
to the presence or absence of detectable SARS-CoV-2 RNA in paired tracheal aspirates. Bars represent medians 
and 95% CI values. P values for comparisons are shown.

Table 2.  Kinetics of SARS-CoV-2 RNA load in tracheal aspirates and SARS-CoV-2 S1/M-reactive IFN-γ 
 CD8+ and  CD4+ T cells in paired whole blood specimens from critically ill patients.

Days after symptom onset (no. of 
specimens available)

SARS-CoV-2 RNA load in tracheal 
aspirates. Median log10 copies/mL (range)

SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ T 
cell counts. Median cells/μL (range)

SARS-CoV-2 S1/M-reactive IFN-γ  CD4+ 
T-cell counts. Median cells/μL (range)

0–7 (3) 9.7 (9.4–10.1) 0.3 (0.1–0.3) 0.6 (0.2–10.2)

8–14 (9) 7.8 (5.8–10.5) 0.08 (0–1.7) 0.17 (0–1.7)

15–21 (10) 5.5 (2.9–8.4) 0.3 (0–10.47) 0.6 (0–5.2)

22–28 (8) 2.4 (0–8.1) 0.14 (0–11.65) 0.4 (0–7.7)

29–35 (8) 1.8 (0–6.5) 0 (0–1.1) 0.6 (0–4.8)

 > 36 (15) 0 (0–4.9) 0 (0–4.1) 0.9 (0–5.3)
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SARS‑CoV‑2‑reactive IFN‑γ  CD4+ and  CD8+ T cells and mortality. Out of 71 patients, 28 died (at a 
median of 32 days; range, 12–91 days since symptom onset). A comparable number of whole blood specimens 
(n = 115 from 28 deceased patients and n = 211 from 43 surviving patients) were examined for presence of SARS-
CoV-2 T cells. Time to symptom onset from collection of first specimen was also similar (P = 0.66). No differ-
ence was found in the rate of detectable (at least in one specimen) SARS-CoV-2-reactive IFN-γ  CD8+ (22/28 
vs. 34/43, respectively; P = 0.96) and  CD4+ (23/28 vs. 39/43, respectively; P = 0.29) T cells between patients in 
the two comparison groups. Moreover, when considering all analyzed samples, median levels of both func-
tional T-cell subsets were comparable across groups; in detail, for SARS-CoV-2-reactive IFN-γ  CD8+ T cells 
the figures were: median 0 cell/μL (95% CI, 0–4.9) in deceased patients and 0.08 cell/μL (95% CI, 0–5.0) in 
survivors (P = 0.22), and for SARS-CoV-2-reactive IFN-γ  CD4+ T cells they were: median 0.22 cell/μL (95% 
CI, 0–10.8) and median 0.29 cell/μL (95% CI, 0–10.1), respectively (P = 0.45). We next compared SARS-CoV-2 
T-cell responses in deceased and surviving individuals over different time intervals since symptom onset, finding 
no consistent association between the dynamics of virus-reactive  CD8+ and  CD4+ T-cell counts over time and 
mortality (Fig. 3).

Anti‑RBD IgG levels, clinical severity biomarkers and mortality. Anti-RBD IgGs were measured in 
326 serum specimens from all 71 participants. A total of 326 specimens from 66 patients had detectable levels. 
Anti-RBD IgG levels increased over time until week 5 after symptom onset and decreased slightly afterwards 
(Supplementary Fig.  3). Overall, no correlation was noticed between anti-RBD IgG levels and SARS-CoV-2 
S1/M-reactive IFN-γ  CD8+ (Rho = − 0.05; P = 0.29) and  CD4+ (Rho = 0.06; P = 0.22) T-cell counts (Supplemen-
tary Fig. 4). Likewise, no correlation was found between anti-RBD IgG levels and SARS-CoV-2 RNA in TA in 
147 paired specimens (Rho = − 0.18; P = 0.1). Moreover, anti-RBD IgG levels either correlated weakly with serum 
IL-6 (Rho = 0.30; P = 0.1) and D-Dimer (Rho = 0.32; P = 0.01) or showed no correlation with ferritin (0.1; P = 0.1), 
LDH (Rho = 0.02; P = 0.6) or CRP (Rho = 0.05; P = 0.34) levels. Finally, increased anti-RBD IgG levels were meas-
ured across all time windows in patients who died compared to those who survived, although the difference only 
reached statistical significance within certain periods (Fig. 4).

