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Deep learning of ECG waveforms 
for diagnosis of heart failure 
with a reduced left ventricular 
ejection fraction
JungMin Choi1,2,5, Sungjae Lee3,5, Mineok Chang3, Yeha Lee3, Gyu Chul Oh4 & 
Hae‑Young Lee1,2*

The performance and clinical implications of the deep learning aided algorithm using 
electrocardiogram of heart failure (HF) with reduced ejection fraction (DeepECG‑HFrEF) were 
evaluated in patients with acute HF. The DeepECG‑HFrEF algorithm was trained to identify left 
ventricular systolic dysfunction (LVSD), defined by an ejection fraction (EF) < 40%. Symptomatic 
HF patients admitted at Seoul National University Hospital between 2011 and 2014 were included. 
The performance of DeepECG‑HFrEF was determined using the area under the receiver operating 
characteristic curve (AUC) values. The 5‑year mortality according to DeepECG‑HFrEF results was 
analyzed using the Kaplan–Meier method. A total of 690 patients contributing 18,449 ECGs were 
included with final 1291 ECGs eligible for the study (mean age 67.8 ± 14.4 years; men, 56%). HFrEF 
(+) identified an EF < 40% and HFrEF (−) identified EF ≥ 40%. The AUC value was 0.844 for identifying 
HFrEF among patients with acute symptomatic HF. Those classified as HFrEF (+) showed lower survival 
rates than HFrEF (−) (log‑rank p < 0.001). The DeepECG‑HFrEF algorithm can discriminate HFrEF in a 
real‑world HF cohort with acceptable performance. HFrEF (+) was associated with higher mortality 
rates. The DeepECG‑HFrEF algorithm may help in identification of LVSD and of patients at risk of 
worse survival in resource‑limited settings.

Left ventricular systolic dysfunction (LVSD) increases the risk of systemic embolism, stroke, and death compared 
to heart failure (HF) with preserved LV systolic  function1. Although Vasan et al. showed a decline in asymp-
tomatic LVSD over the past three decades, the prognosis of LVSD has remained unchanged, emphasizing the 
importance of early diagnosis and adequate management of  LVSD2. While echocardiography is the standard 
tool for LVSD diagnosis, the results are highly influenced by operator-dependent factors and its interpretation 
is subjective, resulting in high dependence to assessor’s  expertise3. These limitations restrict the routine use of 
echocardiography in a resource-limited medical setting. Thus, the development of alternative screening tools for 
LVSD has been attempted, such as biochemical options and electrocardiogram (ECG)4–9.

The use of ECG for LVSD diagnosis has been ongoing since 1996, from identification of simple abnormalities 
on ECG to the more recent development of artificial intelligence (AI)  algorithms5,7–15. Various AI algorithms have 
been developed and performed based on different definitions of LVSD (e.g., ejection fraction (EF) < 35%7,10,14, 
< 40%8,9,11–13, or < 50%12) and for distinct study  populations9,13. Despite advancement in AI-based LVSD diagnosis, 
an AI algorithm to identify LVSD patients with an EF < 40% has not been validated in a clinical population of 
patients with symptomatic HF regardless of EF. To address this gap, we validated the previously developed AI 
algorithm by Cho et al.8 into a deep learning-aided algorithm using ECG for HF with reduced ejection fraction 
(DeepECG-HFrEF) to identify LVSD, specifically LVSD with an EF < 40% among symptomatic HF patients 
regardless of EF. For training, we used 12-lead 10 s ECGs recorded from patients with symptomatic HF at Seoul 
National University Hospital who were enrolled in the Korean Acute HF (KorAHF) Registry. We further evalu-
ated the predictive power of the DeepECG-HFrEF on 5-year all-cause mortality.

OPEN

1Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. 2Department of 
Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. 3VUNO Inc, Seoul, 
Republic of Korea. 4Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Seoul, 
Republic of Korea. 5These authors contributed equally: JungMin Choi and Sungjae Lee. *email: hylee612@
snu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-18640-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14235  | https://doi.org/10.1038/s41598-022-18640-8

www.nature.com/scientificreports/

Results
Baseline characteristics. A total of 690 patients, contributing 18,449 ECGs, who were hospitalized for 
acute HF were eligible. Of these, those with no matching echocardiography within one month of enrollment 
(191 ECGs from 2 patients) and ECGs that were not the closest matching to the echocardiography (16,979 ECGs 
from 14 patients) were excluded. After exclusion, 675 patients contributing 1291 ECGs were included in the 
analysis (Fig. 1). The mean time interval between the ECG and echocardiography was 29.1 h, with over 82.1% 
(1060/1291) of the ECGs matched within 24 h of the index echocardiography.

