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Electrical resistivity 
of polycrystalline graphene: effect 
of grain‑boundary‑induced strain 
fields
S. E. Krasavin* & V. A. Osipov

We have revealed the decisive role of grain-boundary-induced strain fields in electron scattering 
in polycrystalline graphene. To this end, we have formulated the model based on Boltzmann 
transport theory which properly takes into account the microscopic structure of grain boundaries 
(GB) as a repeated sequence of heptagon–pentagon pairs. We show that at naturally low GB charges 
the strain field scattering dominates and leads to physically reasonable and, what is important, 
experimentally observable values of the electrical resistivity. It ranges from 0.1 to 10 k � µm for 
different types of symmetric GBs with a size of 1 µ m and has a strong dependence on misorientation 
angle. For low-angle highly charged GBs, two scattering mechanisms may compete. The resistivity 
increases markedly with decreasing GB size and reaches values of 60 k � µ m and more. It is also very 
sensitive to the presence of irregularities modeled by embedding of partial disclination dipoles. With 
significant distortion, we found an increase in resistance by more than an order of magnitude, which 
is directly related to the destruction of diffraction on the GB. Our findings may be of interest both in 
the interpretation of experimental data and in the design of electronic devices based on poly- and 
nanocrystalline graphene.

As is known, large-area films suitable for industrial application are usually polycrystalline consisting of a large 
number of randomly distributed single grains separated by grain boundaries (GBs). This holds for CVD grown 
graphene, which is considered as a promising material for nanoelectronics (for example when designing highly 
sensitive electro-biochemical devices1) and thermoelectrics2,3. However, the effect of GBs on electronic transport 
properties is not yet well understood. Summary of the experimentally observed values of GB-induced resistiv-
ity ( ρGB ) by using various measurement techniques is given in Fig. 2 of Ref.4. They varies over a wide range of 
values from 0.1 to 100 k � µ m and depend on many additional factors such as distance from the charge neutrality 
point (adjustable by gate voltage), GB type, connectivity, width and some others. Neither experimental5–10 nor 
theoretical11–14 studies have so far provided clear evidence clarifying the mechanism of electron scattering on 
GBs in graphene.

Experimentally shown that GBs in graphene are n-doped due to localized electrons at pentagon–heptagon 
(5–7) pairs forming GB, while environment is p-doped. This should indicate that GBs act as electrical barriers to 
charge transport15,16 thus reducing conductivity. Theoretically, such mechanism of scattering across GBs has been 
studied in Refs.11–14. The problem is that high ρGB values (1 k � µ m and more) are not achievable when calculat-
ing carrier scattering on a weakly charged GBs (for 5–7 rings it is equal to e∗ ∼ 0.02 e according to17). Several 
papers discuss the impact of graphene wrinkles18, GB’s disorder19, roughness and zig-zagness of extended GBs20 
which make it possible to approach and in some cases even significantly exceed (see, e.g., Ref.20) the expected 
range of values.

It should be noted, however, that one of the most natural mechanism of electron scattering due to GB-induced 
strain fields has not yet been considered. Grain boundaries in graphene are formed by linear chains of penta-
gon–heptagon pairs or, equivalently, of 5–7 disclination dipoles, which are a source of additional mechanical 
stresses. This provides a new scattering channel for charged carriers: the GB-induced deformation potential 
scattering. The deformation potential is defined through the trace of strain tensor. Some time ago we suggested 
a model which takes into account the finiteness of the GB21. The basis for that model was the analogy between 
disclination dipoles and finite walls of edge dislocations. More specifically, wedge disclination dipoles simulate 
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finite dislocation walls. This allowed us to describe the features of electron and phonon scattering in polycrystal-
line materials due to long-range strain fields22. Recently, we presented a general scheme that allows us to calculate 
strain fields in graphene caused by GB of any size and shape as a sum of strains of 5–7 disclination dipoles23. 
This approach has been applied to the analysis of heat transport in polycrystalline graphene23 and allows us to 
consider any possible configurations of GBs including closed defects like the Stone-Walles24.

In this paper, we extend the model with explicitly included internal structure of GBs to the case of electronic 
scattering in graphene. It can be applied for analysis of both individual GBs of any finite length and polycrystal-
line samples with the network of GBs. We consider a combination of two main sources of electron scattering: 
(a) deformation potential scattering and (b) electrostatic scattering due to charged GBs. The resistivity on GBs 
with different misorientation angles is calculated as a function of electron concentration. Our approach allows 
us to take into consideration the case of non-straight GBs with structural irregularities through the inclusion of 
additional partial disclination dipoles (PDDs). Calculations of the electrical conductivity are performed within 
the Boltzmann approach at room temperature. The expressions for relaxation times are derived in the first Born 
approximation. In this work, we restrict ourselves to consideration of symmetric twin boundaries.