Discussion
While impaired SARS-CoV-2-reactive functional T-cell responses have been linked to progression from mild 
to severe forms of COVID-194,5,7,8,10–15, it remains to be elucidated whether these are associated with clinical 
outcomes among critically ill patients. Here, we prospectively monitored SARS-CoV-2 S1/M-reactive IFN-γ 

Table 3.  SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ and  CD4+ T-cell counts in whole blood and serum levels of 
clinical severity biomarkers in critically ill patients.

Biomarker of clinical 
severity

SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ T-cell responses

P-value

SARS-CoV-2 S1/M-reactive IFN-γ  CD4+ T-cell responses

P-valueQualitative result No. of specimens
Median cell counts in 
cells/μL (range) Qualitative result No. of specimens

Median cell counts in 
cells/μL (range)

IL-6 (pg/mL)
Detectable 27 36 (0–3548)

0.55
Detectable 30 28 (0–3548)

0.30
Undetectable 37 22 (0–3437) Undetectable 34 37 (0–3303)

Ferritin (ng/mL)
Detectable 106 604 (0.0–6440)

0.45
Detectable 125 607 (0–6440)

0.45
Undetectable 139 602 (0–3616) Undetectable 120 561 (0–3616)

D-dimer (ng/mL)
Detectable 129 1640 (0–51,919)

0.32
Detectable 156 1865 (0–51,919)

0.19
Undetectable 167 1740 (270–29,940) Undetectable 140 1635 (270–21,420)

LDH (IU/L)
Detectable 133 653 (93–1720)

0.74
Detectable 162 611 (0.0–2132)

0.06
Undetectable 171 637 (0–2132) Undetectable 142 670 (101–1685)

PCR (mg/L)
Detectable 138 33 (0–746)

0.74
Detectable 168 35 (0–746)

0.734
Undetectable 184 31 (0–606) Undetectable 154 28 (0–606)

Table 4.  Correlation between SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ T-cell counts in whole blood and 
serum levels of biomarkers of clinical severity in critically ill patients. a Spearman rank test.

Parameter

Biomarker (no. of specimens)

Interleukin-6 (64) Ferritin (245) D-dimer (296) Lactose dehydrogenase (304) C-reactive protein (322)

SARS-CoV-2 S1/M-reactive IFN-γ CD8+ T cells

Rho  valuea 0.09 0.06 − 0.08 0.002 − 0.05

P value 0.47 0.34 0.15 0.97 0.29

SARS-CoV-2 S1/M-reactive IFN-γ CD4+ T cells

Rho  valuea 0.16 0.03 0.06 − 0.12 − 0.01

P value 0.19 0.55 0.24 0.37 0.85
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T-cell responses using an in-house-developed flow cytometry assay in a cohort of 71 patients admitted to ICU, 
of whom most were mechanically ventilated (88%) and 28 died. Our antigen choice was based upon previ-
ously published data showing that a wide array of highly immunogenic T-cell epitopes map within S1 and M 
proteins that elicit immunodominant  responses2,4–8. In addition to further characterizing the dynamics of these 
T-cell subsets in this population group, which currently remains poorly defined, we aimed to establish whether 
SARS-CoV-2 S1/M-reactive IFN-γ T-cell counts were related to serum levels of biomarkers which predict poor 
outcomes and mortality across critically ill patients, and could thus be used as a surrogate prognostic marker. 
Our data allowed us to draw the following conclusions. First, virtually all patients, irrespective of age, developed 
SARS-CoV-2 S1/M-reactive IFN-γ T-cell responses (either  CD8+,  CD4+ or both) during ICU stay, although  CD4+ 
T-cell responses were detected more frequently and at higher levels than their  CD8+ counterparts. Furthermore, 
overall,  CD4+ T-cell responses appeared to fluctuate over time, while those involving  CD8+ T cells tended to wane. 
Despite this general landscape, we noted wide variations at the individual level. In fact, fluctuating responses 
were observed more frequently than consistent (either detectable or undetectable) ones over time. Moreover, 
transition from detectable to undetectable T-cell responses (or vice versa) was not uncommon, warranting 
further studies to confirm this latter finding and clarify the underlying pathogenetic mechanism. Second, data 
obtained in the rhesus macaque experimental model clearly underscore the crucial role of SARS-CoV-2-reactive 
T-cell responses in contributing to virus clearance from the lower respiratory  tract35,36. To determine whether 
this could be the case in our patient population, we compared the dynamics of SARS-CoV-2 load in TA to 
that of SARS-CoV-2 S1/M-reactive IFN-γ T cells in paired whole-blood specimens. Our data indicated that 
although the rate of detection and magnitude of SARS-CoV-2 T-cell responses appeared directly related to the 
level of virus replication in the lower respiratory tract, as inferred by viral RNA load in TA, the dynamics of virus 
clearance from this compartment was not consistently associated with that of peripheral blood SARS-CoV-2 