Characteristics of the patients based on the archived ECGs classified by DeepECG-HFrEF algorithm are 
presented in Table 1. Characteristics of the study population according to echocardiographic results at enroll-
ment are summarized in Supplemental Table S1. Owing to the usage of multiple ECGs from the same patient, 
the sum of DeepECG-HFrEF based patient-set was larger than the original patient-set. However, the paired 
datasets were used per patient mostly once or twice. Those classified in the DeepECG-HFrEF (+) group were 
more likely to be men, to have more comorbidities, to be admitted for de novo HF than for acute decompensated 
HF, and to present with more severe symptoms of dyspnea. Among the etiologies of HF, ischemic (45.8%) was 
the most common etiology in the DeepECG-HFrEF (+) group, whereas valvular heart disease (30.1%) was the 
most common etiology in the DeepECG-HFrEF (−) group. The most prevalent HF group also differed between 
the two groups, with HFrEF being the most prevalent in the DeepECG-HFrEF (+) group and HFpEF in the 
DeepECG-HFrEF (−) group. The echocardiographic values differed between the two groups. The DeepECG-
HFrEF (+) group showed worse EF along with worse early diastolic velocity (E/e’), and right ventricle systolic 
pressure (RVSP). These results were consistently observed when confined to ECGs specifically corresponding to 
HFrEF patients (Supplement Table S2). The confidence score of DeepECG-HFrEF for each ECG was presented 
with corresponding left ventricular end systolic dimension (LVESD) as scatterplot (Supplement Figure S1). 
False-positive cases appeared to have smaller LVESD than true-positive cases and similar pattern was seen on 
false-negative cases when compared to true-negative cases.

ECG findings. The differences in various ECG parameters between the two DeepECG-HFrEF groups are 
shown in Table 2. The DeepECG-HFrEF (+) group showed a higher heart rate with longer QRS duration and 
QTc interval, as well as more prominent QRS widening, QTc prolongation, and Q wave. The two groups did not 
differ in the PR interval, PR prolongation, or axis. Among causes of QRS widening, left bundle branch block 
(LBBB) and intraventricular conduction delay (IVCD) were more common in the DeepECG-HFrEF (+) than 
(−) group (p = 0.001). Similar patterns were observed within the ECGs of HFrEF patients (Supplement Table S3).

Performance of the DeepECG‑HFrEF algorithm for different EF cut‑offs. The performance of the 
DeepECG-HFrEF algorithm for different EF cut-off values are reported in Supplement Table S4. Using the opti-
mal cut-off, based on Youden’s index, the AUC value for identifying HFrEF among patients with HF was 0.845. 

Figure 1.  Study flow chart—Among the patients hospitalized with acute heart failure, subjects with no 
matching echocardiographic results within 1 months and electrocardiograms other than closest match to the 
echocardiographic results were excluded. ECG electrocardiogram.
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For an EF < 40% cut-off, the sensitivity was 0.779, with specificity of 0.763, positive predictive value (PPV) of 
0.708, negative predictive value (NPV) of 0.824, and accuracy of 0.770. The AUC, sensitivity, PPV, and accuracy 
increased, while NPV decreased with an increase in EF.

Performance of the DeepECG‑HFrEF algorithm according to actual EF. The proportion of patients 
diagnosed with DeepECG-HFrEF (+) increased when the actual EF was lower (Fig. 2A). The DeepECG-HFrEF 
algorithm was more likely to yield false-positive and false-negative results when the actual EF was near 40% 
(Fig. 2B). The scatter plot also shows a higher proportion of correct classifications (true-positives) when the 
actual EF was lower (Fig. 3).

Performance of DeepECG‑HFrEF algorithm in different subpopulations. Figure  4 is a forest 
plot of the AUC and associated 95% confidence interval (CI) for the DeepECG-HFrEF algorithm according to 
various clinical patient parameters. The performance of the DeepECG-HFrEF algorithm was slightly better in 
the subgroups of patients: age ≤ 70 years, without hypertension, non-ischemic HF, sinus rhythm, PR interval 
≤ 200 ms, QRS duration ≤ 140 ms, corrected QT interval of ≤ 450 ms for men and ≤ 470 ms for women, and 
normal axis or LAD.