Model
Let us consider a GB of finite length in graphene as a periodic array of pentagon–heptagon pairs lined up along 
a line (see Fig. 1).

As is known, such array is a source of local stresses near the GB25. Additionally, in the absence of a charged 
impurity, there is a small charge located on 5–7 pairs17. Therefore it is necessary to consider both possible mecha-
nisms for the scattering of charged carriers: (a) strain fields caused by this defect which cannot be excluded, espe-
cially in the case of a low linear charge concentration at the GB and (b) electrostatic potential of the charged GB.

It is well known that the effect of strain field can be described within the deformation potential theory26. In 
our approach, the total strain field caused by the GB at any point of graphene sheet is determined through a sum 
of strain fields from all 5–7 pairs23. In this way, for a GB oriented in the x-direction, the deformation potential 
Vǫ(r) takes the form

where TrEij(r) is the trace of the strain tensor, G is the deformation potential constant, � is the modulus of the 
Frank vector which, for the chosen geometry, is directed along the z axis, p is the number of 5–7 pairs in the 
GB, ζ is the is Poisson’s ratio, ( xni , yni ) are coordinates of i-th disclination in n-th dipole. In Eq. (1), the last term 
describes the dilatation for partial disclination dipole (PDD) with a power of ω located at points (x′

m1(2), y
′
m1(2)) 

built in a GB. These additional dipoles can appear inside GBs because of the step-like variations in the misorien-
tations along GB lines27 or, in other words, disclinations forming the dipole are points separating GB fragments 
with different tilt misorientation angles. If the dipoles are located along the x-axis, the coordinates xni should 
satisfy the condition |xn2 − xn1| = L , where L is the length of the dipole arm in graphene.

When determining the explicit form of the electrostatic potential VQ we consider that each charged 5–7 
dipole is surrounded by a cloud of charges of opposite sign. In this approximation, 5–7 dipoles are localized 
point-like objects with a distance h̃ between them. The cloud radius R lies in the region L/2 < R < Rmax with 
Rmax = h̃/2 , that is a situation when neighbouring circles are touching each other. The Poisson equation takes 
the following form:
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Figure 1.   Illustrative examples of GBs with different misorientation angles: (a) θ = 13.2
◦ , L = 0.246 nm, 

h = 0.846 nm; (b) θ = 16.4
◦ , L = 0.246 nm, h1 = 0.42 nm, h2 = 0.846 nm; (c) θ = 38.2

◦ , L = 0.42 nm, 
h = 1.01 nm.
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where r = (x, y) , ND and NA are concentrations of donors and acceptors, respectively, θ(x) is the Heaviside unit 
step function; xl = x0 + lh̃ is the coordinate of l-th dipole along the x - axis, e∗ is the effective charge localized 
at 5–7 pair, and ǫ0(ǫ) is vacuum (relative) permittivity. Performing calculations by using the Fourier-transform 
method we can find an expression for the effective two-dimensional electrostatic potential VQ(r)

where rl =
√

(x − lh̃)2 + y2 and Gmn
pq  is the Meijer function28.

Using two normalized chiral eigenstates |k >= 1√
2

(e−iθk/2

eiθk/2
)

eikr29,30, the scattering matrix for perturbation 
energy Vǫ is found to be

where q = k
′ − k and θk′ k = θ

′
k − θk . By analogy, for the electrostatic energy given by Eq. (3) we get

where J1(z) is the Bessel function of the first kind.
In the framework of the Boltzmann approach, the conductivity in graphene is written as31,32

with

Here f (0)± (E) = 1/[e(E∓µ) + 1] is the equilibrium Fermi-Dirac distribution function of electrons and holes 
with linear energy dependence E = �vF |k| , vF is the Fermi velocity, n± are the electron and hole concentrations, 
µ is the chemical potential measured relative to the half-filled π band, τ±(E) is the relaxation time for electrons 
and holes, and the factor 4 accounts for spin and valley degeneracies. We consider the case when n+ ≈ ND and 
n− ≈ NA.