Figure 3.  Kinetics of SARS-CoV-2 S1/M-reactive IFN-γ  CD8+ (A) and  CD4+ (B) T-cell responses in critically 
ill COVID-19 patients who died or survived, as determined by flow cytometry for intracellular staining at 
different arbitrarily defined time frames since symptom onset. Bars represent medians and 95% CI values. P 
values for comparisons are shown.

Figure 4.  Serum levels of anti-Receptor Binding Domain (RBD) IgG in critically ill COVID-19 patients who 
died or survived at different arbitrarily defined time frames since symptom onset. Bars represent medians and 
95% CI values. P values for comparisons are shown.
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S1/M-reactive IFN-γ T cells. This suggested that enumeration of these T-cell subset specificities in whole blood 
provides no reliable information on the course of virus infection in the lungs. Naturally, our findings do not 
detract from the role of T cells in affording protection against severe forms of COVID-19, but rather suggest 
that examination of SARS-CoV-2-driven immune responses at the lower respiratory tract could offer a bet-
ter perspective of the interplay between virus replication and host immune responses during severe COVID-
19. Indeed, different cellular immune profiles in the airways and blood have been documented in critically ill 
COVID-19  patients37,38. Moreover, activated tissue-resident T cell frequencies were correlated with  survival39 
and aberrant T cell responses were detected in bronchoalveolar lavages from most severe COVID-19  patients40. 
Third, sustained high serum levels of several biomarkers of inflammation (IL-6, ferritin, CRP), coagulation and 
fibrinolysis (D-dimer) and tissue damage (LDH) are associated with poor COVID-19 prognosis across critically 
ill  patients41,42. Hyperinflammatory states may also down-regulate ongoing T-cell  responses34. In this context, 
we investigated whether (qualitative and quantitative) SARS-CoV-2 S1/M-reactive IFN-γ T-cell responses in 
our patients were somehow related to levels of the aforementioned biomarkers. This was found not to be the 
case, as serum levels of all biomarkers were similar regardless of detected or absent SARS-CoV-2  CD8+ or  CD4+ 
T-cell responses; moreover, no correlation was found between SARS-CoV-2 T-cell counts and biomarker levels 
in paired specimens. Fourth, in our cohort, mortality was not consistently associated with either detection rate 
or the magnitude of SARS-CoV-2 S1/M-reactive IFN-γ T-cell responses. This is in line with data reported by 
Thieme and  colleagues16, who found that development of robust T cell responses toward spike, membrane, and 
nucleocapsid SARS-CoV-2 proteins was not associated with survival in a small cohort of critical COVID-19 
patients. In a more comprehensive study, Saris et al.37 found high levels of TNF-α-producing S-reactive  CD8+ T 
cells to be associated with increased mortality, while mono-functional  CD4+ T- cell subsets could not be related 
to survival; nevertheless, survivors appeared to display broader and stronger virus-reactive poly-functional  CD4+ 
T-cell responses than those who died; yet, as stated by the authors, no obvious combination of effector func-
tions of  CD4+ T cells could be linked to prognosis. The key finding of the  study37 was that mucosal-associated 
invariant T (MAIT) cell activation is an independent and significant predictor of mortality. Likewise, in a very 
small study critically ill patients with hypertension who died exhibited prolonged low peripheral blood counts 
of SARS-CoV-2-S-reactive  CD8+ and  CD4+ T  cells20.