The 5‑year all‑cause mortality. Overall, the 5-year survival was worse in the DeepECG-HFrEF (+) than 
(−) group (p < 0.001; Fig. 5A). The Kaplan–Meier curve also showed a lower survival rate among patients with 
an actual EF< 40% (Fig. 5B). The crude and adjusted hazard ratios (HRs) for 5-year all-cause mortality for the 
three different models are reported in Table 3 All components of model 1 showed significantly increased crude 
HR and multivariable-adjusted HR. In model 2, echocardiographic EF < 40% added to model 1, DeepECG-
HFrEF (+) remained as significantly higher HR even after multivariable-adjustment. In model 3, which included 
a B-type natriuretic peptide (BNP) > 500 pg/mL added to model 1, DeepECG-HFrEF (+) was offset by BNP.

Table 1.  Clinical data of the patients according to the DeepECG-HFrEF algorithm. BMI body mass index, 
BNP B-type natriuretic peptide, ECG electrocardiogram, EF ejection fraction, eGFR estimated glomerular 
filtration rate, HF heart failure, HFpEF heart failure with preserved ejection fraction, HFmrEF heart failure 
with mid-range ejection fraction, HFrEF heart failure with reduced ejection fraction, LVEDV left ventricular 
end-diastolic volume, LVESV left ventricular end systolic volume, RVSP right ventricular systolic pressure.

DeepECG-HFrEF (+) (N = 600) DeepECG-HFrEF (−) (N = 691) Overall (N = 1291) p value

Clinical characteristics

Age, years 68.5 ± 13.5 67.2 ± 15.2 67.8 ± 14.4 0.102

Men 398 (66.3%) 325 (47.0%) 723 (56.0%)  < 0.001

BMI, kg/m2 23.4 ± 4.0 23.7 ± 3.9 23.6 ± 4.0 0.122

Current smoker 90 (15.0%) 88 (12.7%) 178 (13.8%) 0.257

Hypertension 379 (63.2%) 391 (56.6%) 770 (59.6%) 0.017

Diabetes mellitus 266 (44.3%) 237 (34.3%) 503 (39.0%)  < 0.001

Status of HF 0.027

De novo HF 163 (27.2%) 151 (21.9%) 314 (24.3%)

Acute decompensated HF 437 (72.8%) 437 (78.1%) 977 (75.7%)

HF class according to EF  < 0.001

HFpEF 90 (15.0%) 448 (64.8%) 538 (41.7%)

HFmrEF 86 (14.3%) 120 (17.4%) 206 (16.0%)

HFrEF 424 (70.7%) 123 (17.8%) 547 (42.4%)

Echocardiography

EF, % 33.5 ± 12.8 51.6 ± 12.9 43.2 ± 15.7  < 0.001

LVESV, mL 131.7 ± 72.2 76.7 ± 46.5 110.7 ± 69.0  < 0.001

LVEDV, mL 184.3 ± 81.9 131.3 ± 55.8 164.1 ± 77.4  < 0.001

E/A ratio 1.6 ± 1.2 1.3 ± 0.9 1.4 ± 1.0  < 0.001

Deceleration time, ms 159.6 ± 66.1 201.0 ± 92.3 182.9 ± 84.4  < 0.001

E/e’ 21.9 ± 11.1 19.4 ± 13.0 20.5 ± 12.3 0.001

RVSP,mmHg 48.2 ± 14.7 44.6 ± 15.7 46.2 ± 15.3  < 0.001

Laboratory

eGFR, mL/min/1.73m2 57.6 ± 30.7 64.0 ± 32.7 60.9 ± 31.9 0.001

BNP, pg/mL 1745.4 ± 1547.4 1043.4 ± 1240.5 1444.5 ± 1464.5  < 0.001
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Discussion
In this study, we validated the DeepECG-HFrEF to identify LVSD in patients with symptomatic HF regardless of 
EF and evaluated the predictive power of the algorithm for the 5-year all-cause mortality. The DeepECG-HFrEF 
algorithm showed outstanding performance in discriminating LVSD among patients with HF. DeepECG-HFrEF 
(+) was associated with a worse 5-year survival, even when compared to using the actual EF value. To our knowl-
edge, this is the first study to validate the performance of a deep learning-based AI algorithm for LVSD detection 
and to show risk predictability in symptomatic patients with HF.