In the first Born approximation, the relaxation times for the scattering mechanisms of interest to us are 
written as

where ndef  is the two-dimensional concentration of GBs, which can be easily determined for one-periodic struc-
tures if the distance h between the dipoles is known (see Fig. 1a,c). Indeed, the parameter h defines the GB size D 
through the relation D = pL+ (p− 1)h with p being the number of dipoles in the wall. The distance h is directly 
related to the misorientation angle θ , characterizing the type of GB (see, e.g., Ref.25): the greater the h the smaller 
the misorientation angle. For most of the GBs we examined D = 1 µ m and L = 0.246 nm, while h changes. For 
example, for θ = 9.4◦ one has h = 1.27 nm and p = 660 , for θ = 21.8◦ one has h = 0.42 nm and p = 1500 and 
the like. Two considered GBs are different: at θ = 16.4◦ (see Fig. 1b) two periods h1 = 0.42 nm and h2 = 0.846 
nm occur (p=1140), while at θ = 38.2◦ (see Fig. 1c) the dipole arm increases to L = 0.42 nm with h = 1.01 nm 
( p = 695 ). The concentration of GBs can be roughly estimated by means of the relation ndef = 1/D2 , so that 
ndef = 108 cm−2 . The chosen value of D allows us to compare our results with the existing experimental data 
in graphene with mesoscopic grain sizes (as, for example, in Ref.10). Notice, that it is also possible to prepare 
samples with poorly-connected GBs and for them ndef  will not be directly related to D. In the present work, we 
only focus on a case of fully-connected GB network. The relaxation time used in Eq. (6) is the combination of 
τǫ and τQ through the Matthiessen’s rule26

Finally, the total resistivity ρGB (defined as σ−1 ) including the contribution from the two scattering mecha-
nisms is calculated by means of Eq. (6).
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Results
We performed calculations of ρGB at room temperature in a wide range of electron (hole) concentrations for GBs 
with different misorientation angles, both straight and non-straight (having additional disclinations). The results 
of our calculations are shown in Figs. 2, 3 and 4. Let’s start with the consideration of straight configurations.

Straight GBs.  First of all, let’s make a few general conclusions. We found that the deformation potential scat-
tering is the dominant scattering channel for all GB types provided that the total effective charge e∗ located at 5–7 
pair is small. Indeed, its estimated value varies between 0.02 and 0.03 in units of electron charge e17. Our numeri-
cal results show that for e∗ = 0.02e the ratio ρǫ/ρQ takes values in the range from 5 ×102 to 5 ×103 depending on 
θ . The highest values of ρǫ/ρQ were found for denser GBs (with θ values around 32.2◦ ). We found also that ρQ is 
slightly sensitive to the value of the screening parameter R.

Figure 2 shows the resistivity of straight twin GBs ( ω = 0 ) as a function of δn ( δn = n+ − n− ) for different 
misorientation angles.

As can be seen, ρGB is growing with the misoriention angle up to θ ≈ 32◦ and takes the values from 1 to 7 k � 
µ m at δn ≈ 1011cm−2 . It should be noted, however, that limitations of the applicability of the Born approximation 
do not allow us to accurately determine the value of the resistivity at low carrier concentrations (near the charge 
neutrality point δn = 0 ). And yet, the behavior of the calculated curves gives grounds to assert that ρGB reaches 
values from 0.2 to 1.0 k � µ m, depending on the type of GBs. Notice that these values are consistent with those 
estimated for twin GBs in Ref.33. The values of ρGB obtained away from the electrical neutrality point are in good 
agreement with the experimental data of Ref.10 if we use the relation between δn and gate voltage Vg in the form: 
δn = ε′Vg/(4π |e|d) with ε′ being the dielectric constant of SiO2 substrate and d a distance from the back gate to 

Figure 2.   Grain-boundary resistivity vs electron concentration at T = 300K for different misorientation angles: 
9.4◦ (red line), 13.2◦ (blue line), 16.4◦ (black line), 21.8◦ (brown line), 26.01◦ (green line), and 38.2◦ (short 
dashed line). The GB size is 1 µ m. Other parameters are: deformation-potential constant G = 13eV, effective 
electron charge at 5–7 dipole e ∗=0.02e, ndef=108cm−2 , �=60◦ , ζ = 0.2 . The screening radius R has greatest value 
for each GB. (Inset) Room-temperature GB resistivity as a function of misorientation angle θ◦ is shown in the 
inset at δn = 10

11cm−2(blue line), 1012cm−2 (yellow line), and 3× 10
12cm−2 (green line).