A number of previous studies have suggested that antibodies targeting the SARS-CoV-2 S protein are present 
at higher levels in patients presenting with severe forms of COVID-19, compared to patients exhibiting milder 
clinical  forms21–24. However, information regarding the dynamics of SARS-CoV-2-S antibodies in ICU patients 
is scarce. Overall, we found anti-RBD IgG levels to increase during ICU stay within the first 5 weeks after symp-
tom onset; interestingly, this increase was greater in patients who died than in those who survived. The limited 
number of death events in our series precludes further statistical analyses assessing whether anti-RBD IgG level 
behaves as an independent risk factor for mortality. In a previous study, Martín-Vicente et al.26 reported that low 
anti-SARS-CoV-2 S antibody levels at ICU admission predict mortality in critical COVID-19 patients. Our data 
do not support this idea. Differences in the characteristics of patients and timing of specimen collection since 
symptom onset may account, at least partly, for this discrepancy. Whether anti-RBD IgG may heighten the risk 
of death in ICU patients warrants further clinical and pathogenetic research. In this context, we found either 
weak or no correlation between anti-RBD and biomarkers of clinical severity, in line with a previous report by 
our  group33, thus suggesting that anti-RBD IgG are unlikely to be involved in promoting inflammation and vas-
cular damage in ICU patients. Moreover, the lack of correlation between anti-RBD IgG levels and SARS-CoV-2 
RNA levels in TA argue against a major role of this antibody specificity in mediating virus clearance from the 
lower respiratory tract.

The current study has several limitations deserving of comment. First, the limited sample size, particularly 
regarding the number of deceased patients, clearly undermines the robustness of the analyses. Sufficiently pow-
ered studies are needed to clarify whether monitoring SARS-CoV-2 T-cell responses in peripheral blood may 
have prognostic value in critically ill COVID-19 patients. Second, although blood specimens were scheduled to 
be collected weekly, this was unfortunately not achieved in a number of patients. Third, like other flow cytometry-
based immunoassays used for measuring SARS-CoV-2 T-cell responses, ours lacks appropriate standardization, 
although it is worth noting that our flow cytometry assay was found to be more sensitive than the commercially-
available QuantiFERON SARS-CoV-2 (an interferon-gamma release assay) for detection of SARS-CoV-2 T cells 
in  blood43. Fourth, SARS-CoV-2-reactive T cells were examined only for IFN-γ production, thus we cannot 
rule out the possibility that other functional T-cell specificities are associated with survival. Also, no data on the 
state of differentiation of reactive T cells are provided. Fifth, only SARS-CoV-2 S1 and M-reactive T cells were 
measured; whether enumeration of SARS-CoV-2 T cells targeting other viral proteins may help to individual-
ize mortality risk in critical COVID-19 patients remain to be defined. Sixth, SARS-CoV-2 T-cell responses in 
the lower respiratory compartment were not assessed. Seventh, SARS-CoV-2 neutralizing antibodies were not 
measured. Eighth, most patients were under corticosteroid treatment within sampling times. Ninth, the impact 
of tocilizumab use on serum levels of inflammatory biomarkers was not apparent in our series (not shown), 
although it cannot be completely dismissed. Finally, a variable number of specimens were missing at the different 
timeframes explored; this may have skewed the T cell responses reported.

In summary, we found no association of peripheral blood levels of SARS-CoV-2-S1/M-reactive IFN-γ  CD4+ 
and  CD8+ T cells or anti-RBD IgG levels with viral clearance from the lower respiratory tract or serum levels 
of biomarkers of poor prognosis in ICU patients. Interestingly, while SARS-CoV-2-S1/M-reactive IFN-γ  CD4+ 
and  CD8+ T-cell dynamics were seemingly not associated with mortality, increased levels of anti-RBD IgGs were 
observed in patients who died compared to survivors. Further, larger studies centered on resolving these issues 
should be conducted.
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