LVSD is identified in 40–50% of patients with  HF16. Although survival rates of patients with HF have recently 
improved in developed countries, patients with HF still show an eight-fold higher mortality than an age-matched 
 population17,18. Not only does HF increase the risk of mortality, but the associated economic burden cannot be 
overlooked. The economic burden of HF was estimated to be $108 billion per annum globally in 2012, with 
60% direct costs to the healthcare system and 40% indirect costs to society through morbidity and  others19. 
Such burden is even higher in Asian countries compared to the United States, with a large proportion of the 

Table 2.  ECG findings according to the DeepECG-HFrEF algorithm. *VT, VF, high-degree AVB or junctional 
rhythm. † PR interval > 200 ms. ‡ QRS duration > 140 ms. § Male > 450 ms, Female > 470 ms.

DeepECG-HFrEF (+) (n = 600) DeepECG-HFrEF (−) (n = 691) Overall ECG (n = 1291) p value

Heart rate, pbm 90.7 ± 22.3 79.4 ± 20.5 84.7 ± 22.1  < 0.001

PR interval, ms 173.6 ± 36.5 173.8 ± 40.8 173.7 ± 38.7 0.946

QRS duration, ms 120.3 ± 32.4 106.5 ± 28.5 112.9 ± 31.2 0.049

QTc interval, ms 484.8 ± 48.7 460.1 ± 44.0 471.6 ± 47.8  < 0.001

Rhythm

Sinus rhythm 412 (68.7%) 422 (61.1%) 834 (64.6%) 0.005

AF or AFL 159 (26.5%) 232 (33.6%) 391 (30.3%) 0.006

Other* 30 (5.0%) 37 (5.4%) 67 (5.2%) 0.803

PR prolongation† 62 (16.1%) 57 (14.2%) 119 (9.2%) 0.487

QRS widening‡ 134 (22.3%) 94 (13.6%) 228 (17.7%)  < 0.001

 LBBB 40 (6.7%) 19 (2.7%) 59 (4.6%) 0.001

 RBBB 27 (4.5%) 45 (6.5%) 72 (5.6%) 0.144

 IVCD 39 (6.5%) 17 (2.5%) 26 (4.3%) 0.001

QTc prolongation§ 440 (73.3%) 317 (45.9%) 757 (58.6%)  < 0.001

Q wave 166 (27.7%) 111 (16.1%) 277 (21.5%)  < 0.001

 Anteroseptal 106 (17.7%) 48 (6.9%) 154 (11.9%)

 Lateral wall 11 (1.8%) 1 (0.1%) 12 (0.9%)

 Inferior wall 49 (8.2%) 62 (9.0%) 111 (8.6%)

Axis 0.937

 Normal or LAD 511 (85.3%) 588 (85.1%) 1099 (85.1%)

 RAD or no mans’ land 88 (14.7%) 103 (14.9%) 191 (14.8%)

Figure 2.  (a) Proportion of DeepECG-HFrEF (+) according to actual EF (b) Distribution of correct and 
incorrect cases of DeepECG-HFrEF according to actual EF—The proportion of patients diagnosed with 
DeepECG-HFrEF (+) increased with the lower actual EF. The false-positives and false-negatives of DeepECG-
HFrEF were more likely yielded when the EF was near 40%. ECG electrocardiogram, EF ejection fraction.
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HF-related healthcare costs directly associated to  hospitalization20. The impact of this burden is accentuated 
among elderly patients, with almost three-quarters of the total resources assigned to HF being solely devoted to 
the older  population21. The increase in the proportion of elderly individuals in the general population, social age-
ing phenomenon, is consistent throughout the world, with the elderly population projected to double to almost 
1.6 billion globally, from 2025 to  205022. Considering the economic burden of HF in the elderly population, 
there is a need to improve early diagnosis and treatment of LVSD to slow or even prevent its progression to HF.

A summary of currently developed AI algorithms for the detection of LVSD and the validation of these 
algorithms is provided in Supplementary Table S5. The definition of LVSD and the primary endpoint differed 
among studies, with an EF cut-off of 35% to 40% having been used. The study population used for validation 
also differed between the studies, from using patients at a community general hospital to patients in cardiac 
intensive care unit and patients with COVID-199,12,13. As a result of these differences in the clinical population 
used, the proportion of patients within the validation population varied between 2 and 20%7,11. Our study is the 
first to validate the algorithm to detect LVSD solely using patients with HF. Our results showed the strength of 
the DeepECG-HFrEF algorithm to discriminate LVSD even when the prevalence of HF is high.