Figure 3.   GB resistivity caused by electrostatic potential versus electron concentration at T = 300 K for 
effective charges e∗ = 0.3e (green line) and e∗ = 0.8e (red line). The GB misorientation angle is taken to be 
θ = 13.2

◦ ( L = 0.246 nm, h = 0.846 nm, p=916). For comparison, the resistivity due to deformation potential 
(DP) scattering from Fig. 2 is shown by blue line.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14553  | https://doi.org/10.1038/s41598-022-18604-y

www.nature.com/scientificreports/

the graphene sheet. It is important to note that ρGB is sensitive to two model parameters G and ζ through the fac-
tor G2(1− ζ )2 , whose values are not well defined. According to available estimates, G can take values in the range 
from 7 to 19 eV, while ζ varies within 0.16 - 0.42. Respectively, the values of ρGB can be both higher and lower 
than ours calculated at G=13 eV and ζ=0.2. This remark is valid for all types of grain boundaries shown in Fig. 2.

The biggest values of ρGB as well as of ρǫ/ρQ relation have been found for GBs with angles from 26.01◦ to 
32.2◦ where linear concentrations of 5–7 dipoles are maximal. A decrease in the concentration of 5–7 dipoles 
also explains the decrease of ρGB at δn ≈ 1011 − 3× 1012cm−2 for θ above 32◦ (see the insert in Fig. 2). Our 
calculations show that the smaller the GB wall size, the greater the resistance value due to an increase in the con-
centration of GBs. For example, for 21.8◦ GB with a size of D = 10 nm we obtain ρGB ∼ 70 k � µ m at δn = 1011

cm−2 in agreement with measurements in Ref.34 (see also Fig. 2 in Ref.4). Notice that this value is more than an 
order of magnitude greater than that of the same GB with D=1 µm.

Let us briefly discuss under what conditions the importance of the electrostatic potential will increase. Obvi-
ously, this will require a significant increase in effective charge of 5–7 pairs, what can happen during doping of 
graphene by electron-donor and -acceptor molecules. In particular, it was shown that a single B or N impurity 
atoms prefer to incorporate into the grain boundary region and produce a p-type (n-type) doping in all investi-
gated GB structures35. Enhanced chemical reactivity of GBs allows one to consider polycrystalline graphene as 
a promising material for creating chemiresistors36, chemical 37 and biochemical1 sensors and other applications. 
Figure 3 shows ρGB as a function of δn in the case when e ∗ equals to 0.3e (green line) and 0.8e (red line).

For comparison, the contribution to ρGB caused by the deformation potential scattering is given as well (blue 
line). We see that the scattering by electrostatic potential becomes comparable to the deformation-potential one 
when e ∗ reaches the value of about 0.8e and starts to dominate at higher values. Thus, increasing effective charge 
on the wall leads to the higher resistivity values. This should be taken into account when analyzing experiments 
with charged GBs. Notice that the very possibility of competition between the two scattering mechanisms seems 
interesting to us. As can be seen from our calculations, this effect will be most pronounced at low-angle GBs.

Non‑straight GBs.  Let’s take into account feasible irregularities in the spatial arrangement of 5–7 dipoles. 
Indeed, most of experimentally observed GBs in graphene sheets are curved and show no strict periodicity38. 
This is especially true for walls with sizes of about a micron, which, as a rule, arise during synthesis by CVD 
method. A possible way to describe structural irregularities of real GBs in graphene is to embed partial disclina-
tion dipoles with strengths in the range of −60◦ < ω < 60◦27. Earlier, in the study of heat transport in graphene 
(see Ref.23), we have shown the possibility, within the framework of our approach, of taking into account any 
number of PDDs (including those with different ω ) inside the GB wall. Which is important in calculations, one 
can consider many built-in PDDs as one with a total arm length.

Figure 4 shows the resistivity ρGB as a function of δn for 13.2◦ GBs containing a PDD with the arms equal to 
|x′
m2 − x

′
j1| = d = 0.1 µ m (blue line) and d = 0.8 µ m (black line) ( ω = 45◦).

As seen, for short PDDs there is a slight increase in resistivity (up to ρ ≈ 5.0 k � µ m near the charge neutrality 
point). With increasing size and/or number of regions with structural irregularities, the resistivity noticeably 
increases. In this case, the high values of ρGB (2 k � µ m and above) measured in some highly resistive samples 
(see, e.g., Refs.7,10) can be explained by deformation potential scattering only. We found that the more distorted 
the grain boundary, the less pronounced the dependence on the misorientation angle. This can also be seen 
from the long wavelength limit of the electronic mean free paths ratio lGB+PDD/lGB ∼ (1+ ωd/�pL)−2 . Here 
the dependence on h disappears and, at fixed ω , the effect is determined by the ratio of the total length of PDD 
arms d and the effective length of 5–7 dipoles in the wall pL. Recall that h is directly related to θ.