Despite recent advances in HF pharmacotherapy, the mortality and rehospitalization rates of patients with 
HF are still high. Therefore, the identification of high-risk patients who would benefit the most from compre-
hensive HF treatment is urgently  required23. A few studies suggested the promising role of AI support for the 
early diagnosis of low  EF15. Regarding AI for the detection of LVSD, only one study, by Attia et al., reported on 
the power of an AI algorithm to predict future LVSD  development7. Our study is the first to show an association 
between long-term survival and LVSD of patients with HF based on an AI algorithm. Our results show that the 
AI algorithm can identify abnormalities in ECG before overt LVSD is observed on echocardiography.

The AI algorithms are known for being a “black box” with exact mechanism unexplainable. However, there 
are some ECG characteristics in the DeepECG-HFrEF (+) group which might have contributed to the prognostic 
performance of the algorithm. The DeepECG-HFrEF (+) group had significantly increased corrected QT intervals 
and increased proportions of LBBB and IVCD. A study by Lee et al. showed that LBBB and IVCD were associated 
with an increased risk of all-cause mortality and rehospitalization due to HF  aggravation24. Regarding the QTc 
interval, a study by Park et al. showed a J-curve association between the corrected QT interval and mortality 
among patients with acute HF, with a nadir of 440–450 ms in men and 470–480 ms in  women25. Thus, such an 
association might be one of the factors used by the DeepECG-HFrEF algorithm to differentiate between the two 

Figure 3.  Scatter plot demonstrating observed EF and DeepECG-HFrEF prediction—The proportion of true-
positives was higher with lower actual EF even in the scatter plot. EF ejection fraction.
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groups. Nevertheless, as our study did not specifically differentiate the corrected QT interval according to sex, 
the application of results by Park et al. should be done with  caution25. Thus, we can carefully interpret that the 
features shown in the DeepECG-HFrEF (+) group, such as LBBB and IVCD, might be factors that the algorithm 
is searching for group classification.

There is no clear explanation for the increased false-positive and false-negative rates among patients with an 
EF near 40%. One plausible explanation might be that the clustering near an EF of 40% may be a heterogeneous 
group. A previous study by Rastogi et al. showed heterogeneity in the underlying demographics of HFmrEF 
to be associated with changes in EF over  time26. Among the HFmrEF groups, improvement in EF tends to be 
associated with coronary artery disease, while a worsening of EF is more likely to coexist with hypertension and 
diastolic  dysfunction26. Patients with acute coronary syndrome are more likely to have dynamic changes in their 
ECGs and EF over a short period of  time27,28. As ischemia was the leading cause of acute HF among patients in 
the KorAHF Registry, such dynamic changes might have contributed to heterogeneity, resulting in a discrepancy 
between actual EF and DeepECG-HFrEF algorithm  results29.

Limitations. The limitations of our study need to be acknowledged in the interpretation of results. First, 
owing to the retrospective design used, causation between identified factors of LVSD among patients with HF 
could not be inferred. Further validation of the algorithm using a prospective study design is needed. Second, 
generalization of our results is limited, and should be cautiously interpreted, as the study population was drawn 

Figure 4.  Forest plot depicting AUC values (95% confidence interval) of the DeepECG-HFrEF algorithm in 
identifying LVSD in different subpopulation. The forest plot of DeepECG-HFrEF algorithm showed similar 
performance among various clinical parameters. AUC  area under the receiver-operator characteristic curve, 
BNP B-type natriuretic peptide, EF ejection fraction, eGFR estimated glomerular filtration rate, HF heart failure, 
LAD left axis deviation, RAD right axis deviation.
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from a single hospital site in Korea. Further studies on a wider range of race and ethnicity are necessary, as done 
per the study conducted by the Mayo Clinic using an artificial intelligence-augmented electrocardiogram (AI-
ECG) in the United States and  Uganda9,14. Third, although most of the ECGs were matched to echocardiography 
within 24 h, some were performed within 30 days. Although these time gaps might influence the performance 
of our model, the mean ± standard deviation of time gaps for true positive, false positive, false negative, and true 
negative are 22.0 (± 65.6), 30.6 (± 86.4), 31.3 (± 107.3), and 33.6 (± 90.2), respectively, which was not statistically 
significant (p = 0.192). Also, the performance of the algorithm although the 30-day maximum has generally 
been accepted in previous  studies10,12. It is important to note that the ECG matched to echocardiography within 
24 h comprised 82.1% of the data used in this study. Fourth, HF medication compliance was not considered. As 
angiotensin-converting enzyme inhibitors and beta-blockers are known to have a favorable prognosis for the 
treatment of LVSD, data on such medication adherence would have affected survival. Fifth, our study focused 
on the association between ECG and echocardiography and included multiple ECG and echocardiographic data 

Figure 5.  (a) Kaplan–Meier curve for mortality at 5-year follow up according to the DeepECG-HFrEF (Total 
ECGs = 1291) (b) Kaplan–Meier curve for mortality at 5-year follow up according to the DeepECG-HFrEF 
among patients with actual EF < 40%—The patients classified as DeepECG-HFrEF positive showed worse 5-year 
survival. ECG electrocardiogram; EF ejection fraction.

Table 3.  Crude and adjusted hazard ratio for 5-year all-cause mortality among 1291 of heart failure ECGs. 
BNP B-type natriuretic peptide, CI confidence interval, CKD chronic kidney disease, ECG electrocardiogram, 
EF ejection fraction, HR hazard ratio.

Crude Multivariable adjusted

HR (95% CI) p value HR (95% CI) p value

Model 1

Age > 70 2.733 (2.269–3.291)  < 0.001 2.734 (2.192–3.411)  < 0.001

Diabetes 1.674 (1.416–1.980)  < 0.001 1.235 (1.007–1.515) 0.043

Ischemic Heart Disease 1.764 (1.486–2.094)  < 0.001 1.357 (1.106–1.665) 0.003

CKD stage 4–5 1.849 (1.464–2.336)  < 0.001 1.590 (1.250–2.023)  < 0.001

DeepECG-HFrEF (+) 1.496 (1.265–1.770)  < 0.001 1.351 (1.109–1.646) 0.003

Model 2

Age > 70 2.733 (2.269–3.291)  < 0.001 2.726 (2.184–3.403)  < 0.001

Diabetes 1.674 (1.416–1.980)  < 0.001 1.235 (1.006–1.515) 0.043

Ischemic Heart Disease 1.764 (1.486–2.094)  < 0.001 1.362 (1.110–1.673) 0.003

CKD stage 4–5 1.849 (1.464–2.336)  < 0.001 1.591 (1.251–2.023)  < 0.001

DeepECG-HFrEF (+) 1.496 (1.265–1.770)  < 0.001 1.381 (1.099–1.734) 0.006

EF < 40% 1.215 (1.027–1.438) 0.023 1.044 (0.831–1.310) 0.713

Model 3

Age > 70 2.733 (2.269–3.291)  < 0.001 2.693 (1.981–3.660)  < 0.001

Diabetes 1.674 (1.416–1.980)  < 0.001 1.016 (0.770–1.339) 0.913

Ischemic Heart Disease 1.764 (1.486–2.094)  < 0.001 1.375 (1.042–1.813) 0.024

CKD stage 4–5 1.849 (1.464–2.336)  < 0.001 1.719 (1.245–2.375) 0.001

DeepECG-HFrEF (+) 1.496 (1.265–1.770)  < 0.001 1.103 (0.837–1.453) 0.487

BNP > 500, pg/mL 1.693 (1.221–2.348) 0.002 1.585 (1.126–2.232) 0.008
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from one person. This may have had a slight influence on the survival analysis. A sequential study using a single 
ECG and echocardiography from individual patients would be useful to confirm our results. Lastly, our study 
used visually estimated EF values documented by the examiners because EF measurement by Simpson’s biplane 
or other calculated methods were inadequate either by poor echocardiographic window or severely unbalanced 
myocardial contraction (61 out of 1291 cases).

Conclusions
The DeepECG-HFrEF algorithm showed acceptable performance in distinguishing HFrEF in a real-world HF 
cohort. Patients with a DeepECG-HFrEF (+) classification had a significantly worse 5-year survival. Applica-
tion of the DeepECG-HFrEF algorithm may be of specific benefit in resource-limited clinical settings where 
echocardiography is not readily eligible to identify high-risk patients who may benefit from active therapeutic 
intervention.