It is important to note that our analysis of the relaxation time behavior depending on the electron wavelength 
� allowed us to draw an important conclusion about the specifics of electron scattering at grain boundaries 
in graphene. It turned out that this scattering behaves like in wave optics thus clearly manifesting the wave 

Figure 4.   GB resistivity as a function of electron concentration at T = 300 K and D = 1µ m in the presence of 
partial disclination dipoles of different arms: d=0.1 µ m (blue line), d=0.8 µ m (black line), and without a partial 
dipole (red line). The misorientation angle θ = 13.2

◦ , the strength of the partial dipole ω=45◦ . The deformation 
potential constant is equal to 13 eV.
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properties of electronic excitations in graphene. First of all, at fixed length D we found a strict proportionality of 
ρGB to p2 that is typical for Fraunhofer diffraction by amplitude gratings. At long wavelengths, the electron ’sees’ 
a GB as a solid wall with size D. However, at smaller wavelengths, when � is compared to D and further reduced, 
the GB becomes much more transparent due to its grating structure. As a result, the resistivity drops noticeably 
compared to what it would be for scattering on solid walls. Obviously, the larger D, the more pronounced the 
effect of reducing resistivity. This is exactly what happens when an additional PDD is embedded because it acts 
like a solid wall of size d ’covering’ the slots of the grate. Here the situation is reversed: the larger d relative to D, 
the more significant the increase in resistivity (see also Fig. 4). It is interesting to note that if h (misorientation 
angle) is fixed and D is varied, we obtain a rather weak dependence of ρGB on D provided that D exceeds � . This 
agrees, for example, with the measurements on well-stitched high-quality monolayer graphene films with grain 
size varying from 200 nm to 1 µ m in Ref.39. They studied asymmetric walls (with transport gap), which does 
not allow us to make a direct comparison of the results, but we plan to do this in the near future. Notice that 
within our approach the transport gap can be taken into account in a natural way by introducing a finite lower 
integration limit in Eq. (6).

Conclusion
In conclusion, in the framework of the proposed model based on Eqs.(1)-(3) we have demonstrated the possibil-
ity to reproduce the experimentally observed resistivities in polycrystalline graphene samples lying between 0.1 
and 100 k � µ m for realistic parameters. Our study shows that the GB-induced deformation potential scattering 
gives the main contribution to the resistivity. Other important conclusions are as follows: 

	 (i)	 in the case of straight GBs we found a strong correlation between resistivity and misorientation angle. 
The resistivity scales with GB length and can reach values of several tens of k � µ m in nanocrystalline 
samples.

	 (ii)	 in the presence of a noticeable charge on straight small angle GBs, an additional scattering channel 
becomes significant due to electrostatic potential. For GBs of mesoscopic size, the occurrence of com-
petition between two scattering mechanisms is established.

	 (iii)	 at mesoscopic length, the GBs are usually not straight and contain structural irregularities. In this case, 
the deformation potential scattering increases noticeably due to additional strains caused by built-in 
partial disclination dipoles. This can lead to a marked increase in resistivity up to values of the order of 
10 k � µ m and more in agreement with experiments with highly resistive polycrystalline samples. Similar 
increase in resistivity in case of non-straight GBs was also reported in a recent paper20.

Our work is rather aimed at studying the mechanisms of scattering at individual grain boundaries. It is for 
this reason that we avoid direct comparison with experiments, with the exception of those where the resistance 
was measured on an individual GB wall, as, for example, in Ref.10. In order to describe experiments with real 
polycrystals, it is necessary to take into account the complex grain morphology that leads to inhomogeneity 
of their electronic properties. Therefore, in addition to studies of individual GBs, it is also necessary to study 
GBs on a large scale to extract reliable averages. A possible phenomenological approach to such a description is 
presented in Ref.1. As a final remark, our approach is quite universal and can be used to describe both electron 
and thermal resistivity in any polycrystalline 2D materials with GBs built from a sequence of 5–7 dipoles. Such 
a consideration is of obvious interest in the development of modern 2D materials with fundamentally new 
characteristics and the design of various electronic and thermionic devices since, as noted above, large-area 
films are usually polycrystalline.

Data availability
The datasets used for analysis during the current study available from the corresponding author on reasonable 
request.
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