Methods
Statement of ethics. Our Institutional Review Boards approved this retrospective database study at Seoul 
National University Hospital (No.2012-191-1186). The requirement for informed consent from the study sub-
jects was waived by the IRB of Seoul National University Hospital due to the retrospective study design. All 
research was performed in accordance with the Declaration of Helsinki. Use of the data from the KorAHF 
Registry was previously approved (Institutional Review Boards of Seoul National University Hospital No. 2004-
166-1119)29.

Study population. This was a retrospective validation study of the AI ECG algorithm for patients with 
symptomatic HF at Seoul National University Hospital. The ECGs used to validate the DeepECG-HFrEF for 
the diagnosis of HFrEF were retrieved from the KorAHF Registry. Eligible were patients who had undergone 
ECG and echocardiography within a 30-day interval. Patients with missing demographics, ECGs, and echocar-
diographic information were excluded. For patients who underwent repeated ECGs and echocardiography, all 
records were verified, and the ECGs performed closest to (before or after) the index echocardiography selected 
for analysis. All ECGs included in the analysis were manually reviewed by two certified cardiologists to confirm 
the cardiac rhythm diagnosis.

Data management. Demographic and echocardiographic data, and clinical outcomes were obtained from 
the KorAHF  Registry25,29. The 12-lead ECGs were performed using the MUSE system (MAC 5500 HD, versions 
5D to 8, GE Healthcare), at a sampling rate of 500 Hz. The left ventricular EF was determined using the fol-
lowing hierarchical approach: Simpson’s biplane method was used preferentially; if this was not available, then 
other calculated methods were used; and finally, if EF could not be calculated, then visual estimation was used. 
HF was classified according to the left ventricular EF, as follows: HFrEF (EF < 40%); HF with mildly reduced EF 
(HFmrEF, EF: 40–50%); and HF with preserved EF (HFpEF, EF > 50%)30.

AI Algorithm. The original convolutional neural network (CNN)-based algorithm was previously described, 
developed, and externally  validated8. The DeepECG-HFrEF algorithm to detect a LVEF < 40% was validated to 
detect an EF < 40% from 12-lead 10 s ECGs data of HF patients. The algorithm was implemented on the Ten-
sorFlow (Google, Mountain View, CA) framework and written in Python (version 3.6; Python Software Foun-
dation, Beaverton, OR). For this study, the algorithm was newly implemented on PyTorch (Facebook, Menlo 
Park, CA), with no additional training or optimization of the original algorithm. The output for the algorithm 
is a continuous value between 0 and 1, representing a confidence score for an EF < 40%. Using a certain cut-off 
value, all tests either had a positive (+) or negative (−) result, and none of the tests were considered intermediate.

Statistical analysis. A comprehensive panel of diagnostic performance metrics was summarized to evalu-
ate the performance of the DeepECG-HFrEF algorithm. In particular, the sensitivity, specificity, PPV, NPV, accu-
racy, and accuracy of the validation study were determined using the original algorithm positive (+) of greater 
than or equal to the cut-off of 0.370, indicating that the input ECG had a confidence score of 0.370 to detect a 
LVEF < 40%8. The AUC with confidence interval was evaluated via a 2000-sample bootstrapping method. We 
examined the optimal threshold, which is defined as the threshold that maximizes the sum of sensitivity and 
specificity (i.e., Youden’s index). Continuous variables are presented as the mean ± standard deviation and com-
pared using the unpaired Student’s t-test. Categorical variables were expressed as frequencies or percentages and 
were compared using the chi-squared test. For the secondary objective of exploring the long-term prognostic 
impact of DeepECG-HFrEF (+), the Kaplan–Meier method was used with between-group differences assessed 
using the log-rank test. The Cox proportional-hazards regression model was used to identify the predictors of 
5-year all-cause mortality. The performance of three models was evaluated: DeepECG-HFrEF (+) model 1 (age 
> 70 years, diabetes, ischemic heart disease, and chronic kidney disease (CKD) stage 4–5); DeepECG-HFrEF (+) 
model 2 (echocardiographic results of EF < 40%, age > 70 years, diabetes, ischemic heart disease, and CKD stage 
4–5); and DeepECG-HFrEF (+) model 3 (BNP > 500 pg/mL, age > 70 years, diabetes, ischemic heart disease, and 
CKD stage 4–5). All reported p-values were two-sided, with a p-value < 0.05 considered significant. Statistical 
analyses were performed using IBM SPSS Statistics version 23 (IBM Co., Armonk, NY, USA).
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